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Abstract

In our previous paper [6], we have investigated a certain family of
real bicyclic biquadratic fields and proved that they have an explicit
fundamental sytem of units assuming the ABC conjecture. In this
paper we will generalize some results of [6] and state a conjecture
on the fundamental units of a certain family of real quadratic fields
and give numerical examples which support this conjecture.
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Introduction

The purpose of this paper is to generalize some of the results obtained in
[6] and to give a conjecture on the fundamental units of a certain family of
real quadratic fields related to Fibonacci numbers. We shall also give several
numerical examples which support this conjecture.

Let k; be a fixed real quadratic field and let

m=(M+VM2—4e)/2 > 1

be a fixed unit of k; with norm N7, = e, where M is a positive integer. Let 71
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be the field conjugate of 71 and put

I ) =7 _ 77?_7_7?
gn(M,e) =y +7¢, hn(Mae) = —\/-J\ﬁ'

Then the sequences {g, (M, €)}nen and {h,(M,e)}n,en are the non-degenerate
binary recurrence sequences stisfying

gn+2(M) 8) = Mgn+1(M’ 8) - egn(M’ e)a

Pnsa(M,€) = Mhy,1(M,e€) — ehy (M, e),

with initial terms go(M,e) = 2,91(M,e) = M and ho(M,e) = 0,h1(M,e) = 1.
If there is no danger of confusion, we simply write g, (M, €) and hy,(M,e) for gp
and h,, respectively.

Firstly we shall remind the statement of the ABC conjecture and reproduce
several propositions of [6] which we will need here. '

The ABC conjecture. For any € > 0, there exists a constant Ko > 0
(depending only on €) such that if a,b,c are non-zero relatively prime integers
with a + b+ ¢ =0, then

max{|al, |b], |c|} < Kor'™e,
where 7 = rad(abc) = [],45.P (P prime integer).

We note that any positive integer m can be written in the form m =
s(m)g?(m), where s(m) is the squarefree part of m. The following proposi-
tion is a corollary of a more general result of P. Ribenboim and G. Walsh [9,

Theorem 2]:

Proposition 1. (A‘ssumz'ng the ABC conjecture).
For any e > 0,
q(hn) <h; and q(gn) <9,

except for finitely many indices n.

Since hn = 8(hn)q?(hs), we have g(hy) < RS if and only if (g(h,))Y/*~2 <
s(hy). From the fact 1/e — 2 — oo as € — +0, one sees that for any m > 0,

(1) q" (hn) < 5(hn)

except for finitely many indices n under the ABC conjecture. Taking m = 2
in (1), we have h, = s(h,,)g?(hs) < $%(hy). The fact that h, — 00 as n — 00
implies the following proposition.
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Proposition 2. (Assuming the ABC conjecture).

For any constant C > 0,
C < s(hy)

except for finitely many indices n.

One can easily verify that for any positive integers  and y,

(2) s(zy) = s(w)s(y)/(s(m),s(y))2 2 3(3’)3(?4)/(:”’9)2’
a(zy) = 9(z)a(¥)(5(z),8(y)) < a(@)a(¥)(z,Y)-

Combining the fact hgn 4+1—1 = haphoni2 with (h2n, han+2) = M and Propo-
sition 2, we have that for any m > 0,

3(h2n)s(h2n+2) 2 M2m+4

except for finitely many indices n. The inequality (1) imlplies s(h25) > ¢°™(h2n)
and $(h2nt2) = ¢*™(han+2) except for finitely many indices n. Using (2), we
have '

s*(h3p41 = 1) 8% (hanhan+2)

8%(han)s%(han+2)/M*

g% (h2n) ¢®™ (hon+2)S(hon)s(hony2) / M*
(M(I(h2n)Q(h2n+2))2m8(h2n) $(hant2)/M¥m+4
@*™ (hanhant2)

qzm(hghﬂ —1).
Thus assuming the ABC conjec¢ture, we have for any m > 0,
S(hgn-!-l - 1) 2 qm(hgn—&-l - 1)

except for finitely many indices n. ' -
Similarly the fact g2,,; — M? = (M2 £4)(h3,,; — 1) implies that for any
m > 0,

VAR AV AVAR|!

s((gan+1/M)2 = 1) > g™ ((g2n+1/M)? — 1)

except for finitely many indices n.
For the special case m = 2, we have

s(h%n+1 —1) 2 q2(h%n+l — 1),
s((g2n+1/M)2—1) > ¢*((92n+1/M)? = 1),

except for finitely many indices . From the results of [5], we know that the
units 72 and 73 are the odd powers of the fundamental units except for finitely
many indices. Hence suppose

2 = ((t+ V12 _4)/2)21+1 for 1 >1.
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Then h3,,; — 1 = A3, ,(t)(t? — 4)/4 implies

P(h3pr —1) > ((h21+1()/2)2 > ((h (t)/Q)
Y RN
> s(t2-4) 2> 3(h2n+1 1).

Similarly we have the inequality ¢%((gan+1/M)? —1) > s({gon+1/M)% —1).
Combining these inequalities, we have the following proposition, which is The-
orem 1 of our previous paper [6].

Proposition 3 (Assuming the ABC conjecture).

N2 = hany1 + \/h%nﬂ -1
(resp- m3 = gont+1/M + \/(g2n+1/M)? — 1)

is the fundamental unit of the real quadratic field Q(/h%,., — 1)
(resp. Q(4/92, +1 — M?)), except for finitely many indices n.

Now we shall need the following elementary lemma.

Lemma 1. For any n € N, we have

2 -1
h,n - en = hn—-l . hn+1.

Proof. Firstly one can easily verify h2 —e® =1 —-1=0=0-M = ho - hy
and _
h% —e=M?>—e=1- (M2 —e) = hy - hg, that is, the formula is true for the
cases n =1 and n = 2.

Assume the formula is true for n — 1, that is, hfb_l —e"2="h,_o-h,.
Then we have

hZ ., —e" (Mhy, — ehp_1)? — " '

M2h2 — 9Mehnhy_y + (h2_, — €"2)
Mzh2 2Mehph,_1 + h, hn,.
hn(M(Mhy, — ehn1) — e(Mhy_1 — ehn_2))
b M1 — €hn)

hy, - hn+2a

which completes the proof.
Combining these, we shall generalize some part of Proposition 3 as follows.

Theorem. (Assuming the ABC conjecture).
For any n > 2, no = hy + \/hZ —em~1 is the fundamental unit of the real
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quadratic field Q(/h2 — en=1) except for finitely many indices n.

Proof. Because of Proposition 3, we may consider only the case n = 2l. From
Lemma 1, we see h%{_eﬂ—l = h21_1h2l+1 with (h2l—1, h2l+1) = (h2l_1, h21_3) =
-++ = (h3,h1) = 1. Thus we have

q(hd — e71) = g(ha-1)a(hat1)

and
s(h3; — €87 1) = s(ha—1)s(hai+1)-

From (2), we have
(G — 1) > (R — ')

except for finitely many indices n, which completes the proof.

A conjecture and some numerical edidence

We shall write the results of Theorem in another statement as follows:

Assuming the ABC conjecture, for any M there exists a positive integer

N(M,e) such that
hn + /B2 + €1

is the fundamental unit of the real quadratic fields Q(\/h2 — e"~1) for any n >
N(M,e).

It is worth noting that since the statement of the ABC conjecture is inef-
fective, the results of Proposition 3 and Theorem are also ineffective. So it is
difficult to determine N(M,e) in general. But in [11], G. Walsh proved the
following result using Cohn’s results [3]:

‘Propbsition 4. For the case M = 2, e = —1 and n > 2, the unit

ha(2,~1) + VA2 (2,-1) + (-1)

is the fundamental unit of Q(1/h2(2,—1) + (—1)") except forn =2 and n = 6.
For n = 2 and 6, h,(2,—1) + \/h2(2,—1) + (—1)" is the third power of the
fundamental unit.

Remark. From the above proposition, we know N(2,—1) = 7. Let F, be
the nth usual Fibonacci number. In [2], Y.J. Choie claimed that N(1,—1) = 2.
However she used the fact that F2 + (—1)" is squarefree, but it is not always
of the case. Hence all her results on fundamental units and class numbers are
not proved for the real quadratic fields though some results are true for some
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orders of the real quadratic fields.

Thus, except for the case N(2,—1) we don’t know any N(M,e), but we
would like to state the following conjecture:

Conjecture. Foranyn > 2, F, + \‘/Fn + (—1)™ is the fundamental unit of
the real quadratic fields Q(/F2% + (—=1)").

Here we shall give several numerical data which support the above conjec-
ture. We have checked the conjecture holds for any n, 2 < n < 701 with two
different methods. We verified s(F,) > ¢ %(F;,) for all n, 13 < n < 702 using the
tables of [1] and [12]. From the proof of Proposition 3 and Theorem, it means
that we have verified F), + \/F? + (—1)" is the fundamental unit for any 7,
14 < n <701. We have stopped at n = 702 because Frg3 is the first Fibonacci
number which is not completely factorized so far. We shall quote here the data
to see the cases n =700 and 701:

F(699) = 2-139801-13953397457- 245701220509 25047390419633 6314840895836
93149557829547141 - 35655216831967549432456554975771249921292070066844
166830

F(700) =3-52-11-13-29-41-71-101- 151 - 281 - 401 - 701 - 911 - 2801
- 3001 - 28001 - 54601 - 141961 - 56701 - 57601 - 7517651 - 51636551 - 12317523121
-2487737663570611401 - 1723120373020118908301 - 7358192362316341243805801

F(701) = 42061-96737-242836213-274479353-8302568897206778357-526094433
9485659754393 - 119475615424178586033394749749743625883464495972432550
14341633483530449828472737

F(702) =23-17-19-53-79-109- 233 -521 - 859 - 5779 - 29717 - 135721 - 2623373
-8023861-65597689-39589685693-1052645985555841-657903216797404903717440
98034257 - 21104087776648187459376854003284008649

We also verified that F,, + \/F2 + ( )" is actually the fundamental unit

of the real quadratic field Q({/F? + ( Q(\/s(F2 + (=1)™)) for any n,
2 < n < 225 by using UBASICS86.
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