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Abstract

Some singed graphs are transformed to trees by a sequence of
local switchings.We give some examples of such signed graphs to
investigate when signed graphs are transformed to trees by local
switching.
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Introduction

Local switching of signed graphs is introduced by P. J. Cameron, J.J. Seidel
and S. V. Tsaranov in [3]. Some singed Fushimi trees are tansformed to trees by
a sequence of local switchings [4]. Signed cycles with odd parity are transformed
to trees by a sequence of local switchings, but signed cycles with even parity
can not be transformed to trees by no means [5]. What kinds of graphs are
transformed to trees by a sequence of local switchings 7 It is important and
intresting to give examples of signed graphs which are transformed to trees by
a sequence of local switchings. In this note, we give rather simple examples of
such signed graphs.

We state briefly basic facts about signed graphs. A graph G = (V, E)
consists of an n-set V'{the vertices) and a set E of unordered pairs from V (the
edges). A signed graph (G, f) is a graph G with a signing f : E — {1,—1} of
the edges. We set Et = f~1(+1) and E~ = f~!(—1). For any subset U C V
of vertices, let fir denote the signing obtained from f by reversing the sign of
each edge which has one vertex in U. This defines on the set of signings an
equivalence relation, called swiiching. The equivalence classes {fy : U C V}
are the signed swithing classes of the graph G = (V, E).

Let i € V be a vertex of G, and V(i) be the neighbours of ¢. The local graph
of (G, f) at i has V(i) as its vertex set, and as edges all edges {j, k} of G for
which f(i,7)f(j, k) f(k, i) = —1. A rim of (G, f) at i is any union of connected
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components of local graph at i. Let J be any rim at i, and let K = V(2)\J.
Local switching of (G, f) with respect to (4,J) is the following operation:(i)
delete all edges of G between J and K; (ii) for any j € J, k € K not previously
joined, introduce an edge {j, k} with sign chosen so that f(¢, ) f(j,k)f(k,i) =
—1; (iil) change the signs of all edges from 7 to J; (iv) leave all other edges
and signs unaltered. Let Q, be the set of switching classes of signed graphs
of order n. Local switching , applied to any vertex and any rim at the vertex,
gives a relation on Q which is symmetric but not transitive. The equivalence
classes of its tansitive closure are called the clusters of order n.

1. Singed graphs which are transformed into trees by
local switching

A connected graph G = (V, E) is called Fushimi tree if each block of G is a
complete graph. A complete graph is a Fusimi tree of one block. Let a be a cut
vertex of a Fushimi tree G. If G is divided exactly m connected components
when the cut vertex a is deleted, in the present paper, we say that the Fushimi
degree(simply F-degree) of the cut verter a is m . A connected subgraph of a
Fushimi tree G is called a sub-Fushimi tree if it consists of some blocks of G.
A block of Fushimi tree is said to be pendant if it has only one cut vertex. It
is evident that any Fushimi tree has at least two pendant blocks.

A signed Fushimi tree is called a Fushimi tree with positive sign (or simply
a positive Fushimi tree ) if we can switch all signs of edges into +1. A tree is
always considered as a Fushimi tree with positive sign. A tree with only two
leaves is said to be a line tree or simply a line in the present paper.

A k—cycle C* = (V,E), where V = {ay,as,---,ax}, E = {ajas,azas,
-++,Qx_10x,axa } , will be denoted simply C* = ajay---agay. For signed
cycles, there are two switching classes, which are distinguished by the parity
or the balance, where the parity of a signed cycle is the parity of the number
of its edges which carry a positive sign and the balance is the product of the
signs on its edges [3]. In the forthcoming paper[5],we will show the following
two theorems.

Theorem 1. Let G be a positive Fushimai tree whose any cut verter has F-
degree 2. We can transform G into a line tree by a sequence of local switchings.

Theorem 2. Let C* be a k—cycle. Then, it is transformed to a tree by a
sequence of local switchings if and only if its parity is odd.

We will show

Theorem 3.Let G = (V,E) be a signed graph with V = {ai,as,---,
Qyy ba, bE; R bm—l} and £ = {ﬂlag, a3, -, p_10n, l'-h‘.\fllsﬂlbm b2st SR ST
Consider two cycles A™ = ayas---anar and B™ = aybs - -by_1ana; .Then,

the graph is transformed to a tree by a sequence of local switchings if and only
if both parities of A® and B™ are odd.
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Proof. Assume that the parity of A™ is odd. By a sequence of local swith-
ings, (a2,J = {as}), (a3, J = {aa}), -, (an-2,J = {an-1}), (a3, J = {az}),
(ag,J = {as}), -, (@n=2,J = {an-3}), (@n-1,J = {a1}), we get a singned
graph with edge set E = {aza3, -+, an—2an_1, a1ba, babs, -, byn_10,, Gntn_1,
an-1a1}. The parity of the cycle ajbsbs - -by_1a,a,_1a; is odd if and only
if the parity of B™ is odd. In this case, this cycle is transformed to a tree
by a sequence of local swithings. If the parity of A" is even, by a sequence
of local swithings, (a2,J = {as}), (a3,J = {as}), -, (@n-2,J = {an-1}),
(as,J = {as}), (as,J = {as},--), (@n-2,J = {an-1}), we get a singned
graph with edge set E = {ajas,asa3,-+,a8,_2a4_1,8n_18n,8n_201, ay_1a;,
aiby,babg, -+, by_1a,}. As the sign of the edge a,_,a, is —1, the cycle
@1an_10,a1 can not be transformed to a line.

2. Examples of signed graphs which are transformed into
trees

For j = 3,4,...,8, set signed graphs T; = (V, E) as follows.

V = {a1,a3,---,aj42}, EY = {ai0iq1,0i0i42(i = 1,2,--+,j), 410542},
=0,

Then, we have

Proposition 4. The signed graphs T3, T;, Ts, T, Tr are transformed to trees
by a sequence of local switchings, but Ty can not be transformed to a tree by a
sequence of local switchings.

Proof. By a sequence of local switchings, (a3, J = {as2}), (as,J = {as}),
from T3, we get a tree with edge set E = {a,a3, agas, asas, asas}.

By a sequence of local switchings, (as,J = {as}), (as,J = {as,as}),
(as,J = {az}), from Ty, we get a tree with edge set E = {a;az, azas, asas, asas,
asdag}.

By a sequence of local switchings, (a3, J = {a2}), (a5, J = {as,as, ar}),
(a7, J = {as}), (as,J = {as}), from T5, we get a tree with edge set E =
{ala3, @zds,dsay, d4ay, dvdg, G‘.gaﬁ}.

By a sequence of local switchings, (a3,J = {a2}), (as,J = {as,as, ar}),
(a7,J = {as}), (as,J = {az}), (as,J = {aa}), (a2,J = {as}), from T;, we get
a tree with edge set E = {a1as3, azas,asag, agay, asas, azaz, azay}.

By a sequence of local switchings, (a3, J = {as}), (a5,J = {as,as,ar}),
(07! J = {aa,ag,ag}), (ag,J = {37})1 (a?s‘} = {as}), (as,J = {as}), (aar‘I =
{as}), from T7, we get a tree with edge set E = {ajas,asas,asaz, aras,asas,
agdy, Agdsy, agae}.

By a sequence of local switchings, (a3, J = {a2}), (as,J = {as,as, ar}),
(a7, J = {as,ag}), (a2, J = {az}), from Tg, we get a signed graph with edge
set E+ = {alas,a3a5,a5a7, aTag,agam,agam,agag,a2a7,a2a6}, biise—. {0437}.
But this graph can not be transformed to a tree at all.
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It is rather difficult to decide that a given signed graph can not be trans-
formed to a tree by a sequence of local switchings. We describe some facts
concerning with this point.

Remark. A signed cycle with even parity can not be transformed to a tree
by a sequence of local switchings. Hence, we do not make a 3-cycle with even
parity by local switching. Set G; = (V, E) be a signed graph with vertex set
V= {al,ag,bl‘bg,c} and edge sets BF = {Glbl,albg,ﬂgbi,dgbg,ﬂlc}, T e
{azc}. By local switching at by or by, we get a 3-cycle with even parity, we
can not apply it. By local switching at a; or as, if b; is in J and b, is in
K or if the reverse holds, we get a 3-cycle with even parity. Similarly, set
Gz = (V, E) be a signed graph with vertex set V = {a;,as,b1,---by,c} and
edge sets EY = {ayby, -+, a1bp, azby, -, asb,,a1¢}, B~ = {asc}. We can no
do local switching at any b;, (1 < i< n). If we apply local switching at a; or
as, all bls must be in J or in K.

Let @3 = (V, E) be a signed graph with V = {a;,as,---,a7,a5}, E* =

{a1a2,a1a3, aszas,azas,asas, asary,arag} and B~ = {asas, asa6,a6as}. and
Qs = (V, E) be asigned graph with V = {ay,as, -+, ag,a10}, E* = {a1a2,a14a3,
azdy, Azds, G505, A5d7, A7dg (37(.19,{190.10} and B~ = {{1,3(14, Q4dg, Qgig, agalg}.

Now we have

Proposition 5. The graph Q3 is transformed to the graph Ts , and hence
to a tree, by a sequence of local switchings. The graph Qs is transformed to
the graph Ty by a sequence of local switchings. Hence this graph can not be
transformed to a tree by a sequence of local switchings.

Proof. By a sequence of local switchings, (a1,J = {as}), (a7,J = {as}),
(ag, J = {as}), (as,J = {az}), we get Ts from Q3. Similarly, by a sequence of
local switchings, (a1, J = {a2}), (a10,J = {ag}), (a7, J = {as}), (as, J = {as}),
(ag,J = {am}), (ﬂ.g,J — {a«;}}, (alo,J = {ag}), we get Ty from Qs.

Define QH, , QH; and QH, as follows;

QHQ = (V, E), V= {al, Ao, a3, a4, 61 5 bg}, E+ = {alag‘ o203, d304, albl i agbg},
TR {a4al};

QHs = (V,E), V = {a1,0a2,a3,a4,b1,b2,b3}, EY = {aya, azas, azas, a1b1,
ashs, 8353}, E- = {a.;a]};

QHy = (V,E),V = {a1,0,a3,04,b1,b2,b3,b4}, EY = {a1a9,asa3, azay, a1by,
agbg, 6353,34!}4}, B ’{0461};

We can prove

Proposition 6. The signed graphs QH,QHas,QH, are transformed to
trees by a sequence of local switchings.

Proof. By a sequence of local switchings, (a4, J = {a1}), (as, J = {a1,b2}),
(b2, J = {az}), from QH2, we get a tree with edge set E = {b1a,,a,a3,asbs,
bsas, byas}. By asequence of local switchings, (a4, J = {a1}), (a3, J = {a1,b3}),
(b3, J = {as}), from QHj3, we get a tree with edge set E = {b1ay, a,a3,asbs,
baas, bzas, azba}. By a sequence of local switchings, (a2, J = {as}), (as,J =
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{as,a4}), (b3, J = {as}), (b2, J = {aa}), (as,J = {az,bs}), (bs, J = {as}), from
QH.;, we get a tree with edge set F = {blahalag, sy, 3454,54.{]3, 5452, 5332}.

Set signed graphs PH,, PH,, PH3(1), PH3(2), PHy, PHjy as follows;

PHy = (V,E), V = {a;,a3,a3,a4,0s,b1}, Et = {ajas,asa3,a3a4, a4as,
asal,albl}, E- :ﬂ 3

PHs = (V,E), V = {a;, as,as,a4,as,by, b2}, E = {a;a2,a2a3, azas, asas,
asal,albl, agbg}, B = ﬁ

PHa( ) (V E) - ‘{ﬂl,ag,ﬂ‘.g,ad,a5,bhbg‘b3} = '{GIG'; asdg, dzdy,
9465,0531,albhﬂzbz,ﬂsbs} E-=0;
PH3(2) = (V,E), V = {a1,a3,0a3,a4,a5,b1,b3,b3}, E = {a1as, azas, asa,

asas,asa1, a1by, ashs, ashs} , E- =0;
PH, = (V,E), V = {a1,a3,a3,a4,as5,b1,bs,b3,bs}, E = {a1a9,asa3,azay,

asas,asay, @by, asbo, agbs,ashs}, E- =10
PHs = (V,E), V = {ay,a3,a3,a4,0a5,b1,b3,b3,b4,b5}, E = {a;as,asas,
@3y, asas,asay, arby, ashe,asbs, ashs,asbs}, B~ =0 ;

Now we obtain

Proposition 7. The graphs PH{, PH,, PH3(1), PH3(2), PH4 are trans-
formed to trees, by a sequence of local switchings. The graph PHs can not be
transformed to a tree by a sequence of local switchings.

Proof. By a sequence of local switchings, (as,J = {a3}), (as,J = {as}),
(as,J = {as}), (as, J = {a1,as}), (a3, J = {as}), from PH,, we get a tree with
edge set E = {b1a1,a:1as,aza3, asas, azas}. By a sequence of local switchings,
(as,J = {as}), (a4,J = {as,as}), (as,J = {a2}), from PHa, we get a tree
with edge set E = {biai1,a1as, asas, asas,azaq, ashs}. By a sequence of local
switchings, (aq,J = {as}), (as,J = {as}), (as,J = {a1,b3}), (b3, = {as}),
from PHs(1), we get a tree with edge set E = {bia;,a,a3, azbs, bzas, bsas,
asbs,asas}. By a sequence of local switchings, (as,J = {as}), (as,J =
{as,b3}), (b3, J = {as}), (as,J = {a2}), (b3, = {a2,a3}), (as,J = {bs}),
from PH3(2), we get a tree with edge set £ = {bia1,a1a5,as5a3, azbs,azay,
bsas, asbs }. By asequence of local switchings, (as, J = {a1}), (as, J = {as, as}),
(ba, J = {aa}), (a3, J = {a1,b3}), (b3, J = {as}), (a1,J = {bs}), (a3, J = {ba}),
from PHg4, we get a tree with edge set E = {bia1,a1a4,a1a3, agbs,asbs,
bsas, asbs,bsas}. By a sequence of local switchings, (a3, J = {as}), (a5,J =
{as}), (as,J = {a1,a3,b5}), (bs,J = {as}), from PHs, we get a signed graph
with edges sets E+ = {6202, a;;m;,a;;ﬁg., b5bg,b5b4, 53{]4,5331,3151,6164,6164,
asas,asas,agby}, E- = {asbs}. We can not apply to this graph local switching
at vertices a1, or as,or bg , or bs and can not transform it to a tree.

Define Hl, Hg(l), Hz(?), Hg(?)), H3(1), H3(2), H3(3) and H4[1], H4(2),
H,y(3), as follows;

Hy = (V,E), V = {a1,as, 83, a4, as,ag,b1}, ET = {a1as,asa3,aza4,a4as,
asag, b}, B- = {asar};

H>(1) = (V,E), V = {a1,02,a3,a4,as5,05,b1,b2}, ET = {a103,aza3,a304,
asas, asas, a1by,asbs}, E- = {agar};
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Hy(2) = (V,E), V = {a1,0a2,a3,a4, a5,a6,b1,b2}, EY = {a)as,aszas, asay,
a4ds, asas,albl,ﬂ.5bg}, Fo= {Gaal};

Hy(3) = (V,E), V = {a1,a2,03,04,a5,as,b1,b3}, ET = {a102,0a2a3,a304,
asas, asas, arby, asbo}, B~ = {asa1};

H3(1) = (V,E), V = {a1, a0, a3, a4, a5, a6, b1, b2, b3}, ET = {ayas, a»as, asay,
asas, asag, 6151,3353; (1353}, it {asal};

H3(2) = (V,E),V = {a1,02,a3,a4, a5, a6, b1, b2, b3}, E* = {a,a2, aza3, azaa,

@485, G505, a1b1, azbs, agds}, E~ = {asa, };

H3(3) = (V,E),V = {a1, a3, a3, a4, a5, a6, b1, by, b3}, E* = {ay0a2, aza3,asas,
agas, asag, ayby, agbs,asbs}, E~ = {aga; };

Hy(1) = (V,E), V = {a1,0a9,a3,a4, a5, a¢,b1, b9, b3, b1}, E* = {a;0a5,a5a3,
a3ay, asas, a1by,asbs, azbs ashs}, E~ = {aga1};

H4(2) = (V,E), V = {a1,a2,0a3,a4, a5, a5,b1, b9, b3, b4}, EY = {a1a,a0a3,
a3a4, A4as, as5ae, a1by, asbs, asds asby}, £~ = {aga1 };

H4(3) = (V, E), Y= {al,ag,as,64,65,65,51,53,63,3)4}, E+ — {alag,aga;g,
a3ay, G4as, asag, a1by, azbs, asds asbs}, E- = {aga1};

Now we obtain

Proposition 8. The graphs Hy, H;(1), H5(2), H2(3), H3(1), H3(2), H4(1)
are transformed to trees, by a sequence of local switchings. The graphs H3(3),
Hy(2), H4(3) can not be transformed to trees by a sequence of local switchings.

Proof. By a sequence of local switchings, (as,J = {as}), (a3, J = {as}),
(a4, J = {as}), (a3, J = {a2}), (as, J = {a3}), (a5,J = {a1}), from Hy, we get
a tree with edge set E = {b,a1,a,a5,asas, asas,asas azas}. By a sequence of
local switchings, (a3, J = {as4}), (a4, J = {as}), (a5, = {as}), (a4, J = {as}),
(as,J = {as}), (as,J = {as}), from Hs(1), we get a tree with edge set
E = {bia1, a1a¢,asas5, agas, asas ashs, asasz}. By asequence of local switchings,
(as, J = {as}), (as,J = {as}), (a4, J = {as}), (a3,J = {a2}), (as,J = {a3}),
(as,J = {a1,b2}), (b2,J = {as}), from H;(2), we get a tree with edge set
E = {biay,ayas, asby, bsas,byay asaz,azas}. By a sequence of local switch-
ings, (as, J = {as}), (as,J = {a1}), (as,J = {as}), (as,J = {a1}), from Hs(3),
we get a signed graph with edge sets ET = {ajas,aszas, asas,arb;, azas, ashs,
asas}, B~ = {ajas} which is isomorphic to the singed graph QH,. Hence,
H(3) is transformed to a tree, by a sequence of local switchings. By a se-
quence of local switchings, (as,J = {as}), (a5,J = {as}), (as,J = {az}),
(as,J = {ae}), (a1, = {as}), (a3, J = {a1,bs}), (b3, = {as}), from H5(1),
we get a tree with edge set E = {b1a;,a1a3, asbs, baas, asbs, bsas, asas,asas}.
By a sequence of local switchings, (as,J = {as}), (a5,J = {aa}), (as,J =
{aﬁ}]v (34,J = {alsb3})) (63$J = {a‘i})! {ag,J = {al}): (alaJ = {51153}):
(b1,J = {a1}), from H3(2), we get a tree with edge set E = {b;a;, a;b3, bzas,
asag, bias, bias, asas, ashs}. By a sequence of local switchings, (ag, J = {as}),
(as,J = {a4}), (as,J = {ae}), (as,J = {a1,b4}), (bs,J = {a4}), (as,J =
{ba}), (a1,J = {a2,b4}), (b1, = {a1}), (as,J = {a1}), (a2,J = {a1,b2}),
(ba, J = {az2}), from H4(1), we get a tree with edge set E = {bzas,aza;,ajas,
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asba, boaa, baby, bibs, baas asas}.

The graphs Hsz(3), H4{2), H4(3) can not be transformed to trees by any
sequences of local switchings at all.

Define Cyq, Cy5, Cs3 and Hsg as follows;

Cas = (V,E), V = {a1,as,a3,a4,b1 }, ET = {a1a3,a2as,a3a4, a401, 016, },
E™ = {ash };

Cis = (V.E), V = {a1,as,a3,84,a5,b1 }, ET = {a1a,, aga4, asas, asay, arby
(.1351}, F== {6‘.2&3};

Css = (V,E), V = {a1,a3,a3,04,a5,66,b1 }, B = {a1as,a2a3,a3a4, asas,
asag, agay, 61by,ashr}, E- =0;

Css = (V,E), V = {a1,a2,a3,a4,05,a¢,a7,b1}, EY = {a1a2,a2a3,a3a4,
asas, agar, ajby, ashr}, B~ = {asas};

Then, we get

Proposition 9. The graphs Cyq, Cys,Css are transformed to trees, by a
sequence of local switchings. The graph Css can not be transformed to a tree
by a sequence of local switchings.

Proof. By a sequence of local switchings, (a1,J = {b1}), (b1, J = {a1,as}),
from Cy4, we get a tree with edge set E = {bia1,b1as,b1a3, bias}. By a se-
quence of local switchings, (a1,J = {b1}), (b1,J = {as,as}), (as,J = {as}),
from Cus, we get a tree with edge set E = {bjay,bias,bia5, asasz, asas}.
By a sequence of local switchings, (as,J = {as}), (as,J = {as}), (a1,J =
{8:}), (b1, = {as,a6}), (as,J = {aa}), (a5, = {as}), (a6,J = {as}),
(as,J = {as}), (a4,J = {b1}), from Css, we get a tree with edge set E =
{b1a1,b1a4,a4a9, asas, a2a3 asas}. The graph Css can not be transformed to
a tree by any sequences of local switchings at all.
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Abstract

In this article, we introduce new notions of convergence of di-
rected families of points and convergence of filters in a general topo-
logical space where we do not necessarily assume any seperation ax-
iom. Then we mention some new properties of them for a Hausdorff
topological space.
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Introduction

In a Hausdorff topological space which satisfies the first countability axiom,
we can also define the topology by way of defining the limit of sequence of
countable points. In a general topological space which does not necessarily
satisfy the first countability axiom, we cannot define the topology by using
sequences of countable points as above. In order to improve this, Moore-Smith
indroduced the notion of limit of directed families of points which are not nec-
essarily countable [1],(6],[7],(8]. On the other hand, H. Cartan and N. Bourbaki
introduced the notion of limit of filters [2],[3],(4],[7]. Both define the equivalent
topology.

Nevertheless, in the topological space where we do not assume any separa-
tion axiom, the meanings of both notions of limit in the sense of Moore-Smith
and of limit of filters in the sense of Cartan-Bourbaki, are ambiguous. We
cannot define their convergence to a certain point clearly. It occurs that they
converge to more than one points simultaneously.

Therefore, in this article, we try to improve the notions of limit of directed
families of points and of limit of filters so that these notions have reasonable
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meaning in the topological space where we do not necessarily assume any sep-
aration axiom.

Even only for a Hausdorff topological space, we have some new results of
convergence.

1. Convergence of sequences of points

Let X be a topological space. For a set S in X, S denotes the closure of S.
Here we give the definition of new notion of convergence of sequences of points.

Definition 1.1. Let X be a topological space. For a sequence {a,} in X
and a nonempty set A of accumulation points of {a,, }, we say that the sequence
{a,} converges to A if A satisfies the following conditions :

(1) For any neighborhood U of A, there exists some natural number ng such

that, for every n > ng, a, € U holds.

(2) A is the maximum one which satisfies the condition (1).

We say that A is the limit set of {a,} or simply the limit and we denote it
as lim a, = A or a, — A(n — o0). We say that every point in A4 is a limit

n—oo

point of {a,}. Then we have the following.
Corollary 1.2. We use the notation in Definition 1.1. Then the set A is

calculated by the relation
ﬂ U {0} = 4.

n=1lm>n

Thus the limit set can be calculated by the set operation. If A = {a}, the
limit point of {a,} is the same as considered until now. In this case, we say
that {a,} converges to a in the narrow sense or mearly {a,} converges to a.
But if A is composed of more than one points, then the notion of the limit of
{an} is of a new case. In this case, we say that {a,} converges to A in the
wide sense. In any way, if the limit set A is composed of one or more than one
points, we say that {a,} converges to A. After all the limit set A is the set of
all accumulation points of {a,}. But, conversely, the set of all accumulation
points of {a,} is not necesarily the limit set of {a, }. For example, we have the
following.

Example 1 (Asaoka). If we put a,, = 0 for odd n and a, = n for even
n, then the set of all accumulation points of {a,} is {0}. Then {a,} does not
converges to {0}.

Here we have another example,

Example 2 (Ito). Let {a, } be the sequence obtained by lining all rational
numbers up. Then a,, — R.

In this case, the limit set is not compact.

Then we have the following.

Proposition 1.3. A sequence of real numbers converges to a mnonempty
bounded closed set if and only if the sequence is bounded.
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As for the convergence of sequence of real numbers in the narrow sense, we
have the following.

Theorem 1.4 (Cauchy’s Criterion of Convergence). A sequence {a,}
of real numbers converges to a certain real number in the narrow sense if and
only if, for any positive number €, there erists some natural number N such
that, for every m,n > N, the inequality |a,, — a,| < & holds.

Let X be a topological space. We say that a sequence {a,} of points in X
is precompact if the closure of the set of points {a,;n > 1} is a compact set in
X.

Then we have the following.

Theorem 1.5. Let X be a Hausdor[f topological space. Then a sequence
{a.} of points in X converges to a certain nonempty compact set A if and only
if {an} is a precompact sequence. Then the limit set A is given by the relation

ﬁ U {om =4

n=lm>n

In the above theorem 1.5, the limit set A is not empty because the family
of sets in X {apn;m > n},(n=1,2,---) has the finite intersection property.

Then we have the following.

Corollary 1.6. Let X be a compact Hausdorff topological space. Then
every sequence {a,} of points in X converges to a certain nonempty compact
sel.

Proposition 1.7. In a Hausdorff topological space X, a sequence {a,} of
points in X converges to a point a if, for any neighborhood U of a, there exists
some natural number ng such that we have a,, € U for all n such as n > ny.

Theorem 1.8. For the convergence of sequences in a topological space X,
we have the following properties. We use the above notation.

(81) If a, = a for all n, we have a, — {a}.

(S2) If an, — A for the set A of all accumulation points of {a,}, then, for

any convergent subsequence {ax, } of {a,}, we have

U A Ufad=4

{km}n=1m>n

HereJy, , means the union for all subsequences {km} of the sequence
of all natural numbers such that {ay,,} converges.

(S3) Let {a,} be a sequence in X and A the set of all accumulation points
of {a,}. If, for any subsequence {ay .} of {a,}, we have a;_ — A, we
have a, — A.

For a topological space X which is not Hausdorff, we have the following.

Example 3 (Asaoka). Let X be a set {0,1} of 0 and 1. Assume that

all open sets in X are §, {1} and X = {0,1}. Then X becomes a topological
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space which is not Hausdorff. In X, all closed sets are {), {0} and X. Then
if we consider a sequence {a,} such as a, = 1 for all n > 1, the set of all
accumulation points of {a,} is X and {a,} converges to X. In this case, we

have,
N Ulan}={0,13=x

n=1lm>n

If we consider a sequence {a,} such as a, = 0 for all n > 1, the set of all
accumulation points of {a,} is {0} and {a,} converges to {0}. In this case, we
have

N U {am} = {0} = {0}.

n=lm>n
But the limit set is not the intersection of all neighborhoods of the limit set.

Let X and Y be two topological spaces. In general, we assume that [ is
a mapping from a certain subset D of X to Y. Let A be a certain set of
accumulation points of D). For a certain set B of accumulation points of the
set {f(z);z € D}, we say that lin}if(:s) = Bor f(z) - Basx — Aif, for
z—

any neighborhood V' of B, there exists some neighborhood U of A such that
we have f((UN D)\ A) C V. lin‘14 f(z) = B is equivalent to say that, for

any sequence {a,} in D\ A such as a, — A, B is the union of all limit sets
lim f(axn). If we have B = {b} for a given f and A = {a} in X, b is said to
n oo
be the limit value of f(x) as # — a or the limit of f(z) as z — a.

In Definition 1.1, we give the definition of new notion of convergence of
sequences of points for a general topological space.

2. Cnvergence of directed families of points

In this section, we consider the new notions of convergence of directed fam-
ilies of points.

Definition 2.1. Let X be a topological space, {Zs }ac.4 a directed family
of points in X and A a nonempty set of accumulation points of {a}ac 4. Then
we say that {Z,}aca converges to A if A satisfies the following conditions :

(1) For any neighborhood U of A, there exists some ag € A such that, for

every o > ap, T € U holds.

(2) A is the maximum one which satisfies the condition (1).

Then we denote this as o — A(a € A) or simply 2, — A. Then we have the
following.

Corollary 2.2. We use the notation of Definition 2.1. Then the set A is
calculated by the relation

ﬂ U {Za)=4A.

apEd a>ag
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When A = N, this is nothing but the convergence of a sequence of points
{z}in X. The limit set A is the certain set of accumulation points of {4 }ac 4.
But, conversely, any set of accumulation points of {Z,}ac.4 is not necesarily
the limit set of {z4}aca.

Then we have the following.

Theorem 2.3. Let X be a Hausdoerff topological space. Then a directed
family of points {xo}aca in X converges to a certain nonempty compact set A if
there exists some o € A such that the closure of the set of points {z,;a > ag}
is a compact set in X.

Corollary 2.4. Let X be a compact Hausdorff topological space. Then
every directed family of points {Ts}aca in X converges to a certain nonempty
compact set.

Proposition 2.5. Assume that X is a Hausdorff topological space. Then
a directed family of points {Ts}aca in X converges to a point x if, for any
neighborhood U of z, there erists some o € A such that xz, € U for all
a > ag.

Theorem 2.6. Let X be a topological space. Let {z,}aca be a directed
family of points in X. We use the above notation. Then we have the following:

(D1) If &, = z for all @, x4 — {z} holds.

(D2) If zo — A for a nonempty set A of accumulation points of {Za}aca
and {ys} is a cofinal directed subfamily of {xa}, ys — A holds.

(D3) If a directed subfamily {yg} of {za} has always a converginy directed
subfamily {z,} and z, — A for a nonempty set A of accumulation
points of {Zataca and A is determined independently of the choice of
{ys}, then xo — A holds.

(D4) Assume that 2o — A(a € A) holds for a nonempty set A of accumau-
lation points of {Ta}aca and, for each o € A, Yyag — Ta(B € Ba)
holds. Then we define a directed set of direct product C = A x HBQ,

and define the projections p:C — A and p, : C — B,. If we defcine
Zy = Yap where y € C,a = p(7), B = pa(y) hold, then z, — A holds.
We denote the limit set of z, as limz, or lim,c 4 . We say that a point
in limz, is a limit point of z,. o — A is equivalent to say that A is the
intersection of the closures of sets, each of which is composed of any cofinal
directed subfamily of {z,}.
If a directed subfamily {yg} of {2} is not cofinal with {z,}, then some
accumulation points of {y3} does not belong to the limit set of {4 }ac 4.

3. Convergence of filters

Definition 3.1. Let X be a topological space and ® a filter in X and A a
nonempty set of accumulation points of every F' € ®. Then we denote a system
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of all neighborhoods of A by #(A). We say that the filter ® converges to the
set A if A satisfies the following conditions :

(1) @ D Y(A) holds.

(2) A is the maximum one which satisfies the condition (1).
Then we denote this ® — A and we say that the set A is the limit set of ® or
simply the limit of ®. If the filter generated by a filter basis B converges to A,
then we say that the filter basis B converges to A.

Then we have the following.

Corollary 3.2. We use the notation of Definition 8.1. Then the set A is
calculated by the relation

M F=4.

Fed

Namely, the limit or the limit set can be obtained by the set operation.

Then we have the following.

Theorem 3.3. Let X be a Hausdorff topological space. Then a filter ®
converges to a certain nonempty compact set A if there exists some element F
of ® such that F is compact.

Corollary 3.4. Let X be a compact Hausdorff topological space. Then
every filter ® converges to a certain nonempty compact set A.

Proposition 3.5. Assume that X is a Hausdorff topological space. Then
a filter ® converges to a point = if ® D U(zx) holds.

Theorem 3.6. Let X be a topological space. We use the above notation.
Then we have the following:

(L1) For a point a in X, a filter ®, = {B;a € B C X} converges to {a}.

(L2) If two filters ® and U satisfy the conditions ® — A and ¥ O &, then
¥ — A holds.

(L3) If, for a family of filters {®,}, every &5 — A holds, then Ny @) = &
— A holds.

(L4) Assume the following (i) ~ (iii). (i) X DY, (ii) For every nonempty
closed set B in Y, there erists a filter g in X such that &g — B
and (iii) a filter ¥ in X generated by a filter basis B in'Y converges
to A. Then Ugep (ﬂ@#czch@g) converges also to A.

4. Relations between various convergences

In this section, we mention relations of various convergences.

We have the following theorems.

Theorem 4.1. Let X be a topological space.

(1) For a directed family of points {Za}aca, the family of subsets in X
{za;a € A a > ag}; a0 € A} is a filter basis in X.

(2) For the filter ® generated by the filter basis defined in (1), zo — A if
and only if  — A.
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Then Theorem 3.6 induces Theorem 2.6 and Corollary 3.5 induces Corollary
2.5.

Let X and Y be two topological spaces and f : X — Y a function (or
mapping) and D the domain of f. Let A be a certain set of accumulation
points of D. Then {f(UND\ A); U € 4(A)} becomes a filter basis in ¥, where
$(A) means a system of neighborhoods of A. Further assume U N D\ A # 0.
Let ® be the filter generated by the above filter basis. Then f(z) — B as
xz — A if and only if & — B.

By the above, the various convergences mentioned until now can be repre-
sented by the convergence of filters.

5. Convergence and topology

In a topological space, we could define the notions of convergence of directed
families of points and of filters. Conversely, we can introduce a topology using
the notion of convergence. We have the following.

Theorem 5.1. Assume that, in a topological space X, all filters are deter-
mined to converge or not and that the properties (L1) ~ (L4) are satisfied in
X. Then, if we define the convergence of directed families of points in X as
above, then the properties (D1) ~ (D4) are satisfied.

Thereby, if we define the union of the limit sets of all directed families
{zo} such as o € A to be A, then the aziom of closures is satisfied for A.
Thereby we can define a topology of X. With respect to this topology, we have
the following properties:

(i) B= B C A if and only if there exists {xs}(za € A) such that z, — B.

(ii) U is a neighborhood of A= A if and only if, for any {za} such as z,

— A, there ezists to ap such that {z4;0 > o} C U holds.

When we define the convergence of directed families of points by way of the
topology, these properties (i) and (i) as above hold also. Then if we define
the new topology by the processes: the topology — the convergence of filters
— the convergence of directed families of points — the new topology, the new
topology coincides with the first given topology. Further, if we define the new
notion of convergence of filters (or directed families of points) starting from the
given notion of convergence of filters (or directed families of points), this also
coincides with the first given one. By the above, to give the notion of topology
and to give the notion of convergence of filters or directed families of points are
entirely identical.

When we mention the notions in a topological space using the terminology
of convergence, we have the following. The fact that a topological space X is
compact is identical with the fact that all perfect directed families of points
converge. This is also identical with the fact that all ultrafilters converge.
Further this is also identical with the fact that, for every directed family of
points, there exists a converging directed subfamilies of points.
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Theorem 5.2. Let X and Y be two topological space and f : X - Y a
mapping and D the domain of f. In order that f is continuous at a certain
nonempty closed set A(C D) of accumulation points of D, it is necessary and
suffictent that each one of the following conditions (i) ~ (ii1) is satisfied:
(1) For every directed family of points {z,} such as zo — A, we have f(z4)
- f(A).

(1) For every filter ® such as ® — A, we have f(®) = {f(M); M € ¥} —
1(A).

(iii) In the sense of the limit of values of the function f, if x — A holds,
we have f(x) — f(A).

The definition of the topology on the basis of the notion of convergence
was originated by M. Fréchet[5]. By using the notion of convergence of filters
or directed families of points, the correspondence of the convergence and the
topology in a topological space becomes perfect. For that purpose, E. H. Moore
and H. L. Smith introduced the notion of convergence of directed families of
points[8]. Nevertheless, the definition of Moore-Smith is ambiguous in the case
other than the case of Hausdorff topological space. Therefore, in this article,
we improved these notions as metioned before.
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Abstract

In this article, we consider the specific heat of a monatomic
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can clarify a new meaning of specific heat. At last, we give a new
meaning of the Debye model of specific heat of a solid.

2000 Mathematics Subject Classification. Primary 82B10; Sec-
ondary 81Q05

Introduction

In this article, we consider the molar heat of a monatomic solid in the view
point of the new quantum theory. We get a reasonable explanation of the molar
heat of a monatomic solid. It gives a new explanation of the Debye’s model of
specific heat of a solid. In the old quantum theory, there are Einstein’s theory
of specific heat at 1907 and Debye’s theory of specific heat at 1912. But they
are different from ours with respect to the standing point. The new quantum
theory was originated by Y. Ito [2]-[4] at 1998-2000. As for the new quantum
theory, we refer the papers [1]-[8] of the references.
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1. Axiom of the new quantum theory

Here we remember the axiom of the new quantum theory which is the basis
of this article. As for this we refer Ito[2], [3], Ito-Kayama[6],(7] and Ito-Kayama-
Kamoshital8].

Axiom I (quantum system). A quantum system () is defined to be a
probability space (§2, B, P). Here 1 is a set of microparticles p, B is a g-algebra
of subsets of {2 and P is a completely additive probability measure on B.

Axiom II (quantum state). The (quantum) state of a quantum system
Q= Q(B,P)(= (2, B, P)) is defined to be the state of the quantum probability
distribution of the position variables 7(p) and the momentum variables p(p)
of microparticles p which compose the quantum system. Here, we consider
the orthogonal coordinate systems of n-dimensional Euclidean space R™ and
its dual space R,. Here we put n = dM, where d denotes the dimension of
the physical space and M denotes the number of particles which compose one
elementary event p.

(II;) The quantum probability distribution of the position variables r =
7(p) is determined by an L?-density 3 on R" such that it satisfies the condition

f () P = 1,
Rﬂ

where dr denotes the Lebesgue measure on R".
(II) The quantum probability distribution of the momentum variable p =
p(p) is determined by the Fourier transform 1 of 4. Here we put

$() = @rh)y 2 [ yre @D/ ar,

v(r) = @an) 72 [ Gp)e T dp,
T = (21,2, " ,Tn), P= (P1,P2,"** 1Pn),
P'T=p1T1 +p2Z2 + 00+ Prln.
Here we put h = % and h is the Planck constant.
(II3) We put
u(a) = [ i)
for a Lebesgue measurable set A in R". Then we assume that

P({p € Qr(p) € A}) = u(A).

Then, u(A) denotes the probability of the event “r(p) belongs to A”. Thereby,
we have the probability space (R", My, ), where M,, is the family of all
Lebesgue measurable sets in R™.
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(114) We put
v(B) = [B () Pdp

for a Lebesgue measurable set B in R,,. Then we assume that

P({p € 5 p(p) € B}) =v(B).

Then, v(B) denotes the probability of the event “p(p) belongs to B”. Thereby,
we have the probability space (R, Ny, V), where A/, is the family of all Lebesgue
measurable sets in R,,.

Axiom III (motion of a quantum system). We call the time evolution
of the L?-density t(r,t) of a quantum system the motion of the quantum
system. The law of the motion of the quantum system is described by the
Schrédinger equation. We call the Schrédinger equation the equation of motion
of the quantum system.

A Schrédinger equation is defined by an equation of the form

O

h— = Hy.

gy =4
We call the operator H a Hamiltonian, which has a various form corresponding
to each quantum system. H is assumed to be a self-adjoint operator on some
Hilbert space H.

2. Physical setting of the system and the prob-
lem

We consider a monatomic solid spreaded infinitely. Every atom of the solid
is oscillating by the cause of heat. Approximately we may consider every atom
as a harmonic oscillator near the equilibrium point. We wish to consider the
specific heat of this solid.

We consider the specific heat as molar heat. It is 3N times of the spe-
cific heat with respect to one degree of freedom of oscillation, where N is the
Avogadro’s number.

3. Setting of the mathematical model

We use the notation in chapter 1. Let & = (B, P) be the probability
space which represents the quantum system considered here. An elementary
event p of Q is a harmonic oscillator which oscillates harmonically in the 1-
dimensioan! Euclidean space R'. Here we consider one degree of freedom of
the 3-dimensional harmonic oscillator. Then we denote the position variable
of a harmonic oscillator p by = = z(p), and the momentum variable of p by



20 Yoshifumi Ito and Md Sharif Ubpiv

p = p(p). Here we put n = dM = 1 because the space dimension is d = 1, the
number of harmonic oscillators which compose an elementary event pis M = 1.
The variable z changes in the space R! and the variable p changes in its dual
space R;. Then by the axiom II, the L?-density ¥(x) determines the quantum
probability distribution law of the position variable  and its Fourier transform
7,:7)(39) determines the quantum probability distribution law of the momentum
variable p. The total energy of each harmonic oscillator p is determined by the
classical mechanics. Its value is

Here the first term is the kinetic energy of the harmonic oscillator p and the
second term is the potential energy of the harmonic oscillator p. w(p) is the an-
gular frequency of the harmonic oscillator p and m is the mass of the harmonic
oscillator.

This energy variable is considered as a quantum random variable defined on
the probability space §2 which represents the quantum system. The evaluation
of the expectation value of this energy variable, namely the energy expectation
value, is carried out by using the axiom II.

Namely we use the relation

P({p€ Q2(p) € A}) = ]A (=) Pdz,

P({p € Yip(p) € BY) = /B () 2dp

for a subset A in R' and a subset B in R;. Further we assume that the w(p) is
a random variable whose probability distribution law is given by a probability
density D(w) such as

(1o %oD(w) < o0.

(2) / D(w)dw = 1.
0
(3) f wD(w)dw < o0.
0
Then we have the energy expectation value E :
E = B | o=p(p)* + gmu(e)a(p)
2m 2

= /0 "B [glap(pf + %W(p)%(pf;w(p) = w] D(w)dw.

Then, for an admissible L2-density 1, we have

B | aplo)? + gmatp)e(p)s (o) = o]
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=E {ﬁp(p)z + %ﬂw%(;ﬂﬂ

—E [51—73-?(9)1 +E Ew%(;ﬁf}

. 1
= [P iwPdp+ [ Gmatstiuo)Pds

_ / { B2 | dyp(a)
2m

dz
Here we use the Plancherel formula for Fourier transformation.
Here we denote this conditional energy expectation value by

sl - {2 102

dc
We call J[1);w] the conditional energy functional.

Here we assert the following principle.

Principle I (variational principle). The true physical state of the quan-
tum system is realized as a state such that the energy expectation value of the
quantum system takes its stationary value under some conditions.

From this principle, we can choose the true L?-density for each quantum
system. So that we consider the following problem.

Problem 1. Find out the L?-density ¢ for which conditional energy ex-
pectation value J[1);w] takes its stationary value under the condition that

/|1b(:r)|2d3: =1

8 4
+ §W2$2|w(x)|2} dx.

21
+ —nw2x2!¢(z)|2} dz.

2

4. Mathematical analysis

Solving the problem 1 in chapter 3 under the condition that w(p) = w is
fixed by the way similar to Ito-Kayama-Kamoshita [8], we have the Schrédinger
equation 2 g

.ﬁr 1 2 9 o

(—%E + MW E )1@')(1‘) = EY(x)

as the Euler equation. Here £ is the Lagrange’s unknown constant. Namely,

the function 1 which is the solution of the problem is obtained as a solution of

the above Schrodinger equation. As solutions of the above eigenvalue problem,

we have the eigenfunctions 1), (z) corresponding to the eigenvalues £, for n =
0,1,2,:--.

Namely we have

E= (n+%) hw,
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1 1 rmw? m 1m 45
@) =\lmiV 7 R H"(VE )e"p[ 2?1“”]’

(n=0,1,2,---)
Here we put
n iz d" —az?
Hy(zx) = (-1) T

Then we have
J[¢n;w]=<n+ )ﬁw(n—012 Y

Let S(R!) be the space of all rapidly decreasing C*-functions on R'. Then
for the system of eigenfunctions {1,}22,, we have the following. (see Kuroda
[10], Chapter 4).

Theorem 1. The system of eigenfunctions {¢,}:2, is a complete or-
thonormal system in S(R!).

By virtue of theorem 1, for any @ € S(R!), there exists only one se-
quence {cy }32, of complex numbers such that we can expand ¥(z) as (z) =

Z cntn(z). Here this series converges also in the space L?(R').
=0

If the true physical state of the total quantum system () is determined by
some L2-density ¥(z) at the initial time point, then we can expand (z) by
using {¥»}52, as above. Then we have the conditional energy expectation

value
Jiie] = Z leal? I ftns 0] = Z leal? (n P %) e
=0

Further, since the function ¢ (z) satisfies the normalization condition / [v(z)|
—o0

dx = 1, we have
oo
Z et =1,

Then the sequence {c, }2°, is a rapidly decreasing sequence. (see Kuroda [10],
p.81). Here, using the experimental facts, we assume

leal? = (l—exxl[—%])( p[ %])“,(n=0,1,2,--.).

Here T is the absolute temperature and kg is the Boltzmann constant. There-
fore we have the conditional energy expectation value

Jpsw] = D lenl*I[thn; ]
n=0
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(oo D E o) (o)

B
exp[;c%“’,j:] =i,

2
The L2-density 1(z) at the initial time point can be expanded as follows:

= 1 1 nw? m 1m
Y@ =2 e\ g\ 7 T (e o |55

Here we follow the method of separation of variables in the reverse. At first we
consider the function

Ya(z,t) = ¥n (5) exp [—i%t] §

Then we differentiate with respect to the time variable ¢t and we have

iﬁ—ﬂ————awngtm’ H_ 2 ¥n(x) exp [—i%t] ;

Here we put
B od  mosa
H=—maz T 2v "
Then we have
H“lbn(x) = Eﬂwﬂ("‘c)! (n = 01 ll 2; g )-
Thereby we have
L OYn(z,t) En
EHT = Hip,(z) - exp zzt
= Hipy(z,t).

Therefore, considering the function

’l‘f)(I, t) = Z Cnif)n(ﬂ?‘ t)!

we have oz, 1)
@
h i
ot
This is the Schrodinger equation of the time evolution of the total quantum
system (1. This shows that this quantum system satisfies the axiom III in

= Hy(z,t).
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chapter 1. Therefore we have the energy expectation value of the total quantum
system

E-E {ﬁp(p)z § %mw(p)%(pﬂ

_ /:0 J; ] D(w)dw

1 Fid
:/0 {§m+——exp & _I}D(w)dw

N .y
0 exp [FET"} =],

Here @ is the mean of angular frequency:

W= /Doo wD(w)dw.

For considering the specific heat of the solid, we should evaluate the derivative
dE
T’ _
dE 7 R
Y T
0 exp [kﬂ_'l“:| -1

The density D(w) of angular frequency should be determined for each solid
concretely.

5. Consideration and conclusion

On the true physical system, the quantum system @ = Q(B,P) of 1-
dimensional harmonic oscillators is decomposed into subsystems as follows:

Q= Jow),

Qw) = {p € Qw(p) =w}.

Then we have the probability space {Q(w), B(w), P, } for every w. Then, for ev-
ery angular frequency w, the subsystem Q(w) is decomposed into characteristic
subsystems as follows:

Qw) = i 2, (w), (direct sum).

n=>0
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Then, for every A € B(w), we have
Py(A) = Pu(Qn(w))Pa,w)(A)-
n=0

Here Pq_ (.,)(A) denotes the conditional probability. Then, forn =0,1,2,---,
the probability space {Q,(w), B(w)NQn(w), Pa, ()} is said to be the n-th char-
acteristic quantum system.

Here we assume that, forn =0,1,2,---,

i - (o2 o )
holds.

Then, for A ¢ R' and B C R, we have

o0 o0

S P =Y leal? =1,

n=>0 n=0

Paw) ({0 € u(w); 2(p) € 4}) = fA () 2,

Pa () ({p € U(w);p(p) € BY) = /B i () 2.

Therefore, for every w, the conditional energy expectation value of the charac-
teristic quantum system 2, (w) is

o) | b0+ gm(palpiw(p) = ]
ﬁ.2
. /{ﬁ
1

= J[thn;w] = (n+ 5) fuw.

2

dYn(z)
dz

1
+ Ennggwn(mn?} dr

Then we have 1 )
B | gplo)? + gm(aalpfiw(e) =]

> Pl By | gpl0)? + gmas(o)a(p)s(p) = o]

n=0
hw

1
= ﬁu+exp[k%]—1

2
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Therefore we have the energy expectation value E of the total quantum system
Q:

=B [oLalp) + gma(oalo?|

=£mﬂmewm»

- %ﬁw—i—f )i
0  exp [k%ﬂ} -1
Here we put
@ :-/ wD(w)dw.
0

In the monatomic solid, each atom has 3 degree of freedom as a harmonic
oscillation, so that if we consider the molar heat C of the considered monatomic
solid, we have

dE
Gi= 3Nﬁ

Here N is the Avogadro’s number.
Here we consider the Debye model of the specific heat of the monatomic
solid. So that we put

Here wp denotes the Debye frequency.
Then we have the molar heat C as follows:

dE
C=38N—

_ 9N d /“' Fuws® dw
= —— S, .. AN I
wp dT Jo exp[ka%]—l

_ 9N 2 ep  whexp [k%,}
= w% kT2 0 (exp [ksT} 1)2

9N, (T) /{ﬁwp}/{kBT} PN
k o 2
WD h 0 (e - 1)

T Op/T $4€$
_gNkB (9}_)) [3 md&B

dx
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Here we put
g, = "wp
D= Fe

We call 8p to be the Debye temperature. This gives the new meaning of the
specific heat for the Debye model of a solid.

The Debye model shows the good coincidence between the theoretical result
and the experimental result. The Debye model gives a very good model of the
true physical phenomena.
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Abstract
In this article, we consider the specific heat of an ideal gas com-
posed of monatomic molecules in the view point of the new quantum
theory. Thereby we can clarify a new meaning of specific heat of
an ideal gas.
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Introduction

In this article, we consider the molar heat and the specific heat of constant
volume of an ideal gas composed of monatomic molecules in the view point
of the new quantum theory. We get a reasonable explanation of them. It
gives a new true explanation of the results known until now. We use here the
framework of the new quantum theory mentioned in chapter 1 of Ito and Uddin
[9]. The new quantum theory was originated by Y. Ito [2]-[4] at 1998-2000. As
for the new quantum theory, we refer the papers [1]-[9] of the references.

1. Physical setting of the system and the prob-

lem

We consider an ideal gas composed of monatomic molecules spreaded in-
finitely. There are N molecules in the region of volume V. The ideal gas is so



30 Yoshifumi Ito and Md Sharif Uppin

rarefied that there is no mutual interaction among molecules. They only move
freely and no forces act on them. Every molecule moves under the Newtonian
equation of motion:

Here m denotes the mass of one molecule.

We wish to consider the specific heat Cy of constant volume and the molar
heat C'y; of this ideal gas.

Then we have the relation Cy = nCy where N = nN4 and N4 denotes
the Avogadro number.

2. Setting of the mathematical model

We use the notation in chapter 1 of Ito and Uddin [9]. We consider axiom
I and axiom IIT in chapter 1 of Ito and Uddin [9]. Let Q = Q(B, P) be the
probability space which represents the quantum system considered here. An
elementary event p of § is a monatomic molecule which moves freely in the
3-dimensional Euclidean space R®. Here we consider one degree of freedom
of the 3-dimensional free motion. Then we denote the position variable of
a monatomic molecule p by z = z(p), and the momentum variable of p by
p = p(p). Here we put n = dM = 1 because the space dimension is d = 1,
the number of monatomic molecules which compose an elementary event p is
M = 1. The variable = changes in the space R' and the variable p changes in
its dual space R;.

Here we need the new axiom for the generalized quantum state.

Axiom II' (generalized quantum state).

We consider the generalized quantum state of the quantum system Q =
(B, P) as the state of the generalized quantum probability distribution of the
position variable z = z(p) and the momentum variable p = p(p) of monatomic
molecules p composing the quantum system. Here we consider the orthogonal
coordinate system of 1-dimensional Euclidean space R! and its dual space R;.

The generalized quantum state is determined as follows:

(II3) The generalized quantum distribution state of the position variable
x = z(p) is determined by LZ -function 1.

(I15) The generalized quantum distribution state of the momentum variable
p = p(p) is determined by :B Here 1,17) is the function determined as local Fourier
transforms of .

Namely

Ps(p) = (2nh)~ f Vs(z)e= /Mg,

vs(e) = x| " ds(@)e™ M dp
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where § is an arbitrary compact set in R' and, when we denote the character-
istic function of S as

xs(z) = {[1} g ; gi

we define g to be the function 9s(z) = ¥(x)xs(z). Namely g is the cut off

function of ¥ on §. We put i = 2£, here h being the Planck constant. In the

T
above we use the classical Fourier transformation.
(I4) For a Lebesgue measurable set A in R', we assume

f s (2)Pde
P({p € 02(s) € AN S}) = L40s — us(4)
]S hps () Pde

This gives the probability that the position variable z(p) of a monatomic
molecule p moving in the region S belongs to AN S. Thereby we have the
relative probability space (S, M1NS, ug) corresponding to ¥g. Here M; is the
family of Lebesgue measurable sets in R'.

(II’y) For a Lebesgue measurable set B in R;, we assume

s (p)|*dp
P({p € Q;z(p) € S8,p(p) € B}) = --&——— = vs(B)
[ tsto)ap

This gives the probability that the momentum variable p(p) of the monatomic
molecule p moving in the region S belongs to B. Thereby, we have the relative
probability space (R, Ni,vs) corresponding to ys. Here N; is the family of
Lebesgue measurable sets in R;.

Then by the axiom II', the L% -density ¥(z) determines the generalized
quantum distribution law of the position variable z and its local Fourier trans-
form ngs (p) determines the generalized quantum probability distribution law of

the momentum variable p. The total energy of each monatomic molecule p is
g oA :
determined by the classical mechanics. Its value is %fp(p)z. Here m is the

mass of the monatomic molecule.

This energy variable is considered as a generalized quantum random variable
defined on the probability space {2 which represents the quantum system. The
evaluation of the local expectation value of this energy variable, namely the
local energy expectation value, is carried out by using the axiom II'.
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Namely we use the relation

f s (x)Pdz
_ JAns

P({pe Qz(p) € ANS})
[ Ws(a)Pde

1

/stpﬂ%@

[ s

for every compact set S in R! and a subset A in R! and a subset B in R;.
Then we have the local energy expectation value Eg :
2
dips(z)

_/ amP ?|s(p)[2d fzh; —
] f ls (p) 2dp / s () Pde

Here we use the Plancherel formula for Fourier transformation. Here we denote
this local energy expectation value by
2
dips(x)

ﬁ.2
/S 2m | dzx

] s () Pdz
s

P({p € Q;z(p) € S,p(p) € B}) =

dz

Es =Es [—P(P

Jslys] =

We call Jg[tpg] the local energy functional.

Here we assert the following principle.

Principle II (local variational principle).

In the case of continuous spectrum of the Hamiltonian operator of a quan-
tum system, the stationary state are realized as the state where the energy ex-
pectation of the quantum system considered locally takes the stationary value
under some conditions.

From this principle, we can choose the true L} -density for this quantum
system. So that we consider the following problem I and problem II :

Problem 1.

Let {r,} be a certain increasing sequence of positive numbers: r; < rp <

Sy e

Let { K} be an exhausting increasing sequence of non-empty compact sets
of R'. Namely it satisfy the following conditions (i) and (ii):

()0£Ki CKyC-+CK,C- R,

oo

(i) |J K; = R".

Jj=1
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For an arbitrary positive number £ > 0, determine the locally square inte-
grable function %) (z) such that the following conditions (1)~(5) are satisfied:

(1) ¥k, =

(2) Ynt1lk, = ¥n.

(3)f ln(z)[2de = 1o >0, (n=1,2,--+).
f PEN(2)*pE) (z)dz = 6(E' - £), (€, > 0).

Here 6(£) denote the delta function.
2
) dzx

(5) The functional
J.

f () P
K,

takes its stationary value under the conditions (2) and (3).
Problem II.
Find out the L]oc-densit.y for which the local energy expectation value

dipn ()
dzx

Ju [wn] =

Jnl¥n] takes its stationary value under the condition that / [¥n(x)Pdx is
Kﬂ

equal to a given constant ry.

3. Mathematical analysis

Solving the problems I and II in chapter 2, we have the Schrédinger equa-
tions

K2 d*yn(z)

2m da?
as the Euler equations. Here £ is the Lagrange’s unknown constant. By the
conditions (1), (2) and (3) of problem I in chapter 2, we have the L2 -function
%) () such that it satisfies, for some constant £ > 0,

P& (z) = u(z), z € Ku(n=1,2,--+).
Then ¢(€)(z) satisfies the Schriodinger equation
_I? &y)a)
2m  dz?

As solutions of the above generalized eigenvalue problem, we have the gen-
eralized eigenfunction ()(z) corresponding to the eigenvalue £ > 0. Namely
we have, for every € > 0,

8 (@) = c(€) exp (iﬁm) .

E’tf’n(l‘), T E Kn(ﬂ. =1 2’ A )

= EYE(z), z € R.
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For every £ > 0, there exist two independent generalized eigenfunctions.
Therefore every spectrum £ is degenerated. If we normalize the generalized
eigenfunctions in the scale of £, we have

9@ = (g7z) " o (£50vEmE ).

Then we have the relations, for £ > 0 and £’ > 0,

f Y (2) 0 (2)de = 5(€' - €),

f " Y @)y ® @)z = 6(E — &)

/ ” ) (2)* ' E (z)dz = 0.

Here ¢* denotes the complex conjugate of a complex number ¢. If we put

k2= 21;8, for £ > 0, we have, for —o0o < k < 00,
w(k.] (.\"J) — 1 es’kz
V2m

which is normalized in the scale of k:

/ &) (z)*p® (z)da = 2i/ e *=K)zgqe — §(k' — k), —00 < k, k' < 00.
—oe T J-oo

Then we have 52 d'zw“‘)( )
BN ) R 1
T EP\¥N(z), z€e R
If we put ¥ |, =4, (n=1,2,--.), we have
% ldz
Jﬂ[“jjﬂ] = + :E) (n: 1v21'“)-
— ldz
2?‘( Kn

Thus 1)*)(z) satisfies all the conditions of problem I. Thus we have the solution
of problem I. If we put p = hk and we write

¥ (z) = %Wm
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for p = hk. Then we have
1 ; p2
(p) ——— _gipe/h o F
v =me ( )
which is normalized in the scale of p:

1

/ ¥ ()P (z)dz = o— / =PI/ Mg = 6(p' — p), p.p' € Ru.

Then we have 2 2y
p
_h_w—(z) = gw(P)(_TL z e R

2m  dz?
If we put 9|k, = ¥, (n=1,2,---), we have
% ldz
Jﬂiwn]: S =E, ('ﬂ=1,2,-")-

1
ﬁLﬂldw

This +(P)(z) satisfies all the conditions of problem I. Thus we have the solution
of problem I. In the above, the L} -densities ¥/(6)(z), 9(¥)(z) and ¢®)(z) are
the different representations of the solutions of problem I which differ only in
the scale of the normalization.

By virtue of the theory of Fourier transformation, for any ¢ € L?(R'),
there exists ¢ € L?(R;) such that we have

1 . ;

c(p) = ‘/% j:: P(z)e P/ Mg,

If the true physical state of the total quantum system £ is determined by
some L2-density ¥(z) at the initial time point, then we have the generalized
eigenfunction expansion of ¥(z) by ") (z) as follows:

P(z) =

and

via) = [ " p)y® (z)dp,

o= [ ” ) (@) p(a)d.

-0
Then we have the energy expectation value

oo 2

o0 2 &
E-ail= [ 2iold= [ Ll

—00
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Further, since the function v(z) satisfies the normalization condition

¥ ~ [W(@)Pde =1,

/ |e(p)[Pdp = 1.
2

Since we have 2— = £ , we have
2m

we have

0 2 oo 2
B=Jpy] = / L lew)Pdp+ | leto)dp

1/ VamE)|2dE + 1 /:05 2?|c(v’ mE)|2dE.
- %/ﬂ 81/2?m(|c(—\/2m£)|2+|c(\/2m8)|2)d8
If we put
I(€) = %ﬁ(ltﬁ( V2méE)|? + |e(V2mE)?), € >0,
we have

/r )dE = f p)|dp = 1.

E=J) = /n - EI(E)dE

So that we have

If we assume

2 2
Ei=y T"XP( k T)'

where T denotes the absolute temperature and kg denotes the Boltzman con-
stant, we have

= 1
Bi= EkBT'

Because the degree of freedom of the 3-dimensional free motion is equal to 3, the
energy expectation value of the total quantum system  in the 3-dimensional
case is equal to

3
Bi= EkgT.
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Further the L2-density () of the total quantum system Q at the state of
thermal equilibrium at the temperature T can be represented as follows:

P(z) = \/% /_ c(p)e™/*dp

and

lp) = o= [ wlo)e el

Here we follow the reverse order of the method of separation of variables. At
first we consider the function

¥ (a,t) = 60 @) exp (-i%t)
Differentiating this function with respect to the time variable ¢, we have
. 0y (a, ) (p) £
ehT = EYP\P(z) exp —lgt .

Here we denote the Hamiltonian operator of the Schrodinger equation of sta-
tionary state as follows:
R 9%
T 2mdz?’

Then we have

Hy®) (z) = EyP)(z), € = %

Hence we have

iﬁgw_%ﬁ = {Hy®)(z)} exp (—i%t) = Hy®)(z,¢).

Therefore, if we put

vt = [ " )P (z, )dp,

—o0

we have

op(a,t) _
i = Hy(x, ). (3.1)

This is the Schrodinger equation of time evolution of the total quantum system
). Here, using the condition of completeness, we have

/ " (e, t)Pd = / " le(p)Pdp = 1.

By virtue of the conservation law of probability, we can see that the Schrédinger
equation of time evolution is nothing else but the equation (3.1) in order that
the L?-density satisfies this normalization condition.

ih
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4. Consideration and conclusion

We can consider that the quantum system (2, B, P) of the 1-dimensional
ideal gas composed of monatomic molecules has the following structure at the
stationary state. Namely € is decomposed into the direct sum

Q= |J 9, (direct sum), (4.1)

—co<pLoo
Q= {p € U;p(p) =p}, (-00 <p <),
P(Qp) = |e(p)I?, (—00 <p < o0).
Then, we have, for any A € B,

Py = [ " P(A)le()Pdp, (4.2)

where P(A|p) denotes the conditional probability. Then for p : —oo < p < o0,
we call the probability space (Q,, B N )y, P(-|p)) as the generalized charac-
teristic quantum system. Considering the equations (4.1) and (4.2) and the
results of calculation until now, we put the following assumptions. Now for
p:—oo0 < p < oo, we assume that c(p) satisfies the following conditions:

16) =3 ( Z (le(~VEmE)?) + Ic(~/2m€)i2) ,

/:0 I(E)dE =1, p* = 2méE.
If we use the notation of the axiom IT', we have
P(Qlp) =1,
[ wP@pda
ANS

| @@
5

[ 19 @)
]

| i@ w)ra

P({p € Qp;z(p) € AN S}|p) =

P({p € Qp;z(p) € S,p(p) € B}|p) =

Therefore, the conditional energy expectation value Ep of the generalized char-
acteristic quantum system §2, is equal to

-
5 D
E, = HILB;OJKNWE?,{] =€= -
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By the relation of the total quantum system and the generalized characteristic
quantum systems, we have

= |5mp0?| = [ Fpletw)ap

= /m : IC(p)I2dp=fm81(£)d8, (p* = 2mE).
0

o 2m

If we assume that I(€) is equal to

2 2
e =g (_ kBT) ’
we have i
E = EkBT

Because the degree of freedom of the 3-dimensional free motion is equal to 3, the
energy expectation value of the total quantum system (2 in the 3-dimensional
case is equal to

= 3
E= EkBT'

E denotes the energy expectation value for one molecule. Now we consider the
ideal gas such as there are N molecules in the region of volume V. So that we
have the specific heat Cy of constant volume and the molar heat Cys of this
ideal gas as follows:

dE dE
CV _Nd_T and CM ——NA&'&:"
Namely, P
Cy = §Nk3
and
3
Cu = ENAR:B.

Here N4 denotes the Avogadro number. If we put N = nN,4, we have the
relation

CV = HCM.

These results were considered as the specific heats of the ideal gas composed
of monatomic molecules. These facts are confirmed in the view point of the
new quantum theory. But our results can be derived reasonably in the view
point of the new quantum theory. The new and old results are different at the
standing points.
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