On Some Numerical Relations of tetragonal Linear Systems

By

Akira Ohbuchi

Department of Mathematical Sciences, Faculty of Integrated Arts and Sciences, The University of Tokushima, 1-1, Minamijosanjima-cho, Tokushima 770, JAPAN email address: ohbuchi@ias.tokushima-u.ac.jp (Recieved September 14, 1998)

Abstract

Let \mathcal{L} be a pencil of degree 4 on a curve C and let e_1, e_2, e_3 be scrolar invariants. We prove that $e_1 \leq e_2 + e_3 + 2$ if and only if e_1, e_2, e_3 are scrollar invariants of some tetragonal curve.

1991 Mathematics Subject Classification. Primary 14H45

Introduction

Let C be a complete non-singular curve defined over an algebraically closed field k with $char(k) \neq 2$. Assume that C is a tetragonal curve. We assume that C is non-hyperelliptic of genus g.

Let $F_i = \Gamma(C, \omega \otimes \mathcal{O}(-ig_4^1))$. The modules F_i $(i = 1, 2, \cdots)$ give a filtration,

$$F_0 \supset F_1 \supset \cdots \supset F_n \supset \cdots$$

and by the definition of $\{F_i\}_{i=0}^{\infty}$ we have injective maps

$$F_0/F_1 \hookrightarrow F_1/F_2 \hookrightarrow \cdots \hookrightarrow F_n/F_{n+1} \hookrightarrow \cdots$$

By Riemann-Roch's Theorem, $\dim F_0/F_1 = 3$. We define the scrollar invariants $e_i = e_i(g_4^1)$ (i = 1, 2, 3) by

$$e_i = e_i(g_d^1) = \#\{j \in \mathbb{N}; dim(F_{j-1}/F_j) \ge i\} - 1 \ (i = 1, 2, 3).$$

It is clear that $e_1 \ge e_2 \ge e_3 \ge 0$ and $e_1 + e_2 + e_3 = g - 3$. We now consider another description of scrollar invariants. For any $i \in \mathbb{N} \cup \{0\}$, we define $\alpha_i = 0$

$$\dim \Gamma(C,\mathcal{O}((i+1)g_4^1))-\dim \Gamma(C,\mathcal{O}(ig_4^1)).$$
 Then we have
$$e_i=\min\{j;\alpha_j\geq 4-i+1\}-1$$

where $1 \leq i \leq 3$. This is proved by Riemann-Roch Theorem. Therefore we have that

$$\dim \Gamma(C, \mathcal{O}(g_4^1) = 2,$$

$$\dim \Gamma(C, \mathcal{O}(2g_4^1) = 3,$$

$$\cdots,$$

$$\dim \Gamma(C, \mathcal{O}((e_3 + 1)g_4^1) = e_3 + 2,$$

$$\dim \Gamma(C, \mathcal{O}((e_3 + 2)g_4^1) = (e_3 + 3) + 1,$$

$$\cdots,$$

$$\dim \Gamma(C, \mathcal{O}((e_2 + 1)g_4^1) = (e_2 + 2) + (e_2 - e_3),$$

$$\dim \Gamma(C, \mathcal{O}((e_2 + 2)g_4^1) = (e_2 + 3) + (e_2 - e_3 + 1) + 1,$$

$$\cdots,$$

$$\dim \Gamma(C, \mathcal{O}((e_1 + 1)g_4^1) = (e_1 + 2) + (e_1 - e_3) + (e_1 - e_2),$$

$$\dim \Gamma(C, \mathcal{O}((e_1 + 2)g_4^1) = (e_1 + 3) + (e_1 - e_3 + 1) + (e_1 - e_2 + 1) + 1,$$

We know the following result (see [4] p.4588 Theorem 1).

Theorem 1 Let $e_1 \geq e_2 \geq e_3 \geq 0$ be integers such that $e_1 + e_2 + e_3 = g - 3$. Then there is a 4-gonal curve $C = (C, g_4^1)$ with the scrollar invariants (e_1, e_2, e_3) such that $|(e_3 + 2)g_4^1|$ is birationally very ample, if and only if $e_2 \leq 2e_3 + 2$ and $e_1 \leq e_2 + e_3 + 2$.

In this paper we shall consider a generalization of this result. The Main result is the following.

Theorem 2 (Main Theorem) Let $e_1 \geq e_2 \geq e_3 \geq 0$ be integers such that $e_1 + e_2 + e_3 = g - 3$. Then there is a tetragonal curve $C = (C, g_4^1)$ with the scrollar invariants (e_1, e_2, e_3) , if and only if $e_1 \leq e_2 + e_3 + 2$.

1 The Proof of Main Theorem

We use the following result.

Theorem 3 Let C be a tetragonal curve with the scrollar invariants (e_1, e_2, e_3) . Let g_4^1 be a base point free complete linear system on C. Let $\phi: C \to \mathbb{P}(\Gamma(C, \mathcal{O}((e_3+2)g_4^1)))$ be the morphism defined by $|(e_3+2)g_4^1|$. If ϕ is not birational onto its image, then $e_2 \neq e_3$, $\deg(\phi) = 2$ and $\varphi(C)$ is a complete non-singular curve of genus $e_3 + 1$ admitting a g_2^1 with $\varphi^*g_2^1 = g_4^1$.

From Theorem 1 and Theorem 3, we may assume C is a two-sheeted cover of a hyperelliptic curve D of genus $e_3 + 1$ such that $e_3 \neq e_2$. And put $\pi: C \to D$ be a double-covering and we put $g_4^1 = \pi^* g_2^1$. Under these assumptions, we prove that Main Theorem.

We know that $\pi_*\mathcal{O}(ng_4^1)\cong\mathcal{O}(ng_2^1)\oplus\mathcal{O}(ng_2^1-E)$ for some divisor D such that 2E is linearly equivalent to some effective divisor (see [6] p.326-p.328). We now consider (C,g_4^1) such that $g_4^1=\pi^*g_2^1$ and let e_1,e_2,e_3 be scrollar invariants. Then

$$\dim \Gamma(C, \mathcal{O}((e_3+2)g_4^1) = (e_3+3)+1$$

implies $\dim \Gamma(D, \mathcal{O}((e_3+2)g_2^1-E)=0$ because $\pi_*\mathcal{O}(ng_4^1)\cong \mathcal{O}(ng_2^1)\oplus \mathcal{O}(ng_2^1-E)$. And

$$\dim \Gamma(C, \mathcal{O}((e_2+2)g_4^1) = (e_2+3) + (e_2-e_3+1) + 1$$

implies $\dim \Gamma(D,\mathcal{O}((e_2+2)g_2^1-E)=1$. Therefore we have an effective divisor $T=P_1+\cdots+P_t$ such that $\iota(P_i)\not\in\{P_1,\ldots,P_t\}$, for every $i=1,\ldots,t$ and $(e_2+2)g_2^1-T\sim E$ where ι is a hyperelliptic involution on D. As 2E is linearly equivalent to a ramification divisor of ϕ (see [6] p.326-p.328), so we have

$$2g-2=2(2(e_3+1)-2)+2(2(e_2+2)-t).$$

Hence we have

$$t = -e_1 + e_2 + e_3 + 2$$

because $e_1+e_2+e_3=g-3$. As $t\geq 0$, we have $e_1\leq e_2+e_3+2$. Now let $e_1\geq e_2\geq e_3\geq 0$ be integers such that $e_1+e_2+e_3=g-3$ and assume that $e_1\leq e_2+e_3+2$. Let D be a hyperelliptic curve of genus e_3+1 . Let $t=-e_1+e_2+e_3+2$. Take points $P_1\dots,P_t\in D$ such that $\iota(P_i)\not\in\{P_1,\dots,P_t\}$, for every $i=1,\dots,t$. Let $T=P_1+\dots+P_t$ and $E=(e_2+2)g_2^1-T$. Let take an effective divisor R such that $R\sim 2E$. Because $2E\sim 2(e_2+2)g_2^1-2T$, so $e_2+2\geq 2t=2(-e_1+e_2+e_3+2)$ implies 2E is linearly equivalent to some effective dividor R. Therefore an isomorphism $\mathcal{O}(-2E)\cong \mathcal{O}(-R)\hookrightarrow \mathcal{O}$ induces an algebra structure on $\mathcal{O}\oplus \mathcal{O}(-E)$. Let $C=\operatorname{Spec}(\mathcal{O}\oplus \mathcal{O}(-E))$. Then R is a ramification divisor of $\pi:C\to D$ (see [6] p.326-p.328), therefore C is of genus C. Let C=C is of genus C.

Q.E.D.

References

- [1] M. Coppens, The Weierstrass gap sequence of the total ramification points of trigonal curve of \mathbb{P}^1 , *Indag. Math.*, 47 (1985) 245-270.
- [2] M. Coppens, The Weierstrass gap sequence of the ordinary ramification points of trigonal curve of \mathbb{P}^1 ; Existence of a kind of Weierstrass gap sequence, J. Pure Appl. Algebra, 43 (1986) 11-25.
- [3] R. C. Gunning, On the gonality ring of Riemann surfaces. preprint.
- [4] T. Kato, A. Ohbuchi Very ampleness of multiple of tetragonal linear systems, Communications in Algebra 21(12) (1993), 4587-4597.
- [5] J. Komeda, The Weierstrass gap sequences of certain ramification points of tetragonal coverings of \mathbb{P}^1 , Research Rep. of Ikutiku Tech. Univ. B-12 (1988), 185-191.
- [6] D. Mumford, Prym varieties I, Contribution to Analysis. Acad. Press, (1947) 325–355.
- [7] F.-O. Schreyer, Syzygies of Canonical Curves and Special Linear Series, *Math. Ann.*, **275** (1986) 105–137.