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Abstract

An appropriate general version of the kernel theorem of L. Schwartz
is formulated for Fourier hyperfunctions and a direct functional an-
alytic proof is presented.
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Introduction

L. Schwartz’ kernel theorem has found a wide range of applications in Math-
ematics, Applied Mathematics and Mathematical Physics. Though it is a rela-
tively abstract result in the theory of generalized functions it seems to have been
conceived from the beginning with concrete applications in mind (see Schwartz’
talk at the ICM 1950 [18]). Naturally this result has been extended in vari-
ous directions (for instance [5, 1, 4, 3]). Soon, the abstract core of this result
has been formulated as the so-called abstract kernel theorem in the context of
nuclear spaces (see [17]). The kernel theorem has played an important role in

(standard) relativistic quantum field theory (see [21, 19, 9, 8]).
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Let G; be an open nonempty subset of R™ for i = 1,2 and denote by D(G;)
the standard Schwartz space of C*°-functions with compact support in G;. Then
the kernel theorem of L. Schwartz states that every separately continuous bilin-
ear form b on D(G;) x D(G2) comes from a unique distribution T on G; x Ga,
i.e., there is a unique T' € D(G; x G2)’ such that

b(fi, f2) =T(f1 ® f2) Vfi € D(G;), i =1,2.

Applied to the present case the abstract kernel theorem guarantees that there
is a unique T € (D(G1)®,D(G2))’ satisfying the above identity. The proof of
Schwartz’ kernel theorem then requires in addition to identify the completion
of the projective tensor product of D(G1) and D(G2) as D(G1 X G3).

Another proof has been given by L. Hérmander [7]. This proof is based on a
clever ’ansatz’ and various somewhat tricky estimates. Later S. Y. Chung et al
([2]) have extended this version of the proof to cover the case of Fourier hyper-
functions on:R™ relying on Fourier transformation for Fourier hyperfunctions
and another clever ’ansatz’.

The space of Sato’s hyperfunctions is much larger than the space of Schwartz
distributions (for instance, hyperfunctions and Fourier hyperfunctions can be of
“infinite order” locally, for this and other basic facts see the book of Kaneko,
[10]). Thus it was not clear whether the kernel theorem can be expected to hold
for hyperfunctions too.

Apparently the first version of the kernel theorem for Fourier hyperfunctions
is due to S. Nagamachi and N. Mugibayashi, [15]. Roughly, their indirect proof
goes as follows: At first it is shown that the test function space O(D") of Fourier
hyperfunctions is isomorphic to the space S} (R™) of Gelfand of type S (see [6]).
Then some results of B. S. Mityagin [12] are used: a) S}(R") is a nuclear space;
b) ®"SI(R) is dense in S} (R"); ¢) ®"SIH(R) = S}(R"). Finally they proceed as
indicated above.

If we denote by B(Q(DF), O(D™)) the space of separately continuous bi-
linear forms on O(D¥) x Q(Dm) the result of Nagamachi and Muglbayashl can

be formulated as
B(Q(D*), o(D™)) = O(D*t™)'".

However, in our recent investigations in hyperfunction quantum field theory we
need a result of the form

B(O(K),O(L)) = O(K x L)’

for general closed subsets K C D", respectively L C D™. And it is this version
of the kernel theorem which we intend to prove in this note.

There are other classes of generalized functions for which the kernel theorem
is known to hold, see for instance reference [11].

Our functional analytic strategy of proof is straight forward and direct. First
we collect the necessary properties of the relevant test function spaces of Fourier
hyperfunctlons for the abstract kernel theorem. Then we 1dent1fy the completion
of their projective tensor product in the correct way.
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1. Topological preliminaries

The detailed definitions of the various spaces used here can be found in [10]
and [15, 16]. Sufficient details about the topologies of these spaces are given
below in proof of Lemma, 1.2.

Lemma 1.1 Let K be a closed subset of D* and L a closed subset of D™,
Then E = O(K) ® O(L) is dense in O(K x L).

Proof. According to Theorem 2.7 of [16] the space O(D*) is (sequentially)
dense in the space Q(K) and according to Proposition 3.5 of [15] the tensor

product O(D*) ® O(D™) is dense in the space O(D*+™). Observe that K x L

is not a subset of D*T™ but of D* x D™ # D**™. Nevertheless one can prove
(see the proof of Theorem IV.1 of [14])

O(DH™) = O(DF x D™).

It follows that O(DF*™) is dense in O(K x L), in the same way as in Theorem
2.7 of [16]. Thus we have the following dense inclusions

O(D*) ® O(D™) € O(DM™) C O(K x L)

O(D*) ® O(D™) € O(K) ® O(L).

And fhe stéitement of the lemma follows. O

Lemma 1.2 Let K be a cZosed subset of D and L a closed subset of D™.
Then O(K x L) induces on E = O(K) @ O(L) a topology T which is finer than
the e-topology.

Proof. Recall
O(K) = ind lim OC(UJ)

]-—)00
with a fun’damental SeQUénce of neighborhoods U i of KcC D* and similarly

o) = ind lim (9 ;)

j—)OO

with a fundamental sequence of nelghborhoods V of L C Dm Hence a nelgh—
borhood of zero in O(K) is of the form U = ach(U U;) with nelghborhoods

of zero U; in the Banach space O;(U]) which can be assumed to be given as
follows:

Uij={g¢€ 0?((71);\1)1'(9) <rj}
for some r; > 0 where the norms p; are defined by

1 .
pi(g) = sup eilF|g(2)|.
UjﬁCk
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The absolutely convex hull of a set M is denote by ach(M).
Similarly a neighborhood of zero V' in Q(L) is of the form V' = ach({J;2, Vj)

with neighborhoods of zero V; in the Banach space O%(V;) given by
Vi = {h € O;(Vj); g;(h) < p;}
for some p; > 0 where the norms g¢; are defined by
1
gj(h) = sup el|n(Q)].
v;ncm
Then a neighborhood of zero in E for the topology ¢ is of the form

H={f€E; qy(f) <} 1)

for some § > 0, some neighborhoods of zero U in O(K), respectively V in O(L)
where

quv(f) = sup sup (T®S, f)|. (2)
TEeU SeVe

U?, respectively V? denote the absolute polar of U in O(K)', respectifrely of V
in O(L)'.
Neighborhoods of zero W in

O(K x L) =ind lim O5(U; x V;)

J—00

are specified similarly

W = ach([j W;) (3)
Wi = {f€OU; x V) IIfll; < oj} (4)

for some o; > 0 and norms [|-[|; given by

1 4
Ifl; = sup  sup es(FHEDIf(z ). (5)
zeU;NCk ¢eVv;NC™

- The topology 7 on E is finer than the topology ¢ if for every neighborhood of
zero H for ¢ there is a neighborhood of zero W as above such that WNE C H
or, since H is absolutely convex,

anECHa J=12,---. (6)
For fe ENW; ,T € U’ and S € V° an elementary calculation shows

In order to estimate the right hand side we note first that (Sy, f(-,y)) belongs
to the space O(K) and therefore

(T, {Sy, f (@, yIN < p;(T)p;((Sy, £ (-, 1))
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According to the definitions of the norms involved we can continue this estimate
as follows:

pi(Sy, F(,9)) = sup e1((S,, f(z,))]

U;NCk

< sup e71lgi(S) sup e51¢|f(z,¢)]
fjjﬂck ‘.'/jﬂCm

| = S
and thus, for j =1,2,...,

(T ® S, ) < pi(T)g;(S) £l (8)

where the prime indicates the dual norm. Using standard properties of polar sets
and the explicit definitions of the neighborhoods U and Uj; respectively V and
V; one deduces that T € U°, respectively S € V°, implies T € Uy respectively
S e VP forallj =1,2,.... According to the definitions of the dual norm and
the absolute polar set we get

1 1
pi(T) = —sup{(T,9)| g € Vj} < —
Tj Tj

and similarly for S € V?: ¢j(S) < pl—j . It follows

1
quv(f) < rps £l - 9)

Now, given the § > 0 in the definition of the neighborhood H, choose oj > 0
such that o; < rp;0. Then, for all f € W; N E we know qu v (f) < J, hence
W; N E C H and we conclude. O

Proposition 1.3 Let K be a closed subset of D* and L a closed subset of
D™. Then :
O(K)&x,:O(L) = O(K x L)

where - - - @y ¢ - - - denotes the completion of the tensor product E = O(K)®O(L)
with respect to the projective tensor product topology m, respectively with respect
to the tensor product topology €.

Proof. Since the projective topology 7 is the finest locally convex topology
on E we know € < 7 and 7 < 7 where 7 denotes the relative topology on E
induced by the topology of O(K x L). Lemma 2.2 shows that ¢ < 7. This then
implies for the completions of the space E with respect to these three topologies

the following relation _ _ -
E[r] C E[r] C E[g].

By Proposition 2.12 of [13] the spaces O(K) and O(L) are nuclear, hence The-
orem 50.1 of [20] implies that the completions of the tensor product E with
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respect to the topologies m and ¢ are equal, i.e., in our notation E[r] = El¢].
Now Lemma, 2.1 implies E[r] = O(K x L) and thus we conclude. O

2. The kernel theorem for Fourier hyperfunctions

Theorem 2.1 Let K be a closed subset of D¥ and L a closed subset of D™.
Then, for every separately continuous bilinear form B on G = O(K) x O(L)
there is a unique Fourier hyperfunction Fg on K x L, i.e. Fg € O(K x L)'
such that for all (g,h) € G

B(g,h) = Fp(g ® h).

Proof. Since O(K) and O(L) are DFS-spaces (see [15]) they are strong du-
als of reflexive Fréchet spaces and thus Theorem 41.1 of [20] implies that every
separately continuous bilinear form B on G is continuous. Furthermore, the
spaces Q(K) and Q(L) are nuclear according to Proposition 2.12 of [13]. Hence
the abstract kernel theorem (Theorem 7.4.3 of Pietsch [17]) applies and proves
that every such bilinear form B is actually nuclear, i.e., there is an equicontin-
uous sequence (T;) in O(K)', an equicontinuous sequence (S;) in O(L)', and a
sequence (X;) of real numbers with 372, |A;| < oo such that for all (9,h) € G

B(g,h) = 3 (T}, 0)(S5,B).

j=1
When we wrife the right hand side of this equation in the form
Y (T ® 55)(g®h)
j=1
we see immediately that B is actually given by the continuous linear form
N _
Fp =Y MNT;®S;
Jj=1 :

on (’)(K )®,T(9(L) (compare Theorem 43.4 of [20]) Clearly FB extends to a con-
tinuous linear form on the completlon of this space which is equal to (’)(K X L)
according to Proposition 2.3. Thus we conclude. m

The general form of the kernel theorem for Fourier hyperfunctlons is now a
straight forward consequence of Theorem 2.1.
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Theorem 2.2 Let K; be a closed subset of D¥ fori=1,2,... ,IN. Then,
for every separately continuous N-linear form B on G = O(K1) x --- x Q(Ky)
there is a unique Fourier hyperfunction Fg on Ky x---x Ky, i.e., Fg € O(K; x
<+ X Kn)' such that for all (g1,...,9n) € G

B(gi,...,gn) =Fp(g1 ® - - Q gn).

Proof. On the basis of Theorem 3.1 a straight forward proof of induction
with respect to the number N of arguments establishes this general form. O
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