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Abstract

For solutions of semilinear telegraph equations in unbounded domain
RN without the smallness condition on initial data we derive the sharp
decay rates in the subcritical case, Even for large data our results can
be applied,
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1. Introduction and Results

In this paper we investigate the asymptotic behavior of solutions to the Cauchy prob-
lem for the following semilinear wave equation with a dissipative term (i.e. the semilinear
telegraph equation) :

(F) Ofu— Au+ du+ f(u) =0 in RN xR*
with initial data
u(x,0) = ug(x) and Oyu(x,0) = uy(z),

where A = E]N=1 agj is the usual Laplace operator and f(u) is the nonlinear function
like f(u) = |u|%u with a > 0.

For the related non-dissipative equations, e.g. 9?u — Au + |u|*u = 0, the existence,
uniqueness, and regularity of global solutions have been already studied by many authors
in the subcritical case 0 < a < 4/[N — 2]* (see Jorgens [J6], Strauss [S1, S2], Pecher
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[Pe], Brenner & v.Wahl [BW], Ginibre & Velo [GV], Brenner [Br], etc.). As far as
these works are concerned, the dissipative term u; causes no difficulty and hence the
known results for the non-dissipative equations remain valid. (Cf. Grillakis [G1, G2],
Struwe [St], Ginibre, Soffer & Velo [GSV], Shatah & Struwe [SS] for the critical case
a=4/(N-2)and N > 3.)

Under the smallness condition on the initial data {uo,u1} € C$P(RY) x C§(RY),
Matsumura [Ma] has derived closely related decay estimates of smooth solutions for
dissipative wave equations with nonlinear terms f(u, Vu,u;). On the other hand, when
4/N < a < 4/[N —2]*, for the solution of Eq.(F) without the small condition on the
initial data {ug,u1} € H¥*'NL! x H*'-1n L' Kawashima, Nakao & Ono [KNO] have
shown the following decay property (see (2.1), (3.1), (4.1)) :

ID Diu(t)|| < C(1+4)~*+D/2=na - = (N/4)min{l,a},

which is sharp in the case of [ = 0. This decay property was achieved by combining the
energy method and the precise LP-L?-type estimates for the linear equation, and hence,
the analysis is more delicate. After that, in [O1] we have improved a part of this decay
property in the case of I > 0 ,but the results are not enough.

The our goal of this paper is to improve the results in [KNO] and [01], and to derive
the sharp decay rates of the solution for Eq.(F). For simplicity of the proof, we often
utilize the known results in [KKNO] with respect to the decay estimates.

Let us introduce some notations which will be used through this paper. We denote
any partial differential operators of order k with respect to the space variable z =
(z1,-+-,an) by DF ie. DF = Dgr...DgN with k = a; + -+ 4+ an. The partial
differential operator with respect to the time ¢ is denoted by D,, where DYy = D% = u.
The differential operator D often denotes D, or D;. We use only standard function
spaces L? = LP(RY) and H* = H*(RN) (H® = L?) with the norm || - ||, and || - || -,
respectively. For simplicity, we denote by || - || the L*(RY )-norm, i.e. ||-|| = |- |l2. We
write [a]t = max{0,a}, where 1/[a]* = o if [a]* = 0. Let ko, ky,--- , be nonnegative
constants. Various constants which may vary line to line will be denote by C.

To state our results, we shall suppose several conditions below for the nonlinear
function f(u).

We suppose that the function f(u) is a continuous function on R and satisfies

(A1) fwu 2 kF(u) 20  and  |f(u)] < kolu|**?,
where F(u) =2 fou‘ f(n)dn and k is a positive constant.

Theorem 1. Let1l < N < 3 and the initial data {ug,u;} belong to H'NL* x LN L.
Suppose that the function f(u) € CO(R) satisfies (Al) with

4/N <a<2/(N-2) (4/N<a<oo if N<L2).

Then the solution u(t) € C(R*; H) N CY(R*;L?) of Eq.(F) has the following : For
0k LE+1L1,

(1.1) IDEDu(t)]| < C(1+1)H/2=1=N/E,




Aysmptotic Behavior of Solutions for Semilinear Telegraph Equations 13

Moreover, we suppose that f(u) is continuously differentiable and satisfies
(A2) [f ()] < Kaful®.
Theorem 2. Let 1 < N <5 and let the initial data {ug,u;} belong to H> N L' x
HYN L. Suppose that the function f(u) € C*(R) satisfies (Al) and (A2) with
4/N < a < 4/[N -2]*.

Then the solution u(t) € ﬂ?:o CI(R*; H*77) of Eq.(F) has the following : For 0 <
ELk+1<2,

wri+na tf 11

1.2 DEDlu(t)|| < C(1 + )%~ th Oy :{
( ) ” T tu( )Il —— ( + ) we L;I wlyl +7]a zf l=2,

where we set
(1.3) wieg=k/241 and Na = (N/4)min{l,a}.
Moreover, when 1 < N < 3, we can take

(1.4) o2 = max{min{wo,z + N/4, Na/2} ywig F N/4} .

Remark. When N = 6,7, the assertion of Theorem 2 holds under a restricted
condition (see [KNO))

4N <a <2AN-D/(N-2)(N-3)) (<4/(N- 2)) .

Further, we suppose that f(u) is a C?-function and satisfies

u|[°‘_1]+

(A3) [f"(w)] < Ky

Theorem 3. In addition to the assumptions of Theorem 2, suppose that {uo,u1}
belong to H* N L' x H2 N L' and f(u) € C*R) satisfies (A3). Then the solution
u(t) € ﬂj=0 C/(R*; H377) has the following : For 0 < k,l,k+1<3,

|IDXDlu(t)|| < C(1 + )~
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with

wk,1+N/4 lf <2
1.5 Or 1=
(1.5) #l max{min{wo,3+N/4,Na/2},w112+N/4} if 1=3,

where w1 18 given by (1.3). Moreover, 1t holds that for 2 < ¢ < oo,

(1.6) lu(t)]l, < C(1 +t)~(N/Da-1/0),

By induction, we can obtain the following decay property for the derivatives of higher
order.

Theorem 4. Let m > 3 be an integer. In addition to the assumptions of Theorem
8, suppose that {ug,u;} belong to H™t1 N L} x H™ N L' and f(u) is an m-times

continuously differentiable function. Then the solution u(t) € ﬂj:(-,l CJ(Rt; H™+1-4)
has the following : For 0 < k,Lk+1<m+1,

wk,1+N/4 if [<m

1.7) | D*Dlu(t)|| < C(1 + t)~* th 9 ={
(1.7)  ||Dx tu()“—- (+) wi k,l wl,m+]\7/4 if l=m+1,

where w1 13 given by (1.3).
Moreover, if f(u) satisfies

A3 FO )| < kjlu [a+1-4]* for 7=3,---,m,
j
we can take

(1.8) bo,m+1 = max{min{wom“ +N/4, Noz/2} y Wi,m + N/4} .

As a corollary to the above theorem, immediately we have the following decay prop-
erties.

Corollary 5. In addition to the assumptions of Theorem 2, suppose that {ug,u;}
belong to CC(RY) x C§°(RY) and f(u) € C®(R) satisfies

™ (w)] < km|u|[°"*'1—m]+ for anym > 0.
Then the solution u(t) of Eq.(F) satisfies

| DEDlu(t)|| < C(1 +t)~k/2-1= N/
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and
ID§ Dju(t)]loo < C(1 + t)~k/2=1=N/2

for any nonnegative integers k and [.
Finally, for the non-homogeneous telegraph equation :
(H) du — Au+ Ou = h(z,t) in RY xR*
with initial data u(z,0) = wue(z) and Gu(z,0) = u;(z), we state the following two

propositions, which play an important role through this paper. (See Kawashima, Nakao
& Ono [KNO] and Ono [02] for the proofs.)

Proposition 1.1. Let the initial data {ug,u;} belong to H¥'NLY x H+1-1" A L1
for nonnegative integers k and I, and let the external force term h(x,t) be an appropriate
smooth function. Then, the solution u(t) of Eq.(H) satisfies

1Dz Dru()ll < C(L+4)* "N {Jluo|| grsr + Juall rei-n+ + lJuollzr + uallze}

t
+ C/ (1+¢t- s)—“‘"‘""N/4||h(s)|{1ds
0

t
+C / e~%0=9)|| Do p(s)|| ds
0
-1 )
(+eXUDE DI R if 122)
j=1 '

with some 0 < § < 1/2, provided that for nonnegative integers ng and n; such that
ng > [k+1-1]" and k+ 7 —1 < n; < k+25, respectively, where we set wp; = k/2+1.

We define a energy E(t) associated with Eq.(H) as E(t) = ||D,u(?)||> + || Deu(t)]?.
Proposition 1.2. Let u(t) be a solution of Eq.(H). Suppose that
lu()Il < ko(1 + )7
and for an integer n,
IR < ka(1+ )77 + k(1 + 8) 7V E(t)/?

with certain constants k; >0 (5 =0,1,2), « >0, 8 >0, and v > 0. Then, the energy
E(t) satisfies

E()'? = {|Dru()l* + [ Deu(t)P}/? < C(1 + )7

with
€=min{1/2+a, (e +5)/2,8, a+7}.
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2. Proof of Theorem 1

We use the following known decay estimates (see Theorem 1 in [KNO]) :
21 Ju®l <C+8)™*  and  ||Dyu(t)] + | Dew(t)]] € C(1 4 ¢)71 2=/
under the assumptions of Theorem 1.

It is enough to derive the sharp rate of the first derivative with respect to t. Under
the condition (A1), we observe from the Gagliardo-Nirenberg inequality and the decay
(2.1) that for 1 < p < 2,

IF(u(®)llp < Clu®lptl sy < T @O Dyu(t)|| (@08 < C(1 4 ¢)~%

with §, = N(1/2-1/(p(a+1)) and 6, = (a+1)(N/4+£,/2) > 1+ N/4. Then, applying
Proposition 1.2 with (k,,n¢) = (0,1,0), we obtain

t
ID() < C(1 + )=Vl 4 ¢ / (14— )0 =N/ f(u(s))]|1ds

+ C/te'm"s)llf(U(S))llds
< O(1 4 0-1-NA.
which is the desired estimate. O
3. Proof of Theorem 2

We use the following known decay estimates (see Theorem 3 in [KNOQ]) : For 0 <
E,LE+1<2,

(3.1) | DX Dlu(t)]| < C(1 + )= k+D/2=na

under the assumptions of Theorem 2, where 7, is given by (1.3).
Immediately we see from the Gagliardo-Nirenberg inequality and the decay (3.1) that

(3.2) [u(®)|ly < C(1 + ¢)~N/DQ/2=1/9)=na

for 2 < ¢ <2N/[N —4]* (2 < ¢ < 00 if N = 4). Moreover, from the equation (F) and
the decay (3.2), we have

(33) 1Dl < DI +ID2u)] + [u(t)5Hh )} < CL+2)7 7,

and

IDef(u(t)l < Cllu®lVallDe Deut)l < C(1+ )72 By (2),
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where E;4;(t) is as below. Then, applying Proposition 1.2, we obtain
(3.4) Ey1()'* = {| D Deu(t)|l* + | DI ()P} < C(1+ ¢)=3/27me
Thus the desired decay (1.2) follows from (3.1), (3.3), and (3.4).
Finally, we shall show the decay rate (1.4). When 1 < N < 3, we see n, = N/4. Tt
follows from (3.2) that
(3.5) 1)l < Cllu@lIgt < C(1 + 1)~V

and
1Dz f(u()]] < Cllut) %I Deu(t)]] < C(1 4+ t)~Ne/2=(N+2)/4.

Then, applying Proposition 1.1 with (k, l,no,n1) =(0,2,1,1), we obtain
t
DGO S 01+ 70+ C [t ) ona N )
0

t
* C/ e D, f(w(s))ll ds + C|| D, F(u(t))]|
0
S C(l + t)_ min{wo,2+N/4,Na/2} ,
which gives the decay rate (1.4). 0O
4. Proof of Theorem 3
We use the following known decay estimates (see Theorem 4 in [KNOQJ) : For k41 =3,
(4.1) D2 Diu(t)]| < C(1+1)=3/2=/2
under the assumptions of Theorem 3.
When 1 < N < 5, we see H> C L™ and |[u(t)]|os < C < o0. Moreover, under the
condition f(u) € C?(R), we know
[FPu)] < ellfult)so)u®P 7 for j=0,1,2.
(Cf. Consider the Taylor expansion of f( u) at u = 0.) Hence, we can take o > 1 and
Na = N/4 in (1.2), and we find the decay (1.6) follows from the decay (3.1), (4.1), and
the Gagliardo-Nirenberg inequality.
From the decay (1.2), (1.6), and (4.1), it is easy to see that
1D Def(w(DN < ClllullZll Da D]l + full &7 I Daulla )| Dewlls} < C(1 4 ¢)=5/2-N/4

and

1D FuDI < CLll Sl DFull + [[ull& | Dewl2} < C(1 4 1)=5/2=N/4,
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Applying Proposition 1.2 together with the estimates || D, Dsu(t)|| < C(1 + t)~3/2~N/4
and |[D?u(t)|| < C(1 +)=3/2=N/4 (see (3.4)), we obtain

(42)  Bun(®"? = (ID2Da)| + [DDRu(t)]?}? < C(1 + )7 N/*

and

(43)  Evea(®? = {ID.Du(| + [DIu(P}/2 < C(1+1)2,
respectively. Then, from the equation (F) and the decay (1.2), (1.6), and (4.3), we have
(44) [D2u(®)] < CUIDFU(B] + [ID2Dwu(B)] + Iu()ZI Du(t)} < C(1+8)=2=/4

and
1D} f(u(t)ll < C(14)73 N4,

Again, applying Proposition 1.2 to Ej42(t), we can get
(45)  Eipa(t)/? = {IDDiu(d)|® + | DFu(t)|*}/? < C(1 4 1)75/27 N/,

Finally, we shall improve the decay rate of the third order derivative with respect to
t. Using the fact that

1F ()l IDZF (N, IDef (u(t))]| < C(1+t)~N/

and applying Proposition 1.1 with (k,,ng,n1,n2) = (0, 3,2,0,2), we obtain
t
IDfu(t)]| < C(1+¢)7os~ N/ 4 C/ (14— s) 70N f(u(s)) 1 ds
0
t
+C [ D2 f(u(o)] ds + CIDef O] + CIDEFu(H)
0 ,
(46) S C(l +t)—min{wo,3+N/4,Na/2} .

Therefore, the desired decay rate (1.5) follows from (1.2), (4.1), (4.2), and (4.4)-
(4.6). O

5. Proof of Theorem 4

We shall prove Theorem 4 by induction.

Since f(u) is assumed further to be m-times continuously differentiable with m > 3,
it holds from (A1)-(A2) that
(5.1) PP @) < elllu) o))~ for j=0,1,2,3,

and hence, in this situation we can choose a > 2.
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To get the desired decay property (1.7), it is enough to show the following. Indeed,
when m = 3 in Proposition 5.1 below, the decay (5.2) is valid by Theorem 3 and hence
by induction we conclude the decay (1.7).

Proposition 5.1. Under the assumptions of Theorem 4, suppose that for 0 <
E,LE+1<m,

wry + N/4 if 1<m-1

5.2) ||DEDlu(t)|| < C(1 + t)~ Ok th 6 ={
(52) DD S O+ with o= { T S
Then, 1t holds that for 0 < k,l,k+1<m+1,

wk,1+N/4 zf lSm

5.3) ||DFDlu(t)|| < C(1 +¢) 0 ith ={
( ) “ T tu( )”—— ( +) LW ki wl,m+N/4 Zf l=m+1.

Proof of Proposition 5.1. The decay (5.2) implies that for 0 < n <m,

. m-n,n N/4 if S -1
(54) |IDF"Diu(t)l| < C(1+1¢)~", a"z{w "IN o

wim-1+N/4 if n=m.

We have that .
D™f(u) = f9(u) Y C(D7u)---(D%u),

Jj=1 aGSj"‘

where we set
' J
St={o=(01,,0,)EN;Y oi=m,1<01 < <o;<m+1-j}.
i=1

Then, it follows from (5.1) that

ID™ f(w)|| < C’lef(’)(u)lloo > IIHID"‘uIII

UGS’" =1
< Clul|&ID™ull + Cllufieo Y ||H|D“-um+cz > H]HID”'uIII
€St =1 ]—3065"" =1

We observe from the Hélder inequality and the Gagliardo-Nirenberg inequality that for
2<;<m,

J J J
ITT 1D wlll < [LID7 ullag, < € [T ID™ ulf*~4|ID. D% ullé,

i=1
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where Y21, 1/gi = 1 (1 < g < 00), & = (N/2)(1 - 1/g:), and I, & = (5 ~ DN/2.
Thus, we obtain from (5.2) that for 0 <n < m,

|1D " DY f(w(t)Il < Cllulls 1D ™" D ul|

2 N
+Cllulleo Y JIIDg ™ DFull'~4||Dgi ™+ D ull®
aES;" 1=1

m J
+CY° 3 LDz ™ Dpul' =D ="+ D ul

j=3 UGSJY" i=1

ca+t™ o+ oY@+,

j=3
where 0 <ny <oi,n =Yl ni (2<7 < m),
B = Na/2+an 22+ an > 1+ wmenn + N/4,
and by n; <o; <m-1(=1,2),
2
bP = N/2+ > {(0i = ni)/2+ ni+ N/4+ &/2)
— N2+ (;71— n)/2+n+N/2+N/A2>1+wmonn+ N/4,

and

() = : : ‘
i, b af;zan et N+ 4/2)

= min {(m—n)/2+n+jN/4+(j —1)N/4} > 1+ wm-nn + N/4.

3<j<m
Therefore, it follows that
(5.5  IDPTDRf ()| SCA+)T, by =14 wmonn + N/
Applying Proposition 1.2 together with (5.4) and (5.5), we have that for 0 <n < m,
(56  IDFFTIDRU®] 4 D DI ()] < O+ )t
with

Wmtl-nn +N/4 if n<m—1

6 —nn =1/2 n = . ‘
mn /2+a {UJg’m_1+N/4 if n=m,

which gives the desired decay rate (5.3) expect for the case n = m.
Since it follows from the equation (F) and the decay (5.6) and (5.5) that

IDF u(t)]| < C{IDT u(t)| + ]| DID ()]l + | D7 F(u(tDIl} < C(1+)7em =N/
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applying Proposition 1.2 together with (5.5), again, we obtain
(5.7) 1D D7 ()]l + 1D u(t)]| < C(1+ )7 wam=N/4,
Thus the desired decay estimate (5.3) follows from (5.6) and (5.7). O

Finally, under the assumption (A3), we improve the decay rate of the L2-norm of
D" lu(t). We observe from the decay (1.6), (5.2), and (5.3) that

m J
IDF ()| < Clull LI DT ull + € Y flulllet =17 S~ T IDg )= || DZi+ Lulfé
j=2 UES}" =1

SCA+)™M 4 1+,
=2

where b, = Na/2 +m/2 + N/4 and

J
bj=[a+1—j]*N/2+ ) {0:/2+ N/4+¢:/2)
=1
=[a+1-4]"N/24+m/2+ jN/4+(j —1)N/4 > Na/2+m/24 N/4,
and hence, we know

(5.8) ()], 1DF Fu@), IDIDP™ f(u(e)] < C(1+t)~Ner2

for 2 < j <'m (see (3.5)). Applying Proposition 1.1 with (k, l,ng,n;) = (0,m+1,m,7)
together with (5.8), we have

t
DI u(t)] < C(1+t)7womsr=N/A 4 C/ (14t = s)7eomr =N f(u(s))||1 ds
0

+ c/o e DT f(u(s))]l ds + C Y [DIDT f(u(s))||

=2
< C(l + t‘)- min{wo, m41+N/4, Na/2} ,
which gives the desired decay rate (1.8). O
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