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Abstract

We consider here some conditions on initial value for parabolic prob-
lem which guarantee the blow-up of a solution. Then we study the
behaviour of blow-up solution near blow-up time, that is blow-up pat-
terns.
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Introduction

Given a bounded domain © C R™ with smooth boundary 02, we study the
parabolic problem

0 .
6—1: —Au=f(u) in Qx(0,7T), Ulgq =0, ul,mg = wo(z) (1)

for f(u) = Aoe¥, Ao being a constant. The maximal time for the existence of the
classical solution is denoted by Tiax-
First theorem is stated as follows.

Theorem 1 Let v € C*(Q) satisfy
A%v 4 Ae’ Vo> > (Av)? in Q, Av+Xdo=v=0 on I (2)

and
Qo = {z € Q| -Av(z) < ,\oe”(ﬂ} £ 0. 3)

Then Tmax < +00, provide that ug > v in 2.
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Obviously, above theorem is reduced to the case ug = v. If  is the unit ball
B = {z € R" | |z| < 1}, and uo = v(z) satisfies furthermore that

v = v(|z]), v, <0 (0<r=]z| <1), (4)

we can show that the mapping ¢t € (o, Tmax) — u(z,t) is monotone increasing if
0 < Traz —to € 1 and |z| < 1. Then we have the following theorem. Sharper
blow-up profiles are proven under different assumptions on the initial data ([4],

[1], [2))-

Theorem 2 Under those circumstances, for any K > 0 there ezists some r €
(0,1] satisfying

1
i > — .
tTl’}'rmIix u(z,t) > 2log 2] + K O<|z|<r) (5)
Related to above theorem we have the following.

Theorem 3 If n < 5 and A\¢ > A, there ezists a funtion v(z) satisfying the
assumptions of the previous theorem. Here, A denotes the supremum of A for the
existence of a classical solution of

—Av=2Xe" in Q, v=0 on 0. (6)

Theorems 1, 2, and 3 are proven in sections 2, 3, and 4, respectively.

1 Proof of Theorem 1

First, we note the following.

Lemma 4 Condition (2) implies that
t € (0, Tmax) — J(z,1) non-decreasing (7)
for any z € Q, where J = e %u;.
Proof: u(z,t) is smooth if t > 0 so that
U — Aus = Moeuy

and
Uter — Auge = o€ (uf + use)
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hold. Therefore, I = uy — u? satisfies

Li—AI = Xe*I+2|Vu,|
> Aoe*l in Qx(0,7),

I|5q =0, and

I = Auy+ Me'up — (Au+ /\Oe“)2
= A%u+ Xoe*|Vul* —(Au)?.
From the standard theory, ug = 0 on 0f2 implies
w=us € C([0,T), LP())

for any 1 < p < oo. See [7] or [12].
Let Ap(t) be the realization in X, = LP(Q2) of

—A — etV
with |55 = 0. Then, (2) implies
wo = W,y = Aug+ Aoe™
€ D, = D(A,(t)) = W2P(Q) n W, *(Q).
Therefore, the regularity theorem for the solution w(t) € X, of the evolution

dw
—d—t_ + Ap(t)w =0

is applicable and w € C* ([0,T), X,,) follows. In particular I € C ([0, T), L?(Q2)),
and
I),_ = A%up + Age™ |[Vauo|* — (Aug)”.

Now, the comparison thoerem imply I > 0 in © x (0, T). This means
jt =e ¥ ('ll,“ - U%) 2 0
and (7) has been proven. 0

To prove Theorem 1, suppose that Tpax = +00. Then (17) of our previous
paper [9] holds so that

/ﬂ (o, )gu(e)ds <j. (6> 0),

where ¢1(z) > 0 denoted the L'-normalized first eigenfuntion of —A and j, is an
absolute constant.
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Take € > 0 and set :
Qe ={zeQ|J(z,0)>¢}.

Then, above lemma implies
- ug(x,t) > e“®Y J(z,0) > € (z € Q)
and hence
Ju > / u(z, t)py (z)dz > Et/s; o1(z)dz
for t > 0. This means {2, = ;Z) Therefore, ‘
Q={zeQ|J(z,0) >0}=0,

a contradiction to assumption (3). O

2 Proof of Theorem 2

The following lemma is due to T. Itoh ([8]). See also [11] for the proof.
Lemma 5 Let

v=wv(|z|,t) € C*(B x (0,T))NC (B x[0,T))

satisfy :
v >0, v, <0, —Av<e’ in Bpg x (to,T) (8)

and ,

lim v(0, t) = o0, / e’ (@) dy < 4, 9)

tT B"l
for0<ri <R<1and0<ty<T. Then,

1
o(lel, T) 2 2Nog o +1og2  (Ie] <r2) (10)

holds for some ry € (0,71)

To prove Theorem 2, we put T' = Tjhax for simplicity. The second inequality
of (8) holds for v = u, R = 1, and tg = 0. Therefore, Tyax < +o00 implies the first
relation of (9). This meas that

oo <0 (0<£<T)

is impossible, because then u¢(0,t) < 0 for ¢t € [0,T). Thus, there exists some
to € [0,T) such that J(0,t9) > 0. In use of Lemma 4 we have J > 0 on B X (t0,T)
for some R € (0,1]. Namely,

us > 0, —Au < )\ge” in B, X (tl,T) (11)

holds for r = R and t; = t,.
' We claim the following,.
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Lemma 6 J|,_, — X asttT.

Proof: In the case of n > 3 we can make use of the argument of [3] by (11).
The function w(y, o) defined by

u(z,t) = w (z (T —t)"'/* log ) — log(T — t)

T-t

satisfies )
w— 0 locally unifermly in. y € R"

as 0 = +oo. Furthermore, it satisfies
1 w
wo—Aw=—-2—y-Vw+(/\oe -1)
and hence the parabolic regularity implies that
Wp, wWe — 0 locally uniformly in y € R",

as 0 — +oo where p = |y|. Therefore,

u(0,t) +log(T —t) =w (0,log T:Z:_ t) —0
and

1 - T
(T et t)ut(O, t) = apwp (0, log m)

+we (0, log _TT—_-—t) + Ao

— Ao
as t T T. Then the desired conclusion follows as

J(0,t) = e~uui|t=0
e~ (WOT)Hoe(T=1) (T _ ¢)u,(0,t) —> Ao.

For the case n = 2 we make use of [10] instead. O

To prove Theorem 2, take a constant K > 0. By Lemma 6, we have some
to € [0, T) satsifying J(0,t0) > Ao — 2¢~ %, and hence some ry € (0, R] with

J(w,to)ZAO—C_K (ZBEBrO)
Then Lemma 4 implies

J = ute_” = )\Q + e “Au Z )\0 - E_K,




24 Atsuhito KoHpA and Takashi Suzuki

or equivalently,
—Au < e K in By, x (to,T).

The function v (|z|,t) = u (|z|,t) — K satisfies
-Av<e’ in By, x (to,T).
On the other hand if K > —log Ao we have e*~¥ < X\ge*. Thus,
vy = us = Au+ Age* >0 in B, x (t,T).

Also u(0,t) — 400 implies v(0,t) = +oo. Finally, we can take some r; € (0, 7o)
such that
/ e’ dy < 4.

B,
Now Lemma 5 implies (10) for some 7, € (0,7;] and inequality (5) holds with
r=T9. g

3 Proof of Theorem 3

By virtue of [5], a priori bound of the solution for
~Af=(f+X)? in B, f=0 on OB (12)

holds for 2 < ::fg Namely, when n < 5, for any A > 0 admits a constant C' > 0
~ such that || f|| ., < C for any classical solution f(z) of (12) with 0 < A < A. On the
other hand, when 0 < A < 1, any classical soltion of (12) is unique and linearized
stable. Then, standard argument based on the topological degree gurantees the
existence of a solution for any A > 0.

Obviously, f(z) > 0 in B and [6] assures that this is radial and radially de-

creasing. Now we take v(z) as the solution of

—Av=f+X in B, v=0 on O0B. (13)

Then, properties (2) and (4) are easy to verify.
Finally, if (6) does not have a solution, then no positive super-solution exists.
The function v(z) > 0 cannot be a super solution of (6) and hence (3) follows. O
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