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Abstract

An outerplanar graph is a graph which can be embedded in the plane so that all
vertices lic on the boundary of the exterior face. In this paper, we propose a simple
near optimal parallel algorithm for recognizing whether a given graph G is outerplanar

in O(log n) time using O(na(l, n)/log n) processors on an arbitrary-CRCW PRAM in the
sense that O(log n) x O(na(l, n)/log n) = O(na(l, n)) is almost linear with respect to n, where
n is the number of vertices in G, a(l, n) is the inverse Ackermann function, which grows
extremely slowly with respect to ! and n [9] and [ = O(n). Although a near optimal
parallel algorithm for general graphs can also be obtained by combining the algorithm
in [3] with the algorithm for finding biconnected components [4] [9], our algorithm uses
methods completely different from the algorithm in [3]’s, e.g., the well known st-numbering,
and is much simpler than [3]’s.
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1 Introduction

An outerplanar graph is an undirected graph which can be embedded in
the plane in such a way that all vertices lie on the exterior face (, see Fig. 1). A
graph always denotes an undirected graph throughout this paper, except when
it is specified to be directed. For outerplanar graphs, several efficient algorithms
for solving important problems e.g., vertex-coloring, edge-coloring, longest path,
are known [9] [5]. Furthermore, it is wellknown that a given graph is
outerplanar if and only if a given graph has page number one, where graph G
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has page number one if there exists a linear arrangement of vertices so that no
pair of edges in crossing when they are drawn on the same side of the linear
arrangement of the vertices [16] [11]. The problem of deciding whether a given
graph has page number one is the special case of the book embedding, whose
application to faulttolerant VLSI design is described e.g., in the introduction of
[16]. Thus, it is useful to develop efficient algorithms for recognizing whether
a given graph is outerplanar or not.

Mitchell [10] proposed an O(n) sequential algorithm for recognizing
outerplanar graphs where n is the number of vertices in G. The sequential
algorithm removes a vertex v satisfying some properties from a given graph G
step by step, and cannot straightforwardly be applied to develop an efficient
parallel algorithm. Diks, Hagerup and Rytter [3] developed a parallel algorithm
for recognizing outerplanar graphs. When an input graph is biconnected, the
algorithm [3] runs in O(logn) time using O(n/logn) processors on a CRCW
PRAM (, see e.g., [8]), where n is the number of vertices in G. However, when
an input graph is a general graph, we need to find biconnected components
before applying the algorithm [3] to each biconnected component. The best
known parallel algorithm for finding biconnected components runs in O(log n)
time using O((n + m)a(m, n)/log n) processors on the arbitrary-CRCW PRAM
[4] [9] where m is the number of edges and a(m, n) is the inverse Ackermann
function, which grows extremely slowly with respect to m and n [9]. ' The
arbitrary-CRCW PRAM is defined by the property that when several processors
try to write to the same memory cell in the same step, then exactly one of them
succeeds [8]. As outerplanar graphs have at most 2n— 3 edges [10], by
checking this fact first, we can find biconnected components in O(logn) time
using O(na(l, n)/log n) processors on the arbitrary-CRCW PRAM where | = O(n).
Thus, the algorithm [3] combined with the algorithm for finding biconnected
components [4] [9] takes, in total, O(log n) time using O(no(l, n)/log n) processors
on the arbitrary-CRCW PRAM, when applied to general graphs. Similarly, on a
CREW PRAM (, see e.g., [8]), the complexity of parallel algorithm [3] is
dominated by finding biconnected components, when applied to general graphs.

In this paper, we present a simple near optimal parallel algorithm for
recognizing outerplanar graphs in O(log n) time using O(na(l, n)/log n) processors
on the arbitrary-CRCW PRAM, in the sense that O(logn) x O(na(l, n)/log n) =
O(na(l, n)) is almost linear with respect to n. Although a near optimal parallel
algorithm for general graphs can also be obtained by combining the algorithm

T If the class of input graphs is lihearly contractible graph class [7] such as the class of planar
graphs, an optimal parallel algorithm for finding biconnected components that runs in O(log n) time
using O(n/log n) processors on the arbitrary-CRCW PRAM exists [7]. However, this algorithm foes
not work for general graphs.
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Figure 1: An example of an outerplanar graph.

in [3] with the algorithm in [4] [9], our algorithm uses methods completely
different from the algorithm in [3]’s, e.g., the well known st-numbering, and is
much simpler than [3]’s.

2 Definitions

Given an undirected connected graph G = (V, E) having no multiple edges.
A path P from v, to v, in G is a finite non-null sequence v, e, vy, €;, U5, -, &,
v, v;€V, i=0,1,---,k, e;eE, j=1,2,---,k, such that, for 1 <i<k, the end
vertices of e; are v;_; and v;, respectively. If v, = v,, then path P is a circuit.

A biconnected graph G is a connected graph which has no vertex v such
that G — v (the graph obtained by removing v from G) has at least two connected
components. A biconnected outerplanar graph has a planar embedding
consisting of a circuit bounding the exterior face, where (possibly) a number of
non-crossing edges are embedded within the interior region of this circuit [5].
Edges on the boundary of the exterior face are called sides, while the other edges
are called diagonals [5].

Next, we describe the st-numbering used in our parallel algorithm.

Definition 1 [12] An st-numbering is a one-to-one function f from V to
{1,---,n} satisfying the following two conditions:

(1) f(s)=1 and f(z) =n,

(i) for each veV— {s, t}, there exist adjacent vertices v; and v, such that

) < f(v) < flvy).

Fig. 2 illustrates st-numbering. The st-numbering is used as an indispensable
component in several algorithms [12]. We have the following theorem.

Theorem 1 [12] A graph G is biconnected if and only if it has an
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Figure 2: An example of st-numbering.

st-numbering by letting s = u and t = v for each edge (u, v).

(Note 2.1) If graph G is biconnected, its st-numbering can be obtained in O(log n)
time using O((n + m)a(m, n)/log n) processors [4] where n (resp., m) is the number
of vertices (resp., edges) in G and a(m, n) is the inverse Ackermann function.

3 The Parallel Algorithm

We first assume that the given graph G is biconnected. We shall describe
how to treat general graphs at the end of this section. The following theorems
characterize outerplanar graphs.

Theorem 2 [6] Given graph G = (V, E), G is outerplanar if and only if G
has no subgraph homeomorphic to either K, or K, 3, where K, is the complete
graph on four vertices and K, 5 is the graph illustrated in Fig. 3. [

Figure 3: K, ;.

Theorem 3 [10] An outerplanar graph G with n(> 3) vertices has
(i) at most 2n — 3 edges,
(ii) at least two vertices of degree 2. []

Our parallel algorithm first checks, based on Theorem 3, if G has at most
2n — 3 edges and at least two vertices of degree 2. Then, this algorithm chooses
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a vertex v of degree 2 and a vertex v’ incident to v; regards v (resp., v') as s
(resp., t) and finds st-numbering of G. Note that, by Note 2.1 just after Theorem
1, we can find st-numbering of G because G is assumed to be biconnected. When
G is outerplanar, exactly one Hamiltonian circuit always exists in G, and the
edges constructiing the Hamiltonian circuit can be regarded as sides of the
outerplanar graph [2] [5]. Consequently, the above process finds the sides by
the following lemma. In the following, suppose that the vertices in G are
numbered from 1 to n by st-numbering where s is a vertex of degree 2 and ¢
is a vertex incident to s and each vertex in G is identified with its vertex number.

Lemma 1 If G is outerplanar, then all edges (i,i+ 1), i=1,---,n— 1, are
in G.

Proof. We shall show that, if G does not have some edge among (i, i + 1),
i=1,---,n—1, then G is not outerplanar. Assume that vertex i is not incident
to vertex i + 1. By the definition of st-numbering, each vertex x, x = 2,---,n — 1,
must be incident to a vertex whose number is less than x and to a vertex whose
number is more than x, respectively. By this fact and the connectivity of G, G
has simple path P; =i, j, jo, ,ji, S, (1 = 1) where i > j; >j, > - > j; > 1(=15).
Vertex 1(= s) is adjacent to exactly two vertices n(=t) and 2 by definition, so
j; of P,  must be 2 (, see Fig. 4). Similarly, for i + 1, simple path P;,; =i+ 1,
JisJas - ssdis 8, (I' > 1) where i + 1 > ji >j; > --- > 2(=j)) > 1(= s) exists.

Moreover, by the fact that each vertex x, x = 2,---,n — 1, must be incident to
the vertex whose number is more than x, G has simple paths P;, =i, ky, k;, -, ¢,
where i < ky <k, <---<t(=mn),and Py, , =i+ 1, ky, kj,---,t, where i + 1 < kj
<k; <. <t(=n).

Since t > - >k, >k >i>j >j,>-->j>1(=5s), P, and P;, and P,
share no vertex except i. Similarly, P;, and P;,,,, P;,,, and P;,  share no
vertex except i, i+ 1. G*, constructed by P;, P;y,, P;, and P;,,,, has a
subgraph homeomorphic to K, 3 (, see Fig. 4). Hence, G is not outerplanar by

k .
Pi,t _ 1 Ji _ P

- -~
- ~

WN_™—

i+1

Figure 4: Tllustration of the proof of Lemma 1.
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Theorem 2, which however contradicts the assumption that G is outerplanar.
Thus we have shown that if G is outerplanar, then G has all edges (i, i+ 1),
i=1--n—1 0O

By Lemma 1, if at least one edge among (i,i + 1), i = 1,---,n — 1, does not
exist in G, then the algorithm stops since G is not outerplanar, otherwise the
edges (i,i+ 1), i=1,---,n— 1, and (n, 1) construct a Hamiltonian circuit C. We
regard the edges constructing C as sides of the outerplanar graph. (Note that
if G is outerplanar, Hamiltonian circuit C is unique [5].)

We assume that C is embedded in the plane so that each edge of C bound
the exterior face and the edges of G — C (G — C denotes the graph obtained by
removing edges of C from G) are embedded within the interior region of C. The
edges of G — C are called diagonals of G. If the diagonals do not intersect each
other on such embedded edges, then G is outerplanar, otherwise G is not
outerplanar. '

To see this, we execute the following process. Hereafter, we identify each
vertex with its vertex number assigned by st-numbering.

Let M(i), i = 1,---,n, be an array such that M(i) contains vertex j, = min {j|j
is the endpoint of diagonals adjacent to i}. If there is no diagonal incident to
i, M(i) has a value + oo where + oo is a sufficiently large number satisfying
+ 00 >n. For each diagonal (x, y) such that x <y, we execute val(x, y) <
min {M(i)|x <i <y} and regard val(x, y) as the value of diagonal (x, y). On
the value val (x, y) for each diagonal (x, y), we obtain the following lemma.

Lemma 2 Assume that Hamiltonian circuit C is embedded in the plane so
that each edge of C bounds the exterior face and diagonals are embedded within
the interior region of C.

The diagonals intersect each other if and only if there is a diagonal (x, y),
where x <y, such that the value val (x, y) is less than vertex number x.

Proof. (=) Assume that there is a pair of diagonals which intersect each
other. Let (x, y), (X', y'), where x < y, X’ <y’ and x’ < x, be a pair of intersecting
diagonals. As these two diagonals intersect each other, vertex )’ satisfies
x <y <y and is adjacent to diagonal (x’, y') where x’ < x (See Fig. S(a)) Hence,
val (x, y) = min {M(i)|x <i <y} <x.

(=) Assume that no diagonals intersect each other. Since no diagonals
intersect each other, each vertex j adjacent to vertex i, where x <i < y, satisfies
x <j <y for each diagonal (x, y) where x < y (See Fig. 5(b)). Hence, val(x, y) =
min {M()|x<i<y}>x. 0O '

In the following, we introduce Procedure Recogniiion for recognizing whether
a given graph is outerplanar.
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Figure 5: Illustration of the proof of Lemma 2.

Procedure Recognition
begin
(Step 1) if m > 2n — 3, then print “G is not outerplanar” and stop.
(Step 2) if G does not have at least two vertices of degree 2, then print “G is
not outerplanar” and stop.
(Step 3) Choose a vertex v of degree 2 and a vertex v’ incident to v; regard v
and v’ as s and t, respectively, and find an st-numbering of G [12] [4].
(Step 4) if G does not have at least one edge among (i,i+ 1) for all i
1<i<n-—1, where i,i+ 1 are the vertex numbers assigned by Step 2, then
print “G is not outerplanar” and stop.
(Step 5) For each vertex i,i=1,---,n,
M (i) < min {j|j is the endpoint of diagonals adjacent to i}.
(Step 6) For each diagonal e; = (x, y) where x <y,
val (x, y) « min {M(i)|x <i < y} '
(Step 7) if there is a diagonal (x, y), where x < y, such that val(x, y) < x,
then print “G is not outerplanar”,
else print “G is outerplanar”.

end. [

The correctness of Procedure Recognition is obvious by Theorem 3 and
Lemmas 1 and 2. We then analyze the computation time and the number of
processors required. |

The complexity analysis is done under the assumption that each vertex of
the input graph G has a pointer to its predefined adjacency list, that is, for each
vertex veV, the vertices adjacent to vertex v are given in a liked list, say,
L[v] = <uy, uy,--,u4), in some order, where d is the degree of v (Fig. 6(a)).
Recall that the arbitrary-=CRCW PRAM is used as a parallel computation model
in this paper.
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Figure 6: Adjacency lists L(i), i =1,---,n, and linked list L.

The list ranking algorithm [8] can handle steps 1, 2 in O(log n) time using
O(n/log n) processors.

Note that m = O(n) in the following analysis, as steps 3-7 are executed only
when m < 2n — 3 by step 1.

The parallel algorithm for finding st-numbering runs in O(log n) time using
O((n + m)a(m, n)/log n) processors [4] where n (resp., m) is the number of vertices
(resp., edges) in input graphs and «(m, n) is the inverse Ackermann function.
Thus, in step 3, finding st-numbering of G requires O(logn) time using
O(na(l, n)/log n) processors where [ = O(n).

After finding the st-numbering, each of the initial vertex numbers in the
adjacency lists L[i]’s is replaced by its number assigned by the st-numbering.
For this process, we first transform the adjacency lists L[i]’s into a linked list

L as follows. Let a vertex u} be the last element in the adjacency list L[i] of
vertex i and a vertex u'*! the first element in L[i + 1]. Each vertex u} has a
pointer to ui*?!, for i = 1,- — 1, (See Fig. 6(b)). We then convert the linked
list L' into an array A by applying the list ranking algorithm [8] which runs
~in O(log n) time using O(n/log n) processors. And we replace each of the initial
vertex numbers by its number assigned by st-numbering using a standard
technique used to implement Brent’s scheduling principle [5] [8] as follows.
Partition elements of A into equal-sized blocks E;, i = 1,---,|A|/log n, where each
size is O(logn). Treat each block E; separately, and sequentially replace each
of the initial vertex numbers belonging to block E; by its number assigned by
st-numbering. This process runs in O(logn) time using O(n/logn) processors.

~ Step 4 runs in O(log n) time using O(n/log n) processors by applying Brent’s
scheduling principle [5] [8] stated in step 3.

Let A[k, k], 1<k <k <|A|(=0O(n)) be an interval between k and K in
A. Note that the elements in A are numbers assigned by st-numbering. As the
degree of each vertex is found in step 2, we can recognize the vertices adjacent
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to vertex v as the element in interval A[k, k'] where 1 <k <k' <|A|. For
example, assume that d; is the degree of vertex i, the vertices adjacent to vertex
1 are the elements in A[1, d,], the vertices adjacent to vertex 2 are the elements
in A[d, + 1, d, + d,], and so on. (Note: Given the degree of each vertex, the
intervals in A corresponding to vertex i for i =1,---,n, are found in O(logn)
time using O(n/log n) processors by applying prefix-sums algorithm [8].) Hence,
in step 5, finding each minimum vertex number adjacent to vertex i for i = 1,---,n,
can be done by computing the minimum of interval in 4 corresponding to vertex
i. As described in [8] (pp. 131-136), after executing a preprocessing algorithm
(ALGORITHM 3.8 in [8]) which runs in O(logn) time using O(n/logn)
processors, we can compute the minimum A, [k;, k;]1 of A[k;, k], that is,
min {A(k), A(k; + 1),---,A(k{)}, where 1 <k; <k <|A|, in O(1) time using O(1)
processors. We need to compute the minimum A,,, [k;, k{]’s corresponding to
vertex i, i = 1,---,n. Hence, by Brent’s scheduling principle [5] [8], we can
compute the minimum A,,, [k;, k/]’s for i=1,---,n, in O(logn) time using
O(n/logn) processors. The total complexity in step 5 is O(logn) time using
O(n/log n) processors.

In step 6, we compute min {M(i)| x <i <y}, where x <y, for each diagonal
ej=(x,¥), j=1,---,k(= 0(n)). Since this process is equivalent to the process
described in step 5, this can be done in O(log n) time using O(n/log n) processors.

Step 7 takes O(log n) time using O(n/logn) processors.

Having assumed that the input graph G is a biconnected graph so far, we
shall describe, before closing this section, how to decide whether G is outerplanar
when G is a general graph. We first check if G has at most 2n — 3 edges. We
next find biconnected components, that is, blocks B,, B,,---, B, of G by applying
the algorithm of finding biconnected components in [4] [9], which runs in
O(log n) time using O(na(l, n)/logn) processors. If G is outerplanar, then each
of blocks B,, B,,--+, B, is also outerplanar [2]. Thus, we independently execute
Procedure Recognition for each of these blocks B,, B,,---,B,. If a block B is
an edge, then Procedure Recognition tells that B; is outerplanar. When each
block B;, i =1,--+,k, is outerplanar, we print “G is outerplanar” and stop. By
the above-mentioned statements, we have the following theorem.

Theorem 4 Given a graph G with n vertices and m edges, whether G is
outerplanar or not can be decided in O(log n) time using O(na(l, n)/log n) processors
‘on the arbitrary-CRCW PRAM where a(l, n) is the inverse Ackermann function,
which grows extremely slowly with respect to | and n [9] and | =0(m). O
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