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Abstract
The purpose of this paper is to give an explicit proof of the infinity of

real quadratic fields of Richaud—Degert type and construct the infinite
sequences of real quadratic fields with large class numbers.

1991 Mathematics Subject Classification. Primary 11R11 ; Secondary 11R29.

Introduction

Let a be an odd square-free positive integer. Then the real quadratic field K

= Q(v/D) is called of Richaud-Degert type, if D is a square-free positive integer of the
form a’n?® + ia (1 = £1,£2, +4). Here n is a positive integer. In the following, we shall ab-
breviate Richaud-Degert type to R-D type. S;, denotes the set of R-D type real quadratic
fields {K = Q(v/D) | D = a*n® +ia (i = +1,42,+4)}. In this paper, we shall give an
explicit proof of the infinity of real-quadratic fields of Richaud-Degert type and construct
the infinite sequences of real quadratic fields with large class numbers. It is well known
that R-D type real quadaratic fields /" have the good property that have the folllowing

explict fundamental units ¢ > 1 except for the case D = 5.

(1) In the case D = a*n? £ a,

e=n++vnt+x1l whena=1,
e =2an’+1+2nvVa?>n?+a otherwise.’

(2) In the case D = a®*n® £ 2a,
e=an®+ 14+ nva*n®+ 2a.
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(3) In the case D = a?n? +4a,
e=(n+vn?*£4)/2 whena=1,
¢ =(an® £ 2+ nva?n® £ 4a)/2 otherwise.

Hence, one sees that almost all &' = Q(D) € S;, has the fundamental unit ¢ < 3D,
l.e., the regulator Ry = loge < log D + log 3.

The proof of main theorem

Let ¢ be an even integer such that (a q) =1 and b be an integer. We denote D;,(x, b)
the number of D < « such that D = a?n? + ia is square-free for some integer n = b (mod g¢).
Then, modifying the methods used in [5], we have the following fact:

Proposition 1. Suppose that a*n? + ia = a®b* + ia Z 0 (mod 4). Then
D; o(x,b) = cmxl/z + O( 1/3log,1 ,
Hr}‘aq <—m) —2

where ¢;, = >

To prove this proposition, we first note that

Dia(a,b) = > Y )

n<(z—ia)/2 fa,nz=b (mod g)  72|(a?n?+ia)
=2 u(r) > 1.
r<x n<(z—1a)1/?/a,r?|(a?n2+ia)n=b (mod q)

We note that from the assumption that a’n® + ia = 6% + ta # 0 (mod 4), one may take
only odd 7 in the above sums.

Put y = '/3. We shall consider the cases r < y and r > y separately. Put a’n? + 10 = r?s.
Then we see

Y Tl ¥ ‘ > 1.

y<r<a s<zy—? (n,r),r2s=a2n2+4+ia=a2b2+ia (mod q)

From the theory of Pellian equation, the number of integer solutions of the pair (u,v) such

that u? — sv? = —ta and 1 <u < U, is < logU. Thus the above inner sum is << log z,
and so the contribution of » > y is O(zy~?logz) = O(2*/*log z). Thus we have shown
D;u(z,b) = p(r) > 1+ 0(zlog z).
r<y n=b (mod q),_ng(a:—ia)l/2/a,7‘2|(a2n2+z'u)

Let ¢(m) be the number of solutions n (mod m) of the congruence
a*n? 4+ ia = 0 (mod m). Then one can easily see the following lemma.

Lemma 1. In the case (m,2a) =1, we have c(m) = [T,m c(p), where p runs all the.
odd prime factors of m , and c(p) =1 + ("“)
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Using the fact that the divisor function d(r) = L(uv)uv=r (u>0) L, one can easily see the
following well known lemma:

Lemma 2 ( [2] ).

Yo d(r) =ylogy + (27 — L)y + O(\/4),

r<y
2 dr)r* =y ogy + 0(y™Y),
r>Y

where vy is the Euler constant.

Since
1= c(r®)(a 222 + 0(1)),

n<(z=ia)/2/a,r2|(a2n2+ia),n=b (mod q)

and ¢(r?) = ¢(r) < d(r) for odd r, we see

Z c(r?) < Z d(?") <y log Y

r<y r<y
and
Y ce(r?)rT? < ddir)r Tt < ytlogy.
>y T>Y
Therefore
2172 o ]
Dia(e,b)="— 3 u(r)e(r)r? + Oylogy) + O(a"/*y~" logy) + O(z" log z).

aq r=1,(r,qu)=1

Since p(r)c(r) is a multiplicative function, we see

131/2 o0

Diu(z,0)=— > pu(r)e(r)r=? + O(z?log z)
, aq r=1,(r,aq)=1 A

= cio2V/? + O(2 log ).

Here ¢; , = ;13 [Mppaqg(1 — (1 + (‘“L))p‘z). Hence, we have complete the proof of the above
proposition.

We note that the following elementary lemma holds for R-D type real quadartic fields.

Lemma 3.
1) The case D = a*n* +a.
In the case a =1 (mod 4), D ,.=é 0 (mod 4) for any n.
In the case a =3 (mod 4), D = 0 (mod 4) for any odd n, and D £ 0 (mod 4) for any
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even n.
2) The case D = a*n® — a.

In the case a =1 (mod 4), D = 0 (mod 4) for any odd n, and D # 0 (mod 4) for any
even n.

In the case a =3 (mod 4), D # 0 (mod 4) for any n.

3) The case D = a*n® & 2a.

D #0 (mod 4) for any n.

4) The case D = a*n® + 4a.

D =0 (mod 4) for any even n, and D £ 0 (mod 4) for any odd n.

Since D is square-free, we may not consider the cases D = 0 (mod 4). Hence, taking
g =2, and b= 0 or 1 according to 7,a in the above proposition, we have the following
proposition: ’

Proposition 2. Let D;,(z) be the number of square-free D < x such that
K = Q(VD) € S,,. Then -

D; . (z) = C;,awl/?’ + O(2log 2).

Here ¢;, = Tl pa(1 — (1 + (’“‘))p'z) for the casesi=1 (a =1 (mod 4)),
=1 (a =3 (mod 4)), and « = £2, and
cz o= 5o Mppaa(1 = (1 4 (‘—"’))p'z) for the cases i =1 (a = 3 (mod 4)),

P

i=-1(a=1 (mod4)), and 1 = £4.

Remark 1. In [5], H.C.Montgomery and P.J.Weinberger have shown the case a =1 = 1,
that iS, €11 = H‘pEl (mod 4)(1 - 21)-2)

Here we shall recall the following lemma (c.f. Lemma 2 of [5]).

Lemma 4. Let § be a positive number < 1, q be a natural number and x be a primitive
character modulas q. Then for any (log ¢)° <y < logg, we have

log L(1,x) = > x(p)p~ L4 05(1)

<y

unless x lies in an exceptional set E(8). Here the set E(8) contains << Q° primitive char-
acter x with conductor ¢ < Q..

In the following, we shall construct the infinite subset S?, C S, with the following
property.
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Theorem. For any K = Q(vD) € S7,, there is a constant ¢; such that the class
number h(D) of K satisfies

h(D) > ¢; DY*(log D)~ log log D

To prove this main theorem, we need the following elementary lemma.

Lemma 5. For any natural number t, and any odd prime p > 4t + 1, there exists a
natural number ny such that (ﬂpl)z (’—"ﬂ—+—t> = 1.

Proof. Let 7y be the natural number r; = 27! (mod p). Put n, = ri(4t — 1)2.
Then ny +¢ = r{(16t> — 8¢ + 1) + 160t = r{(4t + 1)? (mod p). Since n; Z 0 (mod p) and
ny +t # 0 (mod p), we have proved this lemma. '

We now complete the proof of the above theorem. Let y = slogz, and

9 = [Isa+1<p<y P- From Lemma 5 and the Chinese remainder theorem, there exists a nat-
ural number b,, such that (“—21’—?—’3) =1 for any p | g,. Then, ¢, < 2% x(p) = (%) =1
for any D = a®n® 4 ia,n = b, (mod ¢,) for any p| q,. We note that for any 2’ > , one

can take by, g, which satisty ¢, | ¢» and by = b, (mod g,1). By Proposition 1, there are
> o/?g71 3> 218 such square-free D < z. From Lemma 4, with § < 3/8, we see that
L(1,x) > aylogy > ayloglog D for almost all of these D, where a; and a, are some con-
stants. This completes the proot of Theorem.

In his paper [4], J.E.Littlewoods has shown the following fact:

Lemma 6. Under the Generalized Riemann Hypothesis, any class number of the real

guadratic field K = Q(v/D) should satisfy
h(D) < ¢;D'*(log D)~'loglog D,

where ¢y is a positive constant.

Combinig this lemma and Theorem, we have:

Corollary. Under the GRH, for any sequence of R-D type real quadratic fields S;,,
there exists infinitely many K € S;, which satisfy
< h(D) <
v c:
S Da(log D)-tloglog D ~ %

where ¢; and ¢y are some positive constants.
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Remark 2. The infinity of R-D type real quadratic fields have also been proved in [5].
Finally, we note that the infinity of R-D type real quadratic fields with odd class numbers
is reduced to the following problem.

Does the given quadratic irreducible polynomial g(z) take infinitely many prime values
when z € Z7

This is nothing but the famous unsc!ved conjecture of Hardy-Littlewoods proposed in
their paper [1]. Concerning the almost . aes represented by quadratic polynaomials, we
refer to see H.Iwaniec’s paper (3]. '
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