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Abstract

The Weinstein generating function is introduced in order to rep-
resent a symplectic mapping, and it is shown that the representa-
tion is closely related to a certain symplectic Runge-Kutta method.
Furthermore, the symmetry property is characterized by means of
the generating function, and in relation to the symmetry, several

stabilities intrinsic to linearly symplectic Runge-Kutta methods are
studied. '
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Introduction

A frequent use has been made of symplectic integrators (abbreviated to
SIA’s) in such fields as nuclear physics, celestial mechanics and so on. Since
Sanz-Serna showed that certain Runge-Kutta (abbreviated to RK) methods
give symplectic mappings when integrating a Hamiltonian system [7], many as-
pects of symplectic RK methods have been studied. It is widely known that a
symplectic mapping is expressed locally in terms of a generating function, and
symplectic RK methods are studied from this viewpoint, too. Almost any sym-
plectic mapping can be represented by use of another kind of generating function
discovered by Weinstein [9], though it is rather unfamiliar. This representation
is motiviated by construction of a nonlinearlization of Cayley transformation in
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linear algebra, and the transformation was tried to use for numerical integration
of linear Hamiltonian systems in cinjunction with Padé approximation [3]. One
purpose of this paper is to study a numerical use of the representation.

On the other hand, attention is paid to a time-reversible method which may
be considered as an inheritance of properties intrinsic to a flow of a dynami-
cal system. In RK methods, symmetric ones are familiar in that they possess
reversibility, and the methods not only possess a few excellent properties on
stabilities but also are related to linear symplecticity. The second purpose of
this paper is show the reversible methods are linearly symplectic, that is, they
give symplectic mappings when the systems to integrate are confined to linear
Hamiltonian systems with constant coeffients.

The contents of this paper are arranged as follows. The next section is de-
voted to introduction of the representation of a symplectic mapping in terms
of a Weinstein generating function, and the reversibility of an SIA is consid-
ered related to the function. Section 2 deals with RK methods subject to
R(z)R(—z) = 1 which is a necessary and sufficient condition to be linearly
symplectic. Furthermore, our attention is paid to algebraiccaly stable and sym-
metric methods from a viewpoint of symplecticity. A few remarks are mentioned
in the final section.

1. Weinstein generating function and reversibil-
ity |

In this section, we review the representation of a symplectic mapping by
use of the Weinstein generating function, and study its relation with numerical
integration.

We start by designating a conservative Hamiltonian system with N degrees
of freedom expressed as

(ji—j = J-grad H(z), where J = (—OI é) . (1)
Here, = is an R?N-valued variable. We assume that the phase space D is an
Euclidean space R?" or its subdomain, and the functions and mappings on D
are differentiable up to a necessary order throughout the paper. Furthermore,
the symbols n and h are used to represent the step number and the step size,
respectively. ' :

Now, let us review Cayley transformation wellknown in linear algebra, for
the representation which we are concerned with can be considered as its non-
linearlization in a sense.

Definition 1. We define two sets G_; and g, of 2N -dimensional matrices and
two mappings 0 : g1 — G_1 and 7 : G_1 — ¢; as follows.

G_1 = {P € Sp(2N, R)| det(I + P) # 0},
91 =1{Q € sp(2N, B)| det(I - Q) #0},
@ =1I+QU-Q7", 7(P)=—(I-P)I+P) (2)
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The following theorem is obvious, and its proof is omitted.

Theorem 1. Both o and T are bijections, and the one is the inverse of the
other.

We remark that the above theorem holds even if Sp(2N, R) and sp(2N, R)
in Definition 1 are replaced with any linear Lie group composed of all matrices
P subject to PTKP = K, K being an arbitrary nonsingular matrix, and its Lie
algebra, respectively. Also, we refer to a pioneering work where o(Q) is tried
to utilize for integration of a linear Hamiltonian system in conjunction with the
Padé approximation [3].

Let us think of a symplectic mapping on D

y = ¢(z). (3)

If we denote by P the Jacobian matrix d¢/dz, then P belongs to Sp(2N, R).
We put :
z=(¢(z) +2)/2, (4)

and assume that P does not have an eigenvalue -1. Then, = becomes a function
of z at least locally, and we can introduce an R?"-valued function T of z by

T(z). — ¢(.’L'(Z))2-— .'L‘(Z) (5)

Thereby, the mapping (3) is represented in such a manner as
y=2+4+T(z), z=2z-T(z), (6)

z being an intermediate parameter defined by (4). If @ means the Jacobian
matrix 8T/8z, it follows from P € G_; that Q = 7(P) and Q € g;.

Theorem 2. If the Jacobian matriz of a symplectic mapping given by (3) does
not have an eigenvalue -1, the mapping is ezpressed in terms of a function S as
y=z+J-grad S(z), z=z-J- grad S(z) (7a)

at least locally, where z 1s an intermediate parameter.

Proof. Since Q € g;, is satisfied the integrability condition for T in (5) to be
expressed as J - grad S.

Definition 2. The function S in (7a) i3 called the Weinstein generating func-
tion. '

As is seen from this theorem, almost every symplectic mapping can be rep-
resented in the form (7a). The representation itself can be used as a numerical
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scheme to integrate (1) by putting y = zp41 and z = z,. For the numerical
use, the consistency is ensured, if and only if

S(z) = gH(z) +o(h) (7b)

holds up to a difference of a constant. Since the Jacobian matrix of an arbitrary
SIA is near to the identity matrix when & > 0 is suffciently small, every SIA
can be expressed as (7) in principle. In particular, our attention is concentrated
on the case that

grad S 1is odd with resepct to h. (8)
Concerning (7), we define two mappings indicating the step size explicitly.
CgrizTe Y, Yppizeby.

It is easy to prove that (8) leads to (9) and the resulting equation comes to (10),
where

d)h = 1/)h/2 ° ¢:i/2’ (9)
b-n = o5t (10)

Hereafter, a scheme ¢ is called reversible if the property (10) holds good for
an arbitrary small A > 0. We can see immediately that the property (8) follows
from the reversibility, and accordingly, we have

Theorem 3. With resepct to an SIA ¢y, the following three assertions are
equivalent to one another.

1. An SIA is reversible.

2. grad S is odd with regard to h, S denoting the Weinstein generating func-
tion.

3. Pn 13 a composition of a forward scheme and its backward version.

This theorem is a characeristic of reversibility in terms of the Weinstein
generating function. With resepect to (9), it is often the case that though v}, is
a scheme of a low order, ¢, is of a higher order, and further 1, is not necessarily
determined from ¢; uniquely. The simplest scheme among those given by (7)
is the one obtained by S = h - H/2, which is nothing but the implicit midpoint
scheme, that is, the one-stage Gauss-Legendre method.

2. RK methods subject to R(z)R(-z)=1 and sym-
plecticity

This section deals with RK methods subject to R(z)R(—z) = 1 and their
symplectic properties on the basis of reversibility.
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As is well known, the whole of RK methods forms a group with composition
of mappings being the product operation. If ¥, stands for a mapping obtained
by applying an irreducible RK method 'b‘% (Stetter tableau) to a system of
ordinary differential equations, the mapping /3 0 z/;___,ll /218 realized by a single

(—A+ebT)/2 0O
RK method ebT/2 A/2 . Here, e means the vector (1, ---, 1)T and the
b7 /2 o7 /2
resulting Stetter tableau may happen to be reducible. On the contrary, an RK
method is called symmetric [8], if it is reversible when applied to any arbitrary
ordinary differential equation. It is already known that a symmetric RK method
is decomposable as in (9) by means of RK methods. The following theorem is
a slight modification of those proposed in [8, §3.2].

Theorem 4. An irreducible RK method given by @ is symmetric, if and only
if there is a permutation matriz P such that

A+ PAP ' =ebT, Pb=b. (11)

These equations are reexpressed in terms of elements as ai; + aq(i)o(j) = bj =
bo(j), where o denotes the permutation. Under (11), 1y in (9) is realized by an

RK method determined by Q%—‘T‘l’i.

Let us illustrate two-stage symmetric RK methods.

Example 1 (Two-stage symmetric RK methods). Put P = (9{), and
all symmiteric RK methods subject to B(1) condition turn out to form a two-
parameter family given by

1/4+a 1/4-0

1/4+p8 1/4—a (a and (8 are arb. parameters). (12)
1/2 1/2
Each method is of order two or four, whereas ¥, in Theorem 4 is always of order
—2a 28
one and 18 given by —_5.3L/a With resepect to stabilities, the above method 1s
1/2 1/2
A-stable when |a| < |B] ; algebraically stable when a = 0.
Furthermore, the family contains such known methods as
1.a=0, B=+3/6 Gauss-Legendre method.
2.a=-1/4, B=1/4 Lobatto IITA method.
. a=1/4, p=1/4 Lobatto IIIB method.
{a+p=1/2 Symmetric Lobatto method.

Now, we intend to consider a relation between symmetric methods and sim-
plecticity. Sanz-Serna proved that M = 0 is a condition for an RK method to
give a symplectic mapping when integrating an arbitrary Hamiltonian system
[7]. However, the symmetry property treated now is independent of M = 0
and a symmetric RK method does not always yield a symplectic mapping in
numerical integration of a nonlinear Hamiltonian system.
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Definition 3. An RK method is called linearly symplectic, if its stability func-
tion R(z) satisfies ' '

R(z)R(—=z) = 1. (13)

Equation (13) is a necessary and sufficient condition that an RK method
gives a linearly symplectic mapping when applied to any linear Hamiltonian
system with constant coefficients [4]. A symmetric RK method does satisfy
(13), though M does not necessarily vanish [5]. Of course, any RK method
subject to M = 0 is linearly symplectic. In Fig.1, we show the relations among
the three kinds of RK methods.

symmetric

N

linearly symplectic

Figure 1: Relations among three kinds of RK methods

The two subsets are true ones, and there is no inclusion relation between them.
As for their dynamical properties, we can enumerate interesting items.

1. linearly symplectic RK method.
(a) It gives a linearly symplectic mapping for any linear Hamiltonian
system.
(b) It is reversible for any linear system with constant coefficients.
(c) It inherits at most quadratic first integrals admitted by any linear
system with constant coefficients [6].
2. Symmetric RK method.
(a) It is reversible for any system of ordinary differential equations.

3. RK method subject to M = 0.

(a) It gives a symplectic mapping for every Hamiltonian system.

(b) It inherits at most quadratic first integrals admitted by any system
of ordinary differential equations [1].

The three properties intrinsic to linearly symplectic methods are propagated
separately according as the systems to integrate are enlarged to nonlinear ones.
We are allowed to mention that symmetric RK methods subject to M = 0, the
intersection of the two subsets, inherit the original three properties. In the case
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1/4 .1/4-8
of two-stage methods, the one-parameter family 1/4+8 1/4 is in comformity,
/2 152

where f is an arbitrary constant. The subsequent theorem fits this family.

Theorem 5. An algebraically stable and symmetric RK method satisfies M =
0.

Proof. Since PMP~! = —M follows from (11), the eigenvalues of M come in
individual pairs {\, —A}. Therefore, in order that M is non-negative definite,
M must vanish.

As is seen in Example 1, though every two-stage RK method which is sym-
metric and subject to M = 0 is algebraically stable, algebraic stability is not
possessed automatically when the stage number exceeds two. However, for each
fixed stage number, the whole of algebraically stable and symmetric methods
forms a family including the Gauss-Legendre method, and there exist methods
with tractable parameters in the family.

In the remainder, we intend to study a few excellent features intrinsic to (lin-
ear) symplectic RK methods. Among the methods satisfying (13), our attention
should be paid to those such that

R(z) has no pole in the left-half plane. (14)
According to [5], the conditions of (13) and (14) lead to the followings:
When Re(z) <0, |R(z)| < 1; (15a)
When Re(z) =0, |R(z)| =1; (15b)
When Re(z) >0, |R(z)| > 1. (15¢)

The first property (15a) means A-stablility, and therefore, (14) is necessary and
sufficient for a linearly symplectic method to be A-stable. In addition to A-
stability, the remaining two properties (15b) and (15c) bless the method with
a few good dynamical properties related to integration of an arbitrary linear
system with constant coeffients [5].

1. If a true solution converges to the origin, the corresponding numerical
solution also converges for any h > 0. On the contrary, any divergent
solution is reproduced numerically in a similar manner.

2. For the system of two variables, every elliptic orbit is reproduced accu-
rately for any A > 0.

As far as linear systems are treated, there seems to be little difference be-
tween A-stability and algebraic stability. In dealing wth nonlinear systems,
however, algebraic stability plays an important role. Let us show a dynamical
property possessed by an RK method subject to M = 0 and 6 > 0. In the
sequel, f(z), <,>, and || - || denote J - grad H(z), the Euclidean inner product,
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and the corresponding norm, respectively. Then, for two numerical solutions

{#n} and {z,}, it holds that
NZng1 — $n+1“2 =&, — xn”2 +2hZ b; < f(gz) - (&), 5:‘ &>, (16)

where §; = ,+h 2 a,,f(f,) and §; = a:,,-l—hz a;; f(¢;). Since a Hamiltonian
system preserves volume, it 1s not dissipative at all and the notion of B-stability
is not effective. However, there is a domain D; where the signature of < f(z)—
f(y), £—y > remains constant, z and y belng arbitrary points in D;. Roughly
speaking, Equation (16) mdlcates that in the domain, if two solutions of (1)
come up to each other as time passes, numerical solutions behave in a similar
way, and if the distance of two solutions grows longer, a similar circumstance is
reproduced numerically. This is ensured if all of {, and £; are contained in D,
in a strict sense.

This work was partially supported by Grant-in-Aid for Scientific Research
from the Ministry of Education, Science and Culture.
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