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Abstract

Let £ be a pencil of degree 4 on a curve C and let e;,e3,e3 be
scrolar invariants. We prove that e; < es + es + 2 if and only if
e1, €2, es are scrollar invariants of some tetragonal curve.
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Introduction

Let C be a complete non-singular curve defined over an algebraically closed field
k with char(k) # 2. Assume that C is a tetragonal curve. We assume that C is
non-hyperelliptic of genus g.

Let F; = I'(C,w ® O(—ig})). The modules F; (i = 1,2,---) give a filtration,

FoODFLD---DFyD---
and by the definition of {F;}$2, we have injective maps
Fo/Fy = Fi[Fye - Fp[Fpqq .

By Riemann-Roch’s Theorem, dimFy/F; = 3. We define the scrollar invariants
ei=ei(g93) (i=1,2,3) by

€ = e,-(g}) =#{j € N;dim (FJ"'I/F.‘I') 2i}-1(1=1,2,3).

It is clear that e; > e3 > e3 > 0 and e; + €2+ es = g — 3. We now consider
another description of scrollar invariants. For any i € N U {0}, we define o; =
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dimI'(C, O((i + 1)g})) — dimI'(C, O(ig})). Then we have
e; =min{j;a; >4—-i+1} -1

where 1 < ¢ < 3. This is proved by Riemann-Roch Theorem. Therefore we have
that
dimI'(C,0(g}) =2,

dimI'(C,0(2g}) = 3,
dlmF(C, 0((63 + l)gi) =e3+ 2,
dimI'(C,O0((es +2)g3) = (e3 +3) + 1,

dimI'(C, O((e2 + 1)g3) = (e2 +2) + (e2 — e3),
dmI'(C,O((e2 +2)g;) = (e2 +3) +(e2 —e3 + 1) +1,
dimI(C, O((e1 + 1)g3) = (e1 +2) + (e1 — €3) + (e1 — e2),
dimI'(C,O((e; +2)g;) = (e1 +3)+(e1 —es + 1) + (€3 —ea + 1) + 1,

We know the following result ( see [4] p.4588 Theorem 1 ).

Theorem 1 Let e; > e; > e3 > 0 be integers such that e; +e3 +e3 = g — 3.
Then thete is a 4-gonal curve C = (C, g}) with the scrollar invariants (e, ez, e3)
such that |(e3 + 2)g}| is birationally very ample , if and only if e2 < 2e3 + 2 and
ey < ez +e3+2.

In this paper we shall consider a generalization of this result. The Main result
is the following,.

Theorem 2 (Main Theorem) Let e; > ey > e3 > 0 be integers such that e; +
ez +e3 = g — 3. Then thete is a tetragonal curve C = (C,g}) with the scrollar
invariants (e;, ez, €3), if and only if ey < €3 + €3 + 2.
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1 The Proof of Main Theorem

We use the following result.

Theorem 3 Let C be a tetragonal curve with the scrollar invariants (e, ez, e3).
Let g} be a base point free complete linear system on C. Let ¢ : C — P(I'(C, O((es+
2)g1))) be the morphism defined by |(e3 +2)gi|. If ¢ is not birational onto its sm-
age, then ez # e3, deg(d) = 2 and #(C) i3 a complete non-singular curve of genus
e3 + 1 admitting a g3 with ¢*g3 = g}.

From Theorem 1 and Theorem 3, we may assume C is a two-sheeted cover of a
hyperelliptic curve D of genus e3 + 1 such that e3 # e;. And put 7: C — D be a
double-covering and we put g = 7*gi. Under these assumptions, we prove that
Main Theorem. ‘

We know that 7,O(ng}) = O(ng3) ® O(ng; — E) for some divisor D such that
2E is linearly equivalent to some effective divisor ( see [6] p.326-p.328 ). We now
consider (C, g}) such that g} = 7*g and let ey, €3, e3 be scrollar invariants. Then

dimI'(C,O((es + 2)g:) = (e3 +3) + 1

implies &imI'(D, O((e3 +2)g3 — E) = 0 because 7,0(ngl) = O(ngl) ® O(ng} — E).
And
dimI'(C, O((e2 + 2)g;) = (e2 +3) + (e2 —e3 + 1) + 1

implies dimI'(D,O((e; + 2)g3 — E) = 1. Therefore we have an effective divisor
T = Py +--- + P; such that «(P;) ¢ {P,...,P}, for every ¢ = 1,...,t and
(e2 +2)g3 — T ~ E where ¢ is a hyperelliptic involution on D. As 2E is linearly
equivalent to a ramification divisor of ¢ ( see [6] p.326-p.328 ), so we have

2g - 2 = 2(2(63 + 1) - 2) + 2(2(82 + 2) - t).

Hence we have
t=—e1+ex+e3+2

because e; +e; +e3 = g—3. Ast > 0, we have ¢; < ez + e3 +2. Now
let e, > e; > e3 > 0 be integers such that e; + e; + e3 = ¢ — 3 and assume
that e; < ez + e3 + 2. Let D be a hyperelliptic curve of genus e3 + 1. Let
t = —e; + €2 + e3 + 2. Take points P ..., P, € D such that «(P;) ¢ {P,..., P},
for every i = 1,...,t. Let T = P +---+ P; and E = (e3 + 2)g3 — T. Let
take an effective divisor R such that R ~ 2E. Because 2E ~ 2(ez + 2)g1 — 2T,
S0 €2 + 2 > 2t = 2(—e; + €2 + e3 + 2) implies 2F is linearly equivalent to some
effective dividor R. Therefore an isomorphism O(—2E) 2 O(~R) — O induces
an algebra structure on O @ O(—E). Let C = Spec(O & O(—E)). Then Ris a
ramification divisor of m : C — D (see [6] p.326-p.328 ), therefore C is of genus g.
Let g4 = 7*(g3). Then it is clear that scrolar invariants of g} are e;, ez, e3.

Q.E.D.
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