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Figure 1: Reduced space
Proposition 3.1 ®, : P, — T*M is a fiber space with the fiber being the
coadjoint orbit O, of p in g*.
We have the decomposition of T'F P associated to (1.1):
T:P=H' oV},

where

HF {p e TP|(p,X) = 0for VX € H,},
Vi = {peT!P|(p,AF) =0forVAF € V,}.

Note that dim H = r and dimV;} = n. The following lemma is easily ob-
tained.

Lemma 3.2 (1) The map Jy := J|gs : HE — g* is a linear isomorphism.
(2) Forv € g* let p, = J;'(v) € HL. Then,

J_l(l/) NT,P=p, + Vu‘L ={p, +p"|p* € VuJ‘}.

(3) The map @y, = By, 4vr : JT'H (W) NT;P — T; M is a bijection with
®,.(p) =0.
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Proof. (1)It is obvious that J, is linear and surjective. Suppose J(p) = J(p')
for p, p € H. Then, (p, AF) = (p', AF) for VA € g. On the other hand,
(p,X) = (p',X) =0 for VX € H,. Hence, (p,V) = (p',V) for VV € T, P, and
accordingly p = p'

(2) is obvious.

(3) The surjectivity is obvious. Suppose ®(p) = ®(p') for p, p' € J~1(v) N
T:P. Then, (p, X#) = (p', X#) for VX € T, M. On the other hand, (p, AY) =
(p', APy = (v, A) for VA € g. Hence, (p,V) = (p',V) for VV € T,P, and
accordingly p = p' ‘ a

Let v be a point in P with n(u) = ¢ € M. We define the map ¢, of
TiM x O, to J™ (p) as

T;M x Oy 3 (g,v) = Rya(®5(0) + 5 (v) € Ty, PO T (w),

where g is an element of G satisfying v = Ad*(g)u. Here we can check by
noticing (2.2) and ®;¢(q) € V,;- that the image of ¥,, belongs to J~'(u) as

follows:
J(Ry-1(250(0) + I3 () = J(Ry - (J5' () = Ad™ (97w = .
If v = Ad*(g)p = Ad*(¢')p for g # ¢', then ¢’ = gh for some h € G,.
Therefore, we obtain the bijective map
T, : T*M x 0, — [( U 75,P)n J_l(p)]/G,,
9€G

from ,,. It is easily see that ¥, is bijective and satisfies ®, o ¥, (q,v) = q.
Thus it is shown that ®, : P, — T*M is a fiber space with the fiber being the
coadjoint orbit O,. Moreover, by taking a local section u = u(z) (z € U C M)
of P we have a local triviality of P,:

T, :T*U x 0, = &;1(T*U).

In particular, we have a local section s(q) (¢ € T*U) of the fiber space ¢, :
P, = T*M by

su(9) = Tulg, p) = [250(0) + J2 (W)]- (3.1)
associated to a local section u(z) (z € U) of P. Thus we complete the proof of
O

Proposition 3.1.

4 Dynamical structure of the reduced system

Let @ be the connection form on P of the connection V. The connection
form 6 is a g-valued one form satisfying (i) 8(AF) = A for VA € g, and (ii)
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R0 = Ad(g~1)8 for Vg € G. For p € g* we define the R-valued one form 6,

on P by
0u(X) = (n,0(X)) (X €TLP).

It is easy to see that 0, is G-invariant, ie., R;0, = 0, for Vg € G,. Let g,
be the Lie algebra of G,. Then we have

Lemma 4.1 df, (AP, X) =0 holds for any A € g, and X € T, P.
Proof. We have
d6,, (AT, X) = (i(AP)d8,)(X) = (Lar0,)(X) — d(i(AT)8,)(X) =0

because 8, is G ,-invariant and i(AF)6, = 6,(AF) = (u, A) = constant. a

Let M, := P/G, be the quotient manifold by the G,-action on P. By
noticing the above lemma the two form df,, can be regarded as that on M, as

d,([X],[Y]) :=db.(X,Y) (X,Y € TLP).
Now, we consider the cotangent bundle T* M,, with the twisted symplectic form
Oy = Qug, + iy, (d6,), (4.1)
where (1), is the canonical symplectic two form on T*M,, and mp, : T* M, —
M, is the projection.

Proposition 4.2 ([1, Theorem 4.3.3], [9, Theorem 3]) There exists a sym-

plectic embedding _
Xp ¢ (P#,Qu) — (T*M”,Q”),

that is, X, is an embedding satisfying x;, Q0 = Q.
Proof. For each u € P let
(Va)u == {p€ TiP| (p, A7) = 0for VA € g} (C T, P),

which can be identified with T;M, (¢ = 7'(u) € M, for the projection «' :
P — M,) because we have the linear isomorphism

Ry s (V)E = (V)d,

for each g € G,,. Thus we have T*M, = V,;-/G,.

Take p € T*P such that mp(p) = u € P, i.e., p € Tt P. We define x,(p) =
Pu — (8,)u € T*P. Then we can easily see that (i) x,(p) belongs to V- (and
accordingly to (V.)3) if pu € J7'(n), and (i) Xu(Rj-1(p)) = Rj-1(Xu(p))
for g € G, ie., Xu is Gu-equivariant. In fact, (i) is shown as (pu, AEY —
((8u)w, AFY = (J(p), A) — (1, A) = 0. As (ii) we have only to see the equality
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On)ug = R;_1((64)w), that is shown as (6,)u.¢(X) = R;_1((64))(X) =0 for
VX € g and (0,)ug(AD,) = R2-1((6,)0)(AR,) = (4, ) for VA € g. As a
result of (i) and (ii) X, induces the map x, : P,(= J~Y(n)/G,) = T*M,(=
V-/G,). Tt is obvious that x,, is an injection.

Now, we will show that x;Q, = Q,. Let X be a vector in T,(T*P) (p €
T*P,mp(p) = u). Then, X is expressed as

X=X+X* with X € T,P, X* € T: P(= T,(T:P)).

Here X* belongs to V;' if X € T,J (1) (Lemma 3.2,(2)). For two vector
fields X = X(p), Y =Y (p) on a neighborhood of py in J~1(u) we have

Q(XY) = 3{X(p,¥) = V{wp, X) ~ (wp,[X,Y])}
= X -V, X~ (K VD).

Put p'(= x.(p)) =p — 6., and we have

(XY) = L(X0,7)- Y0, X) - 0, K V])
+ G{X0,7) - F(6, %) - (6, T VD).

Noticing V;t C (V,.)$ we can regard X = X + X* as a vector in Ty (T*M,,),
and see that the first term is nothing but Qaz, (xu«([X]), xu+([Y])). By noticing
[X,Y] = [X,¥] we see that the second term is just
9, (a1, 0 X )« ([X1), (mag,, 0x) ([(Y]))- s

Next, we define the Riemannian metric m, on M, as follows. Put (V,), :=
Tu(G, - u) for u € P, which is a subspace of V,,. Then we have the orthogonal
decomposition

T.P=H,®Vy,=H,®(Hu)u® Vyu)u (4.2)

from (1.1) and the G-invariant metric on G, where (H,), is the orthogonal
compliment of (V,,), in V,,. By identifying T,,M,, with H, ® (H,). we obtain
the metric m, on T,,M,,.

Let H » be the Hamiltonian function on 7™M, naturally induced from the
metric m,. Then,

Lemma 4.3 H, = x;ﬁu + |lpll2., where || - |lg- is the naturally induced norm
from the inner product in g.

Proof. For p € TP N J~}(u) we have p = X, (p) + (6,). with x,.(p) € V-
and (0,). € Hi. Since V;* and H are orthogonal each other, we have

Hy([p]) = 1% @I + 10)ull* = Hu (xu([p) + 16,1
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Figure 2: Reduction procedure

Note that (6,)u(AF) = (i, A) for VA € g, and we have ||(8,)u]] = ||pllg=- O

As a consequence, we have the following (cf. Figure 2).

Proposition 4.4 The reduced Hamiltonian system (P,,Q,, H,) is regarded as
a Hamiltonian subsystem of (T'*M,,Q,,H,).

Let X, be the Hamiltonian vector field on P, associated to H,, that is,
i(X,)Q, = —dH,. The flow of X, is regarded as embedded Harmltoman ﬁow

in (T*M,, Q ,L) and represents the motion of a classical particle of “charge”

4 in the gauge field given by the connection V. The (external) configuration
space of the system is the manifold M and the fiber of M » — M is the space

of internal degrees of freedom.

5 Expressions in local coordinate systems

5.1 Basic formulas
Let {Yo} = {Y,, Y5} = {¥7,.. ! ., Y;"} be the orthonormal basis

) r yEry410
of g =m®ag, w1th {¥o} {Y5'} El)emg the basis of m and g,, respectively,
where g,, is the Lie algebra of Gu- Note that dim G, =r —ri(=r,). We have
coordinates y = (v',y") = (y'%,...,y'™,y"™ 1 ..., 4"") in a neighborhood V

of the identity (y = 0) of G by

Y= (yll,‘ . ,ylrl’yllr1+1,“ . ’yll'r‘)

> g=exp (i y'aYo't) exp ( i y"ﬁYﬁ") .
a=1

B=r1+1
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By virtue of the local triviality of the bundle P we take a local coordinate
(z%,y*) e UxV (U C M,V C Q) of P. For the basis {Y,} of g we have the
assoc1ated basis {Y.F'} of V,, which is expressed as

T

0
YS (2,y) =ﬁz=:11“§(y)w (5.1)

with T8(0) = 62. Let (2%,y%;&,m4) the local canonical coordinates of T*P
Then, the momentum map J is represented as

™

J(z,y;&m) =Y (ZFﬁ(y)nﬁ)Y“ S (5:2)

a=1 pg=1

where {Y?,...,Y"} is the dual basis of g* associated to {Y4}.
We remark that I'(y) := (I2(y)) in (5.1) is non-singular near y = 0 because
I'8(0) = 2. Let A(y) = (AX(y)) be the inverse matrix of I'(y). Then, the

following is easy to see.
Lemma 5.1 (1) If1<a <7, r, +1<k<r, then we have
L) =A5(@) =0, (5.3)

nw| o | M) | o
I(y) = , Aly) = ,
v [rm(w r2<y)J @ {Azl(y) lAz(y)}

(2) If r1 + 1 < k < r, then we have
LUy, 0) = AL(y',0) =67, e, T2(y,0)=As2(y,0)=E.  (54)

i.e.,

and

ory OA%
550 = 5o5(,0) =0, (5.5)

Let C%; be the structure constants of g with respect to the basis {Yo} =
{¥5,Y)'}, ie., [Ya,Ys] = 3, CiYi. Then, the following formulas concerning

the functions I'z(y) and Aj(y) are derived from the fact that {YFP(y)} is a
family of left-invariant vector fields on G.

Lemma 5.2

ors
Z(Pz-@i’— 3% = X2t (5.6)
Y
OA%
3y 3!/ﬂ ——ZA”’ (5.7)

Proof. The first formula is obtained from the relation [V, Y[f 1=2, C’;’ﬁYf .
The second is derived from the first by noticing AT’ = E. m
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5.2 Kaluza-Klein metric and the system of geodesic flow
on T*P

Now let us consider the connection form 6 of the connection V. Noticing
6(AF) = A for VA € g, we put

T

6=> (i=1 07 (z,y)da’ +ﬂ§ Ag(y)dy") ® Ya. (5.8)

o=1

Note that the property R;8 = Ad(g™1)8 (g € G), and we put for G > g +
(yh s 7yr)

Ad(gHY, = ZAz(y)Yﬂ (a=1,...,7). (5.9)
B=1
Then, we have the following.

Lemma 5.3 Put §%(z) := 62(z,0), and we have
02(z,y) =D A5 (@) (=1,...,ma=1...,7), (5.10)
=1

where AZ(y) satisfies
0A5

B =" ST ANCS Af with A5(0) = 45, (5.11)
and accordingly s
07 o g
e ; ABCg. 65 (5.12)

Proof. By virtue of the property:

bp-g (8_27) = Ad(g—l)ﬁp (aii)

we get (5.10). The equations (5.11) is obtained by differentiate the formula

Ad(g(t) ™Y = D AL(y(1)Ys
B=1

with respect to t for g(t) = g - exp(tY5). m|

From (5.8) we see that the horizontal space H, in T.P (u = (z,v)) is
generated by the vectors

0 o 0 .
X#(z,y) == S TA(y)6; (#¥)55 (=1
’ﬁ

ozt
o
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The Kaluza-Klein metric 7 on P is defined by
XFXH) =my, XF YD) =0, (¥F,Y]) = bap,

and is represented by

~ o 0
i = (5;’@) i+ 08,05 (o .
. d
Mia = (&U, By ) 297 z,y)AL(y), ' (5.13)
~ 0
o = (50 ay,g) ZA* (W) A} ).
)
As a consequence, we get the Hamiltonian system (T*P,Qp, H ) with
Qp =) d&Nde' + ) dna Ady®, (5.14)
H(z,y;&n) = Y mY(2)&g; — 2 m (2)0f (2, y)T5 (v)éima
+ Y T)6) (z, y)m? ()07 (=, y)T2 (y)nams (5.15)
+ Y T2 (W) nans-

The Hamiltonian flow (the geodesic flow) on T*P is governed by the canonical
equation

it =23 mig — 23 mieiTrgn,,
g = -2 mieirse + 2 Z I907m79rTEns +2)  TTEng,

Omki
g okéi T 22 B (m*02)T§&une

&=
0] 5.16
- ZP’?E—? 07m]k0;:)rﬁ77a77ﬁ’ ( ( )
= 2Zm 8 —(07T%) &imp — 2 Zm“ (T265) 07 Tmpny
-2y ayi Ty )

We can directly see that the momentum map J(z,y; &, n) is invariant under the
flow governed by this equation, i.e.,

2 160,90:60,9) = 5 (. T2WOMO 0 7*) =0

by virtue of Lemmas 5.2 and 5.3.
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5.3 Reduced system (P,,Q,, H,)

Now we consider the reduced system (P,,(,,H,). Note that Ad*(g)p =
p(r=7) pY* € g*) for Vg € G, and we have the following.

Lemma 54 If1<a<r r+1<8<r, then
> 1, Cly =0. (5.17)
v=1

Proof. Put g(t) = exp(tYy') (Y € gu). Then for VX € g we have
(u,Ad(g(t))«X) = (u, X). Differentiate this equation with respect to ¢, and we
get (u, [Y5, X]) =0, wh1ch derives (5.17). o

Jf (z,956,m) = (2,9,9";€,7',n") belongs to J~!(u), then it follows from
(5.2) that

Zfl(y)n7 =pa (@=1,...,71), (5.18)

and accordingly

=Y AWny (@=1,...,7). (5.19)

Thus, we can take (z,y;€) = (z,y',y"; ) as local coordinates of J~!(p) in the
neighborhood W of py = (20,0, 0; &, p’, u"). From (5.19) we have

ONY
Z gy Sdy”. (520)
Byy=1
Therefore we have
OAY OAY

i*Qp dei/\dmi+-;—z;t7[2(ayﬁ 6yf)dyﬂ/\dya]
ng,/\dx 42 Z (> i AFCYLAL ) dy® A dy”

¥,K,V

on J~1(u) by virtue of (5.7). Here notice Lemmas 5.1 and 5.4, and we get
(z:QP)(‘T7 yl) y”,f)

i 1 - o . K v I 18

— Zd& Adat+ 5 ﬁz_l (gzjlf\;lwxﬂ(y )1 A (y))dy Ady'®.

Two points (z1,y},y};&1) and (z2,y5,y5;&2) are in the same G,-orbit if and
only if 1 = z2,y} = v}, & = &. Hence we take (z,y';€)(= (z,y',0;€)) as local
coordinates of P,, and have the following.
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Proposition 5.5 The symplectic form Q, on P, is locally expressed as

(2,9'56) = stmdx

+"2‘ Z ( Z ZV’WAE(?J’,O C'Z,,AZ,(y',O))dy’“/\dy'ﬁ. (5.21)

a,f=1 &k,w=1v=1

Remark. For a fixed p € T*U we have the bijection k4 : O, — @;1(q)(c
P,) given by k,(q) := u(q,v) (v € O,) (see §3). Then, the two form ;€ is
just the symplectic form on O, called the Kirillov-Kostant form(cf. [6]). The
coadjoint orbit O, is locally parameterized by the coordinates (y'*,...,y'™),
and the second term in (5.21) is just the Kirillov-Kostant form.

By plugging (5.18) into (5.15) we have

Hy(z,y';€) = Z m¥ (z)&:&; — 2 Z Zm (z,y',0)&py

1,7=1 1,7=1vy=1

+ Z z 07 (z,y',0)m? (2)65 (z,y", 0) p i +Z;(u7)2
1,j=1v,k=1 =

(5.22)

As a consequence, we get the equation of the motion in the reduced Hamiltonian
system (P,,Q,,H,).

Proposition 5.6 The Hamiltonian flow on the reduced phase space P, is gov-
erned by

# =2 ,Zl [m"%x)sj - Zm @6} .5, 0,
1,j= y=
Py
+2 Z 0k;u‘7p'n] r
’Y,K,_
§'e = -2 Z [Zm”fﬁ@f& ZZmﬂr 0500 m| (a=1,...,m).
1,j=1 pB=1 B=1~v=1

)
(5.23)

Proof. The Hamiltonian vector field Xp, = Y.(X'0/0z* + £'0/0&; +
Y *8/0y*) corresponding to H, is defined by the equation i(Xg, )0 = —dH,,
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which directly derives the first and second equations of (5.23) and

Z ZMAﬂm AZY® =2 Z [Z ,ﬁszm Z m ,fﬂefuyua].

a,k,v=1y=1 = y=1

By virtue of (5.12) we get

Z Zp7AﬁCV ALY =23 [ Z Zm”Aﬂuyczye &

a,k,v=1~vy=1 3,7=1 k,v=1 '1.—
3 Y mag,CLer ]
K,v=1~vy,0=1

Here, we notice that the r; x r; matrices Ay = (Af) and C = (Cn)
(22, #yCl,) are non-singular, and we get the last equation of (5.23).

o

5.4 Gauge field and Wong’s equation
Finally, we treat the system (T™*M,, ﬁ,“ H ), in which the curvature © of the

connection V appears explicitly in the equation of the motion of the charged
particle. The curvature form © of V is defined by
O(X,Y) :=db(X,Y) + 5 [ (X),0(Y)]

for X,Y € T,P (u € P) (see [8] for example). From (5.8) we have the local
expression

1
© = 2_3 Ep
1 s R,
Z [5 %5 + Z 05,0060} }do' A do'] @ Yo
?’Y—
(5.24)
by noticing (5.7) and (5.12). Moreover since © satisfies R;© = Ad(g~1)O, we

have
z] CL’ y) zAﬂ

for C:)fj (z) := G)fj (z,0), where

Z [% Z  (z)da’ /\d:z:j] ®Y, =50

075 (z, y)dzt A dx]]

{ ( Ozt 3:1:7
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is a g-valued two-form on U C M (the so-called gauge field) pulled-back by the
local section s: U 3 z +— (2,0) € U x G =2 7~ 1(U).
For p € g we define the R-valued two-form ©, on P by

0.(X,Y) = (1,0(X,Y)) (XY € T.P).

By virtue of the following lemma we can regard ©, as a two-form (globally
defined) on M,,.

Lemma 5.7 ©,(AF, X) = 0 holds for any A € g, and X € T, P.

Proof. Note Lemma 3.2, and we see that (u,[0(AF),8(X)]) = 0. In fact,
we have

(1, [0(A7),0(X))) = (1, [4,6(X)]) = (w,ad(A)(6(X))) =0
because (u, Ad(exp(tA))()) = (i,-) (t € R). . a

The one-form 6, on P is given by
Ou(z,y) = Z (Zmﬁ (z,y)da’ + Zua/\ﬁ )dy )
a=1 =1

and we can directly check that Lynr6, =0 for Y" € g,, which means that 6,
is G,-invariant. We can take (z!,...,z",y'%,...,y'™) as coordinates of M,,.
Then, the two forms df, and ©, on M,, are represented as

db,(z,y') = diu(z,y',0)
RN 80} 9} i

+ Z ZMA"C,Z,,Q” dz' A dy'™

=1 a,k,v=1~vy=1

—= Z Zu«, T AL dy'* Ady'P,

aﬁ,n v=1vy=1
0uey) = 330 Dm0y y)de A (O]a,) = 0} (z,4,0)
z] 1v=1
by means of (5.7), (5.12) and (5.24). Let (z,y’; £7) = (..., z™ ", ..y
&, &, M, ,Mr) be canonical coordinates of T*M,,. Then we have

n 71
Q=) d&Nda'+ ) dia Ady'™ +dBu(z,y").

=1 a=1
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The metric m,, is defined by
(sz#ij#) = mij; (Xz#aYofD) = Oa (Yofj:YBP) = 50!,3)
for1<4,7<n,1<a,B<r with

0

XF (@) = 5

- ! a ! 8
Z Fg(y ’O)Gi (wiy ’0)6_?!—,-5

a,f=1

and is represented by

(m#)ij =myj + Z 0;?‘(z,y’,0)6;?‘(x,y',0),
a=1
(My)ia Zo” z,y',0)A%(y',0),  (5.25)
y=1
(mu)ap = Y ALY, 00A3(¥',0). J
y=1

Hence, we get
ﬁ“ (‘Ta y,1 Ea 7_’) = Z mwgzéj -2 Z mijogrggiﬁa (5 26)
+ 3 T0ImI 05 T  fiafp + Y T2TE aflp.
By straightforward calculations we see that the flow (z(¢),y’ (t); £(t),7(t)) of
(T*M,,Q,, H,) satisfies the equation in the form

d

a_ _ B -
’dtna—;F (z,y,0ip (1<a<m)

for some functions F*#. Hence, we restrict the flow on the submanifold: 7 = 0,
(which is invariant under the flow). Then, we have the following.

Theorem 5.8 (1) The flow of (T*M#,ﬁu,ﬁ“) restricted on the submanifold:
77 = 0 is governed by the equation

= Z g (x)g_j)

éi:— aazz (z)&r&; — 2 Z ijk py 07 (z &, Y (5.27)
7,k=1 J,k=1~v=1
=—2zzm 07 (2,4 T5()E&  (@=1,...,m).

i,j=1p=1
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(2) The map T*P — T*M,, defined by

(3717'"’xn7y1"‘"yr;él,""5”)”17"'7”7‘)
— (zl,...,:r:",y'l,...,y'”;fl,...,fn,ﬁl,...,ﬁrl)
with
y'o‘=y°‘ (a=1,...,r1), )

&i=& - ’07 , =1,...,n),
; @y G n) (5.28)

ﬁa:na_ZAg(y).u‘Y '(a:l,...,rl) J
y=1

induces the map x, : P, — T*M,, under which the canonical equation (5.23)
on P, is transformed to the equation (5.27).

Proof. We get the assertion by straightforward calculations. a

The equation (5.27) is (essentially same as) Wong’s equation (see [14]),
which describes the motion of a particle with charge p € g* in the gauge field
© with the potential §. From (5.27) we get the following.

Corollary 5.9 The motion of the particle with charge u in the gauge field ©
is governed by the following equation in M, :

n

4+ Y Ti(z)d’d* —2 > > mY(z)u,0](z,y)i* =0,

j,k:ln ) Jk=17=1 (5.29)
==Y @y (a=1.,m),
j=1p=1

where I‘; «(z) denotes the Christoffel symbol defined from the Riemannian struc-
ture m on M.

6 An example - Sp(1)-gauge fields associated to
the Hopf bundles

Let H be the division algebra of quaternions, i.e.,
H={qg=s+zi+yj+2k|szyz2€R, i’ =j>=k*=1ijk=-1}.

Consider the product space H**! = {q = (g0, 41, ---,qn)} with the Hermitian
inner product:

n n
(@,4') =Y ;a5 =D (s; — z51 — ;5 — zk)(s) + 25i + i3 + £5k),



42 Ruishi Kuwabara

and the real inner product:

n

(@,9')r = Re(q,q') =Y _(s;8} + 225 + y;1 + 2;2)).-
~

<

Note that H"*! with (-, ) is identified with R*"*%. Let

St = {allal*(=q9) = lgo|> + - +|gn|* =4} C H"*! = R*"H

be the (4n+3)-dimensional sphere with radius 2, and let 7 be the Riemannian
metric on it induced from (-, -)g.
A quaternion ) acts on H™*! from right:

q-A=(90,--+:8n) - A= (90X, -+ gnA)-

Then, the Hermitian product (-,-) is left invariant under this action by every
unit quaternions, that is, every elements of

Sp(1) = {A e H| |\ =1}

which is a three-dimensional Lie group called the symplectic group (= SU(2) =
S3%). Thus Sp(1) acts freely and isometrically on 5[42’]“"3, and we get the Hopf
fiber bundle:

Sp(l) — Sints T, Hp" (6.1)

(2]
over the quaternionic projective space. The tangent bundle of .5’[42’]‘+3 is given

by
TSF;;H ={(q,u)|q€ 5[42’]1‘*3,u € H™*! (q,u)r = 0}.

For g € S[‘IZ’]’H, let Vq = (dm)~1(0) C TqS[‘;’}‘H, and it is easy to see that
Va = {(g,qv) | v € H,Re(v) = 0}.

Let Hg be the orthogonal compliment of V; in Tq.S'[‘;’]”'3 with respect to the

metric mg, and we have
TSt = Hq @ Va. (6.2)
Then, we have
Hy = {(g,u) | v € H**', (g, u) = 0}.
We can easily check that the horizontal space Hy, is invariant under the Sp(1)

action on Sf‘z’]’+3, and accordingly, the decomposition (6.2) defines the connec-
tion V on the principal Sp(1)-bundle 7 : Sé']’”“ — HP™. Furthermore, HP™
endowed with the Riemannian metric mg such that 7 is a Riemannian submer-

sion.




A Geometrical Formulation for Classical Mechanics in Gauge Fields 43

Let sp(1) denote the Lie algebra of Sp(1). Then, sp(1) consists of pure
imaginary quaternions, i.e.,

sp(1) = {v € H| Re(v) =0} = {v = v1% + v2j + v3k | v1,v9,v3 € R} = R3.

Note that we have the natural correspondence between the vertical space Vg
and sp(1).

Prop031t10n 6.1 The connection form 6 of v (which is a sp(1)-valued one-
form on 5[2] +3) is given by

1 ' n
bq(u) = 7(g,u) €sp(1) ((g,u) € ToSy 1+9). (6.3)
Here, note that (q,u) belongs to sp(1) because {(q,u)r = 0. By using the
coordinates (qo, - - -, gn) in H**! we have
1 1,_
0 =35> (ade; — dg; g;) = S(@- dg - dq - q). (6.4)
7=0

Proof. Put v = 04(u) € sp(1). Then, u — qu is a horizontal vector, hence

0= (q,u —qv) = (g,u) — (g,qv) = (g, u) — (g,q) v = (g, u) —

Therefore, we obtain (6.3). a

Let us introduce a local coordinate of HP™ as follows. For a point ¢ =
(90,q1,---,qn) € S[‘;']‘Jr?’, denote [q] = [g0,91,---,qn] = 7(q0, 1, - - -, qn) € HP™.
Put Up = {[q] = [g0,---,¢n] € HP™ | go # 0}, which is a open subset of HP™.
Then,

wo:Up = H™ [g0,q1,---,qn) = (P1,P2,---,Pn) = (0145 ", 8285 - - -, Tn5 )

gives a local coordinate of HHP™. Take a local section

( 2 2p 2pn )

VIt Vi+pP I+ PP

The connection form 0y, = s*8 on Uy C HP™ is given by

S UO — S[‘%;]H-a) D= (pl’ 7pn) —

- 1
) B;dp; — dp; ;) = 57— (B-dp—dp-p). (6.5

Let © be the curvature form of V, which is sp(1)-valued two-form on SA7+3,
and let Oy, := s*0 = dfy, + Oy, A Oy, (a gauge field on Up). Then, we have
the following.
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Proposition 6.2

1 n
Ou, = AT 1pP)? & dp; A dp;. (6.6)

j=1

The dual space sp(1)* of the Lie algebra sp(1) is identified with sp(1) by the
correspondence sp(1) 3 v > v* € sp(1)* with v*(w) = (v, w)r = Re(vw) (w €
sp(1)). Thus we have

sp(1)* = {11¢" + 1a5* + vsk™ | v1,ve,v3 € R} = RS,
Similarly, we have
TUSEE = {(qu")] (g,u) € TSEH)
= {(gu")|qe S5t ue H™, (g, u)r = 0}
through the inner product (-, ‘).
Proposition 6.3 The momentum map J : T".‘S’[‘;’]”'3 — sp(1)* is given by
J(g,u”) = (g, u)". (6.7)

Proof. Note that the vector field on Sé’]“’s associated to v € sp(1) is given
by (g, qv). Hence, by the definition of J we have

<J(q$U*)’U) = <(QaU*)’qU>= (u,qv)R '

= Re[Zqujv] = Re[(quuj) ‘v] = (Zﬁjuj,v )R-

Therefore, J(g,u*) = (Z] Gjuj)* =(g,u)". 0

Next, we consider the (co-)adjoint action of Sp(1) on sp(1) (or sp(1)*) and
its orbit. It is easy to see that 1

Ad*(\)o* = (Ad(\)w)* (A € Sp(1), v € sp(1)).

Take A = zo+z13+T2j+z3k € Sp(1). Then, [Ad(A1)i, Ad(A~1)7, Ad(A"1)k]
=[1%,7,k]Rx with Ry being a 3 x 3 matrix:

2 +22 —z2—22  2zom3 +7122)  2(—ToT2 + 2123)
Ry = | 2(~zox3 + 7172) 1z — 22+ 73— 22 2(zoT1 + T2T3) | .
2(zoz2 + z173)  2(—ToT1 + Tox3) TE — i — zi + 2

Here, Ry is an element of SO(3), and A — R, gives a homomorphism from
Sp(1) onto SO(3). More precisely, if A = cos(¢/2) + sin(¢/2) (v1t + v2J + v3k),
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then R, is the rotation about the axis v = (v, vs,v3) through the angle —¢.
Therefore, we see that the co-adjoint orbit O, through p € sp(1)* is the sphere
in sp(1)* = R3 with the center being the origin and the radius |u|. The isotropy
subgroup G, for p = p1* + paj* + psk™ is given by

1 . .
G, = {cosz/J + mSin¢(M12 + pog + psk) [ 0<y< 27r} > U(1)
if 4 # 0, and G, = Sp(1) if p = 0. Suppose u = ck* (¢ > 0). Then,
G, = {costp +singpk = e¥* | 0 < ¢ < 27} and g, = Rk. Take {¢,5,k}
as a orthonormal basis of sp(1), and we have local coordinates (¢1, ¢2,1) of
g € Sp(1) given by

g = exp(¢1i+ $2J)exp(k)
= {COS\/(ﬁ%+¢%+Sin\/¢%+¢%(\/¢2¢:—¢2i+\/¢2¢1¢2j)}
¥l 2 1 2

x(cosz/) +sim/1k).

Thus we have local coordinates (p1,...,Pn,$1,$2) of M, = S{‘Q’]‘*'S/G“, and
can explicitely represent the equation (5.29) (or (5.27)) of the motion.
Finally, we give some remarks on the case n = 1, that is, the Hopf bundle

7 : ST — HP!'. Note that HP! is diffeomorphic with the unit sphere S* =
{(p,a) e H x R| |p|? + a® = 1} in R® = H x R by the stereographic projection

2 _
HP' D Up(=H)3p —> ( lpl“’zz-){— T ;£:2 " i ) € S*\{(0,1)}.

Furthermore, the Riemannian metric mg previously introduced on HP! is noth-
ing but the canonical metric on S*. The connection given by (6.3) (or the gauge
field (6.6)) is an anti-self-dual Yang-Mills connection, i.e., *Oy, = —Oy, holds
for Hodge’s * operator, and is called the Belavin-Polyakov-Schwartz- Tyupkin

anti-instanton (cf. [2], [7]).

References

[1] R. Abraham and J. Marsden, Foundations of Mechanics, 2nd edition, Ben-
jamin/Cummings (1978).

[2] M.F. Atiyah, Geometry of Yang-Mills Fields (Fermi Lectures), Accad. Naz.
Lincei, Scuola Norm. Sup., Pisa, 1979.

[3] V. Guillemin and S. Sternberg, On the equations of motion of a particle
in a Yang-Mills field and the principle of general covariance, Hadronic J.,

1(1978), 1-32.



46 Ruishi Kuwabara

[4] V. Guillemin and S. Sternberg, Symplectic techniques in physics, Cam-
bridge Univ. Press (1984).

[5] R. Kerner, Generalization of the Kaluza-Klein theory for an arbitrary non-
abelian gauge group, Ann. Inst. H. Poincaré Sect. A(N.S.), 9(1968), 143-
152.

[6] A. Kirillov, Lectures on the Orbit Method, Graduate Studies in Math.
Vol.64, AMS (2004).

[7] S. Kobayashi, Differential Geometry of Connections and Gauge Theory,
‘ Shokabou(1989)(in Japanese).

(8] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol.I,
John Wiley & Sons, Inc. (Interscience Devision) (1963).

[9] M. Kummer, On the construction of the reduced phase space of a Hamil-
tonian system with symmetry, Indiana Univ. Math. J., 30(1981), 281-291.
439-458.

[10] R. Kuwabara, On the classical and the quantum mechanics in a magnetic
field, J. Math. Tokushima Univ., 29(1995), 9-22; Correction and adden-
dum, J. Math. Tokushima Univ., 30(1996), 81-87.

[11] R. Kuwabara, Difference spectrum of the Schrédinger operator in a mag-
netic field, Math. Z., 233(2000), 579-599.

[12] R. Kuwabara, Eigenvalues associated with a periodic orbit of the magnetic
flow, Contemporary Math., 348(2004), 169-180.

[13] J. Marsden and A. Weinstein, Reduction of symplectic manifolds with
symmetry, Rep. Math. Phys., 5(1974), 121-130.

[14] R. Montgomery, Canonical formulations of a classical particle in a Yang-
Mills field and Wong’s equations, Lett. Math. Phys., 8(1984), 59-67.






