J. Math. Univ. Tokushima Vol.38(2004), 1-7

Local Switching of Some Signed Graphs

By

Toru ISHIHARA

Faculty of Integrated Arts and Sciences, The University of Tokushima, Minamijosanjima, Tokushima 770-8502, JAPAN e-mail adress: ishihara@ias.tokushima-u.ac.jp (Received September 30, 2004)

Abstract

Some singed graphs are transformed to trees by a sequence of local switchings.We give some examples of such signed graphs to investigate when signed graphs are transformed to trees by local switching.

2000 Mathematics Subject Classification. 05C22

Introduction

Local switching of signed graphs is introduced by P. J. Cameron, J.J. Seidel and S. V. Tsaranov in [3]. Some singed Fushimi trees are tansformed to trees by a sequence of local switchings [4]. Signed cycles with odd parity are transformed to trees by a sequence of local switchings, but signed cycles with even parity can not be transformed to trees by no means [5]. What kinds of graphs are transformed to trees by a sequence of local switchings ? It is important and intresting to give examples of signed graphs which are transformed to trees by a sequence of local switchings. In this note, we give rather simple examples of such signed graphs.

We state briefly basic facts about signed graphs. A graph G = (V, E) consists of an n-set V (the vertices) and a set E of unordered pairs from V (the edges). A signed graph (G, f) is a graph G with a signing $f : E \to \{1, -1\}$ of the edges. We set $E^+ = f^{-1}(+1)$ and $E^- = f^{-1}(-1)$. For any subset $U \subseteq V$ of vertices, let f_U denote the signing obtained from f by reversing the sign of each edge which has one vertex in U. This defines on the set of signings an equivalence relation, called switching. The equivalence classes $\{f_U : U \subseteq V\}$ are the signed swithing classes of the graph G = (V, E).

Let $i \in V$ be a vertex of G, and V(i) be the neighbours of *i*. The local graph of (G, f) at *i* has V(i) as its vertex set, and as edges all edges $\{j, k\}$ of G for which f(i, j)f(j, k)f(k, i) = -1. A rim of (G, f) at *i* is any union of connected

Toru Ishihara

components of local graph at *i*. Let *J* be any rim at *i*, and let $K = V(i) \setminus J$. Local switching of (G, f) with respect to (i, J) is the following operation:(i) delete all edges of *G* between *J* and *K*; (ii) for any $j \in J$, $k \in K$ not previously joined, introduce an edge $\{j, k\}$ with sign chosen so that f(i, j)f(j, k)f(k, i) = -1; (iii) change the signs of all edges from *i* to *J*; (iv) leave all other edges and signs unaltered. Let Ω_n be the set of switching classes of signed graphs of order *n*. Local switching, applied to any vertex and any rim at the vertex, gives a relation on Ω which is symmetric but not transitive. The equivalence classes of its tansitive closure are called the *clusters* of order *n*.

1. Singed graphs which are transformed into trees by local switching

A connected graph G = (V, E) is called *Fushimi tree* if each block of G is a complete graph. A complete graph is a Fusimi tree of one block. Let a be a cut vertex of a Fushimi tree G. If G is divided exactly m connected components when the cut vertex a is deleted, in the present paper, we say that the Fushimi degree(simply F-degree) of the cut vertex a is m. A connected subgraph of a Fushimi tree G is called a sub-Fushimi tree if it consists of some blocks of G. A block of Fushimi tree is said to be pendant if it has only one cut vertex. It is evident that any Fushimi tree has at least two pendant blocks.

A signed Fushimi tree is called a Fushimi tree with positive sign (or simply a positive Fushimi tree) if we can switch all signs of edges into +1. A tree is always considered as a Fushimi tree with positive sign. A tree with only two leaves is said to be *a line tree* or simply *a line* in the present paper.

A k-cycle $C^k = (V, E)$, where $V = \{a_1, a_2, \dots, a_k\}$, $E = \{a_1a_2, a_2a_3, \dots, a_{k-1}a_k, a_ka_1\}$, will be denoted simply $C^k = a_1a_2 \cdots a_ka_1$. For signed cycles, there are two switching classes, which are distinguished by the parity or the balance, where the parity of a signed cycle is the parity of the number of its edges which carry a positive sign and the balance is the product of the signs on its edges [3]. In the forthcoming paper[5], we will show the following two theorems.

Theorem 1. Let G be a positive Fushimai tree whose any cut vertex has Fdegree 2. We can transform G into a line tree by a sequence of local switchings.

Theorem 2. Let C^k be a k-cycle. Then, it is transformed to a tree by a sequence of local switchings if and only if its parity is odd.

We will show

Theorem 3.Let G = (V, E) be a signed graph with $V = \{a_1, a_2, \dots, a_n, b_2, b_3, \dots, b_{m-1}\}$ and $E = \{a_1a_2, a_2a_3, \dots, a_{n-1}a_n, a_na_1, a_1b_2, b_2b_3, \dots, b_{m-1}a_n$ Consider two cycles $A^n = a_1a_2\cdots a_na_1$ and $B^m = a_1b_2\cdots b_{m-1}a_na_1$. Then, the graph is transformed to a tree by a sequence of local switchings if and only if both parities of A^n and B^m are odd. Proof. Assume that the parity of A^n is odd. By a sequence of local swithings, $(a_2, J = \{a_3\})$, $(a_3, J = \{a_4\})$, \cdots , $(a_{n-2}, J = \{a_{n-3}\})$, $(a_{n-1}, J = \{a_n\})$, $(a_3, J = \{a_2\})$, $(a_4, J = \{a_3\})$, \cdots , $(a_{n-2}, J = \{a_{n-3}\})$, $(a_{n-1}, J = \{a_1\})$, we get a singned graph with edge set $E = \{a_2a_3, \cdots, a_{n-2}a_{n-1}, a_1b_2, b_2b_3, \cdots, b_{m-1}a_n, a_na_{n-1}, a_{n-1}a_1\}$. The parity of the cycle $a_1b_2b_3 \cdots b_{m-1}a_na_{n-1}a_1$ is odd if and only if the parity of B^m is odd. In this case, this cycle is transformed to a tree by a sequence of local swithings. If the parity of A^n is even, by a sequence of local swithings, $(a_2, J = \{a_3\})$, $(a_3, J = \{a_4\})$, \cdots , $(a_{n-2}, J = \{a_{n-1}\})$, $(a_3, J = \{a_2\})$, $(a_4, J = \{a_3\}, \cdots)$, $(a_{n-2}, J = \{a_{n-1}\})$, we get a singned graph with edge set $E = \{a_1a_2, a_2a_3, \cdots, a_{n-2}a_{n-1}, a_{n-1}a_n, a_{n-2}a_1, a_{n-1}a_1, a_1b_2, b_2b_3, \cdots, b_{m-1}a_n\}$. As the sign of the edge $a_{n-1}a_n$ is -1, the cycle $a_1a_{n-1}a_na_1$ can not be transformed to a line.

2. Examples of signed graphs which are transformed into trees

For $j = 3, 4, \ldots, 8$, set signed graphs $T_j = (V, E)$ as follows. $V = \{a_1, a_2, \cdots, a_{j+2}\}, E^+ = \{a_i a_{i+1}, a_i a_{i+2} (i = 1, 2, \cdots, j), a_{j+1} a_{j+2}\}, E^- = \emptyset.$

Then, we have

Proposition 4. The signed graphs T_3, T_4, T_5, T_6, T_7 are transformed to trees by a sequence of local switchings, but T_8 can not be transformed to a tree by a sequence of local switchings.

Proof. By a sequence of local switchings, $(a_3, J = \{a_2\})$, $(a_5, J = \{a_3\})$, from T_3 , we get a tree with edge set $E = \{a_1a_3, a_3a_5, a_4a_5, a_2a_5\}$.

By a sequence of local switchings, $(a_3, J = \{a_2\})$, $(a_5, J = \{a_3, a_6\})$, $(a_6, J = \{a_2\})$, from T_4 , we get a tree with edge set $E = \{a_1a_3, a_3a_5, a_4a_5, a_5a_6, a_2a_6\}$.

By a sequence of local switchings, $(a_3, J = \{a_2\})$, $(a_5, J = \{a_3, a_6, a_7\})$, $(a_7, J = \{a_5\})$, $(a_6, J = \{a_2\})$, from T_5 , we get a tree with edge set $E = \{a_1a_3, a_3a_5, a_5a_7, a_4a_7, a_7a_6, a_2a_6\}$.

By a sequence of local switchings, $(a_3, J = \{a_2\})$, $(a_5, J = \{a_3, a_6, a_7\})$, $(a_7, J = \{a_5\})$, $(a_8, J = \{a_7\})$, $(a_6, J = \{a_2\})$, $(a_2, J = \{a_8\})$, from T_6 , we get a tree with edge set $E = \{a_1a_3, a_3a_5, a_5a_8, a_8a_2, a_2a_6, a_2a_7, a_7a_4\}$.

By a sequence of local switchings, $(a_3, J = \{a_2\})$, $(a_5, J = \{a_3, a_6, a_7\})$, $(a_7, J = \{a_5, a_8, a_9\})$, $(a_9, J = \{a_7\})$, $(a_2, J = \{a_9\})$, $(a_4, J = \{a_8\})$, $(a_8, J = \{a_9\})$, from T_7 , we get a tree with edge set $E = \{a_1a_3, a_3a_5, a_5a_7, a_7a_9, a_9a_8, a_8a_4, a_8a_2, a_2a_6\}$.

By a sequence of local switchings, $(a_3, J = \{a_2\})$, $(a_5, J = \{a_3, a_6, a_7\})$, $(a_7, J = \{a_5, a_8\})$, $(a_2, J = \{a_7\})$, from T_8 , we get a signed graph with edge set $E^+ = \{a_1a_3, a_3a_5, a_5a_7, a_7a_9, a_9a_{10}, a_8a_{10}, a_8a_2, a_2a_7, a_2a_6\}$, $E^- = \{a_4a_7\}$. But this graph can not be transformed to a tree at all.

TOTU ISHIHARA

It is rather difficult to decide that a given signed graph can not be transformed to a tree by a sequence of local switchings. We describe some facts concerning with this point.

Remark. A signed cycle with even parity can not be transformed to a tree by a sequence of local switchings. Hence, we do not make a 3-cycle with even parity by local switching. Set $G_1 = (V, E)$ be a signed graph with vertex set $V = \{a_1, a_2, b_1, b_2, c\}$ and edge sets $E^+ = \{a_1b_1, a_1b_2, a_2b_1, a_2b_2, a_1c\}, E^- =$ $\{a_2c\}$. By local switching at b_1 or b_2 , we get a 3-cycle with even parity, we can not apply it. By local switching at a_1 or a_2 , if b_1 is in J and b_2 is in K or if the reverse holds, we get a 3-cycle with even parity. Similarly, set $G_2 = (V, E)$ be a signed graph with vertex set $V = \{a_1, a_2, b_1, \cdots , b_n, c\}$ and edge sets $E^+ = \{a_1b_1, \cdots, a_1b_n, a_2b_1, \cdots, a_2b_n, a_1c\}, E^- = \{a_2c\}$. We can no do local switching at any b_i , $(1 \le i \le n)$. If we apply local switching at a_1 or a_2 , all b'_i 's must be in J or in K.

Let $Q_3 = (V, E)$ be a signed graph with $V = \{a_1, a_2, \dots, a_7, a_8\}$, $E^+ = \{a_1a_2, a_1a_3, a_3a_4, a_3a_5, a_5a_6, a_5a_7, a_7a_8\}$ and $E^- = \{a_2a_4, a_4a_6, a_6a_8\}$. and $Q_4 = (V, E)$ be a signed graph with $V = \{a_1, a_2, \dots, a_9, a_{10}\}$, $E^+ = \{a_1a_2, a_1a_3, a_3a_4, a_3a_5, a_5a_6, a_5a_7, a_7a_8, a_7a_9, a_9a_{10}\}$ and $E^- = \{a_2a_4, a_4a_6, a_6a_8, a_8a_{10}\}$.

Now we have

Proposition 5. The graph Q_3 is transformed to the graph T_6 , and hence to a tree, by a sequence of local switchings. The graph Q_4 is transformed to the graph T_8 by a sequence of local switchings. Hence this graph can not be transformed to a tree by a sequence of local switchings.

Proof. By a sequence of local switchings, $(a_1, J = \{a_2\})$, $(a_7, J = \{a_8\})$, $(a_6, J = \{a_5\})$, $(a_8, J = \{a_7\})$, we get T_6 from Q_3 . Similarly, by a sequence of local switchings, $(a_1, J = \{a_2\})$, $(a_{10}, J = \{a_9\})$, $(a_7, J = \{a_8\})$, $(a_6, J = \{a_5\})$, $(a_9, J = \{a_{10}\})$, $(a_8, J = \{a_7\})$, $(a_{10}, J = \{a_9\})$, we get T_8 from Q_4 .

Define QH_2 , QH_3 and QH_4 as follows;

 $QH_2 = (V, E), V = \{a_1, a_2, a_3, a_4, b_1, b_2\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_1b_1, a_3b_2\}, E^- = \{a_4a_1\};$

 $QH_3 = (V, E), V = \{a_1, a_2, a_3, a_4, b_1, b_2, b_3\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_1b_1, a_2b_2, a_3b_3\}, E^- = \{a_4a_1\};$

 $QH_4 = (V, E), V = \{a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_1b_1, a_2b_2, a_3b_3, a_4b_4\}, E^- = \{a_4a_1\};$

We can prove

Proposition 6. The signed graphs QH_2, QH_3, QH_4 are transformed to trees by a sequence of local switchings.

Proof. By a sequence of local switchings, $(a_4, J = \{a_1\})$, $(a_3, J = \{a_1, b_2\})$, $(b_2, J = \{a_3\})$, from QH_2 , we get a tree with edge set $E = \{b_1a_1, a_1a_3, a_3b_2, b_2a_2, b_2a_4\}$. By a sequence of local switchings, $(a_4, J = \{a_1\}), (a_3, J = \{a_1, b_3\}), (b_3, J = \{a_3\})$, from QH_3 , we get a tree with edge set $E = \{b_1a_1, a_1a_3, a_3b_3, b_3a_2, b_3a_4, a_2b_2\}$. By a sequence of local switchings, $(a_2, J = \{a_3\}), (a_3, J = \{a_3\}),$ $\{a_2, a_4\}$, $(b_3, J = \{a_3\})$, $(b_2, J = \{a_4\})$, $(a_4, J = \{a_3, b_4\})$, $(b_4, J = \{a_4\})$, from QH_4 , we get a tree with edge set $E = \{b_1a_1, a_1a_3, a_3a_4, a_4b_4, b_4a_3, b_4b_2, b_3a_2\}$.

Set signed graphs PH_1 , PH_2 , $PH_3(1)$, $PH_3(2)$, PH_4 , PH_5 as follows;

 $PH_1 = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, b_1\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_1, a_1b_1\}, E^- = \emptyset;$

 $PH_2 = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, b_1, b_2\}, E = \{a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_1, a_1b_1, a_2b_2\}, E^- = \emptyset;$

 $PH_{3}(1) = (V, E), V = \{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{3}\}, E = \{a_{1}a_{2}, a_{2}a_{3}, a_{3}a_{4}, a_{4}a_{5}, a_{5}a_{1}, a_{1}b_{1}, a_{2}b_{2}, a_{3}b_{3}\}, E^{-} = \emptyset;$

 $PH_{3}(2) = (V, E), V = \{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{3}\}, E = \{a_{1}a_{2}, a_{2}a_{3}, a_{3}a_{4}, a_{4}a_{5}, a_{5}a_{1}, a_{1}b_{1}, a_{2}b_{2}, a_{4}b_{3}\}, E^{-} = \emptyset;$

 $PH_4 = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, b_1, b_2, b_3, b_4\}, E = \{a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_1, a_1b_1, a_2b_2, a_3b_3, a_4b_4\}, E^- = \emptyset;$

 $PH_5 = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, b_1, b_2, b_3, b_4, b_5\}, E = \{a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_1, a_1b_1, a_2b_2, a_3b_3, a_4b_4, a_5b_5\}, E^- = \emptyset;$

Now we obtain

Proposition 7. The graphs PH_1 , PH_2 , $PH_3(1)$, $PH_3(2)$, PH_4 are transformed to trees, by a sequence of local switchings. The graph PH_5 can not be transformed to a tree by a sequence of local switchings.

Proof. By a sequence of local switchings, $(a_2, J = \{a_3\}), (a_3, J = \{a_4\}),$ $(a_4, J = \{a_5\}), (a_2, J = \{a_1, a_5\}), (a_3, J = \{a_4\}), \text{ from } PH_1, \text{ we get a tree with }$ edge set $E = \{b_1a_1, a_1a_2, a_2a_3, a_2a_5, a_3a_4\}$. By a sequence of local switchings, $(a_3, J = \{a_4\}), (a_4, J = \{a_3, a_5\}), (a_5, J = \{a_2\}), \text{ from } PH_2, \text{ we get a tree}$ with edge set $E = \{b_1a_1, a_1a_5, a_5a_4, a_2a_5, a_3a_4, a_2b_2\}$. By a sequence of local switchings, $(a_4, J = \{a_5\}), (a_5, J = \{a_3\}), (a_3, J = \{a_1, b_3\}), (b_3, J = \{a_3\}), (a_4, J = \{a_4, b_3\}), (a_5, J = \{a_3\}), (a_5, J = \{a_5\}), (a_5,$ from $PH_3(1)$, we get a tree with edge set $E = \{b_1a_1, a_1a_3, a_3b_3, b_3a_2, b_3a_5, a_5, b_5a_5, b_5a_5$ a_2b_2, a_5a_4 . By a sequence of local switchings, $(a_3, J = \{a_4\}), (a_4, J = \{a_4\})$ $\{a_2, b_3\}$, $(b_3, J = \{a_4\})$, $(a_5, J = \{a_2\})$, $(b_3, J = \{a_2, a_3\})$, $(a_3, J = \{b_3\})$, b_3a_2, a_2b_2 . By a sequence of local switchings, $(a_5, J = \{a_1\}), (a_4, J = \{a_3, a_5\}), (a_4, J = \{a_3, a_5\}), (a_5, J = \{a_5, a_5\}), (a_6, J = \{a_8, a_5\}), (a_7, J = \{a_8, a_5\}), (a_8, J = \{a_8, a_$ $(b_4, J = \{a_4\}), (a_3, J = \{a_1, b_3\}), (b_3, J = \{a_3\}), (a_1, J = \{b_4\}), (a_3, J = \{b_4\}), (a_3, J = \{b_4\}), (a_3, J = \{b_4\}), (a_4, J = \{b_4\}), (a_5, J = \{b_4\}), (a_5, J = \{b_4\}), (a_7, J = \{b_4\}), (a_8, J = \{b_4\}), (a_8,$ $b_{3}a_{2}, a_{2}b_{2}, b_{4}a_{5}$. By a sequence of local switchings, $(a_{3}, J = \{a_{4}\}), (a_{5}, J = \{a_{4}\})$ $\{a_4\}$, $(a_4, J = \{a_1, a_3, b_5\}$, $(b_4, J = \{a_4\})$, from PH_5 , we get a signed graph with edges sets $E^+ = \{b_2a_2, a_2a_4, a_2b_5, b_5b_3, b_5b_4, b_3a_4, b_3a_1, a_1b_1, a_1a_4, a_1b_4, a_1b_4, b_3a_4, b_3a_$ a_4a_5, a_5a_3, a_3b_4 , $E^- = \{a_4b_4\}$. We can not apply to this graph local switching at vertices a_1 , or a_2 , or b_3 , or b_5 and can not transform it to a tree.

Define H_1 , $H_2(1)$, $H_2(2)$, $H_2(3)$, $H_3(1)$, $H_3(2)$, $H_3(3)$ and $H_4(1)$, $H_4(2)$, $H_4(3)$, as follows;

 $H_1 = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, a_6, b_1\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_6, a_1b_1\}, E^- = \{a_6a_1\};$

 $H_2(1) = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, a_6, b_1, b_2\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_6, a_1b_1, a_2b_2\}, E^- = \{a_6a_1\};$

 $H_2(2) = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, a_6, b_1, b_2\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_6, a_1b_1, a_5b_2\}, E^- = \{a_6a_1\};$

 $H_2(3) = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, a_6, b_1, b_2\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_6, a_1b_1, a_4b_2\}, E^- = \{a_6a_1\};$

 $H_3(1) = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, a_6, b_1, b_2, b_3\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_6, a_1b_1, a_2b_2, a_3b_3\}, E^- = \{a_6a_1\};$

 $H_3(2) = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, a_6, b_1, b_2, b_3\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_6, a_1b_1, a_2b_2, a_4b_3\}, E^- = \{a_6a_1\};$

 $H_3(3) = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, a_6, b_1, b_2, b_3\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_6, a_1b_1, a_3b_2, a_5b_3\}, E^- = \{a_6a_1\};$

 $H_4(1) = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, a_6, b_1, b_2, b_3, b_4\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_1b_1, a_2b_2, a_3b_3, a_4b_4\}, E^- = \{a_6a_1\};$

 $H_4(2) = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, a_6, b_1, b_2, b_3, b_4\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_6, a_1b_1, a_2b_2, a_4b_3, a_5b_4\}, E^- = \{a_6a_1\};$

 $H_4(3) = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, a_6, b_1, b_2, b_3, b_4\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_6, a_1b_1, a_3b_2, a_4b_3, a_5b_4\}, E^- = \{a_6a_1\};$

Now we obtain

Proposition 8. The graphs $H_1, H_2(1), H_2(2), H_2(3), H_3(1), H_3(2), H_4(1)$ are transformed to trees, by a sequence of local switchings. The graphs $H_3(3)$, $H_4(2), H_4(3)$ can not be transformed to trees by a sequence of local switchings.

Proof. By a sequence of local switchings, $(a_2, J = \{a_3\}), (a_3, J = \{a_4\}), (a_3, J = \{a_4\}), (a_4, J = \{a_4\}), (a_4, J = \{a_4\}), (a_5, J = \{a_4\}), (a_6, J = \{a_4\}), (a_7, J = \{a_4\}), (a_8, J = \{a_8\}), (a_8$ $(a_4, J = \{a_5\}), (a_3, J = \{a_2\}), (a_4, J = \{a_3\}), (a_5, J = \{a_1\}), \text{ from } H_1, \text{ we get }$ a tree with edge set $E = \{b_1a_1, a_1a_5, a_5a_6, a_5a_4, a_4a_3, a_3a_2\}$. By a sequence of local switchings, $(a_3, J = \{a_4\}), (a_4, J = \{a_5\}), (a_5, J = \{a_6\}), (a_4, J = \{a_3\}), (a_5, J = \{a_6\}), (a_4, J = \{a_3\}), (a_5, J = \{a_6\}), (a_6, J = \{a_8\}), (a_7, J = \{a_8\}), (a_8, J =$ $(a_5, J = \{a_4\}), (a_6, J = \{a_2\}), \text{ from } H_2(1), \text{ we get a tree with edge set}$ $E = \{b_1a_1, a_1a_6, a_6a_5, a_6a_2, a_5a_4, a_2b_2, a_4a_3\}$. By a sequence of local switchings, $(a_2, J = \{a_3\}), (a_3, J = \{a_4\}), (a_4, J = \{a_5\}), (a_3, J = \{a_2\}), (a_4, J = \{a_3\}), (a_5, J = \{a_5\}), (a_7, J = \{a_8\}), (a_8, J =$ $(a_5, J = \{a_1, b_2\}), (b_2, J = \{a_5\}), \text{ from } H_2(2), \text{ we get a tree with edge set}$ $E = \{b_1a_1, a_1a_5, a_5b_2, b_2a_6, b_2a_4, a_4a_3, a_3a_2\}$. By a sequence of local switchings, $(a_2, J = \{a_3\}), (a_3, J = \{a_1\}), (a_6, J = \{a_5\}), (a_5, J = \{a_1\}), \text{from } H_2(3),$ we get a signed graph with edge sets $E^+ = \{a_1a_3, a_3a_4, a_4a_5, a_1b_1, a_3a_2, a_4b_2, a_4b_4, a_4b_4,$ a_5a_6 , $E^- = \{a_1a_5\}$ which is isomorphic to the singed graph QH_4 . Hence, $H_2(3)$ is transformed to a tree, by a sequence of local switchings. By a sequence of local switchings, $(a_6, J = \{a_5\}), (a_5, J = \{a_4\}), (a_4, J = \{a_3\}),$ $(a_5, J = \{a_6\}), (a_4, J = \{a_5\}), (a_3, J = \{a_1, b_3\}), (b_3, J = \{a_3\}), \text{ from } H_3(1),$ we get a tree with edge set $E = \{b_1a_1, a_1a_3, a_3b_3, b_3a_2, a_2b_2, b_3a_4, a_4a_5, a_5a_6\}$. By a sequence of local switchings, $(a_6, J = \{a_5\}), (a_5, J = \{a_4\}), (a_5, J = \{a_5\}), (a_5, J = \{$ $\{a_6\}$, $(a_4, J = \{a_1, b_3\})$, $(b_3, J = \{a_4\})$, $(a_3, J = \{a_1\})$, $(a_1, J = \{b_1, b_3\})$, $(b_1, J = \{a_1\})$, from $H_3(2)$, we get a tree with edge set $E = \{b_1a_1, a_1b_3, b_3a_5, b_3a_5,$ $a_5a_6, b_1a_4, b_1a_3, a_3a_2, a_2b_2$. By a sequence of local switchings, $(a_6, J = \{a_5\})$, $(a_5, J = \{a_4\}), (a_5, J = \{a_6\}), (a_4, J = \{a_1, b_4\}), (b_4, J = \{a_4\}), (a_4, J = \{a_4\}), (a_4,$ $\{b_4\}$, $(a_1, J = \{a_2, b_4\})$, $(b_1, J = \{a_1\})$, $(a_4, J = \{a_1\})$, $(a_2, J = \{a_1, b_2\})$, $(b_2, J = \{a_2\})$, from $H_4(1)$, we get a tree with edge set $E = \{b_3a_3, a_3a_1, a_1a_2, a_2, a_3a_1, a_1a_2, a_2, a_3a_1, a_1a_2, a_2, a_3a_1, a_1a_2, a_2a_3, a_1a_2, a_2a_3, a_1a_2, a_2a_3, a_2a_3, a_3a_1, a_1a_2, a_3a_3, a$ $a_2b_2, b_2a_4, b_2b_1, b_1b_4, b_4a_5 a_5a_6\}.$

The graphs $H_3(3), H_4(2), H_4(3)$ can not be transformed to trees by any sequences of local switchings at all.

Define C_{44} , C_{45} , C_{55} and H_{56} as follows;

 $C_{44} = (V, E), V = \{a_1, a_2, a_3, a_4, b_1\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_4a_1, a_1b_1\}, E^- = \{a_3b_1\};$

 $C_{45} = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, b_1\}, E^+ = \{a_1a_2, a_3a_4, a_4a_5, a_5a_1, a_1b_1 a_3b_1\}, E^- = \{a_2a_3\};$

 $C_{55} = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, a_6, b_1\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_6, a_6a_1, a_1b_1, a_4b_1\}, E^- = \emptyset;$

 $C_{56} = (V, E), V = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, b_1\}, E^+ = \{a_1a_2, a_2a_3, a_3a_4, a_5a_6, a_6a_7, a_1b_1, a_4b_1\}, E^- = \{a_4a_5\};$

Then, we get

Proposition 9. The graphs C_{44}, C_{45}, C_{55} are transformed to trees, by a sequence of local switchings. The graph C_{56} can not be transformed to a tree by a sequence of local switchings.

Proof. By a sequence of local switchings, $(a_1, J = \{b_1\})$, $(b_1, J = \{a_1, a_3\})$, from C_{44} , we get a tree with edge set $E = \{b_1a_1, b_1a_2, b_1a_3, b_1a_4\}$. By a sequence of local switchings, $(a_1, J = \{b_1\})$, $(b_1, J = \{a_2, a_5\})$, $(a_5, J = \{a_3\})$, from C_{45} , we get a tree with edge set $E = \{b_1a_1, b_1a_2, b_1a_5, a_5a_3, a_5a_4\}$. By a sequence of local switchings, $(a_3, J = \{a_4\})$, $(a_5, J = \{a_6\})$, $(a_1, J = \{b_1\})$, $(b_1, J = \{a_2, a_6\})$, $(a_3, J = \{a_4\})$, $(a_5, J = \{a_6\})$, $(a_6, J = \{a_4\})$, $(a_2, J = \{a_4\})$, $(a_4, J = \{b_1\})$, from C_{55} , we get a tree with edge set $E = \{b_1a_1, b_1a_4, a_4a_2, a_4a_6, a_2a_3, a_6a_5\}$. The graph C_{56} can not be transformed to a tree by any sequences of local switchings at all.

References

- P. J. Cameron, J. M. Goethals, J. J. Seidel and E. E. Shult Line graphs, root systems, and Elliptic geometry, J. Algebra, 43(1976), 305-327.
- [2] D. M. Cvetkovic, M. Doob, I. Gutman and A. Torgasev, Recent results in the theory of graph spectra, Annals of Discrete Mathematics, 36(1991), North-Holand, Amsterdam.
- [3] P. J. Cameron, J. J. Seidel and S. V. Tsaranov, Signed Graphs, Root lattices, and Coxeter groups, J. Algebra, 164(1994), 173-209.
- [4] T. Ishihara, Signed graphs associated with the lattice A_n , J. Math. Univ. Tokushima, **36**(2002), 1-6.
- [5] T. Ishihara, Local switiching of signed Fushimi tree (in preparation).