Blowup Phenomena for Nonlinear Dissipative Wave Equations

By

Kosuke Ono

Department of Mathematical Sciences, Faculty of Integrated Arts and Sciences, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima 770, JAPAN (Received September 13, 1996)

Abstract

We study the initial-boundary value problem for the nonlinear wave equations with nonlinear dissipative terms: $\Box u + |u'|^{\beta} u' = |u|^{\alpha} u$ with $u(0) = u_0$, $u'(0) = u_1$, and $u|_{\partial\Omega} = 0$. When the initial energy $E(u_0, u_1) < 0$ and the inner product $(u_0, u_1) > 0$, the solution blows up at some finite time T which is estimated from above. On the other hand, when $0 \le E(u_0, u_1) \ll 1$ and $u_0 \in \mathcal{W}_*$, the solution exists globally in time and has the energy decay $E(u(t), u'(t)) \le c(1+t)^{-2/\beta}$ for $t \ge 0$.

1991 Mathematics Subject Classification. Primary 35L70; Secondary 35B40

1. Introduction

In this paper we mainly investigate on the blowup phenomena to the initial-boundary value problem for the following nonlinear wave equations with nonlinear dissipative terms:

(0.1)
$$\begin{cases} u'' + Au + \delta_1 u' + \delta_2 |u'|^{\beta} u' + \delta_3 Au' = |u|^{\alpha} u & \text{in } \Omega \times [0, +\infty) \\ u(x, 0) = u_0(x), \quad u'(x, 0) = u_1(x), \quad \text{and} \quad u(x, t)|_{\partial\Omega} = 0, \end{cases}$$

where Ω is a bounded domain in \mathbb{R}^N with smooth boundary $\partial\Omega$, $'=\partial_t\equiv\partial/\partial t$, $A=-\Delta\equiv\sum_{j=1}^N\partial^2/\partial x_j^2$ is the Laplace operator with the domain $\mathcal{D}(A)=H^2(\Omega)\cap H^1_0(\Omega)$, $\delta_1\geq 0, \delta_2\geq 0, \delta_3\geq 0, \beta>0$, and $\alpha>0$ are constants. Let H be the usual real separable Hilbert space $L^2(\Omega)$ with norm $\|\cdot\|$ and inner product (\cdot,\cdot) . We denote $L^p(\Omega)$ -norm by $\|\cdot\|_p(\|\cdot\|=\|\cdot\|_2)$.

We define the energy associated with Eq.(0.1) by

(0.2)
$$E(u, u') \equiv ||u'||^2 + J(u),$$

where we put

(0.3)
$$J(u) \equiv ||A^{1/2}u||^2 - \frac{2}{\alpha + 2}||u||_{\alpha + 2}^{\alpha + 2},$$

and following Nakao and Ono [17], we introduce the K-positive set and the K-negative set :

(0.4)
$$W_* \equiv \{ u \in \mathcal{D}(A) : K(u) > 0 \} \cup \{ 0 \}$$

and

$$(0.5) \mathcal{V}_* \equiv \{ u \in \mathcal{D}(A) : K(u) < 0 \},$$

respectively, where we set

(0.6)
$$K(u) \equiv ||A^{1/2}u||^2 - ||u||_{\alpha+2}^{\alpha+2}$$

(cf. see [9, 20, 26]).

In the non-dissipative case $(\delta_1 = \delta_2 = \delta_3 = 0)$, many authors have already studied on blowup solutions for the problem (0.1), see for example the works of [1–5, 9, 24, 26]. In particular, when $\alpha \leq 4/(N-2)$ ($\alpha < +\infty$ if N=1,2), we observe that the solution of (0.1) with $\delta_1 = \delta_2 = \delta_3 = 0$ can not be extended globally in time under the assumptions which $u_0 \in \mathcal{V}_*$ and $E(u_0, u_1) < d$ (i.e. $E(u_0, u_1) \ll 1$), where d is the so-called potential well depth, and that the solution can be extended globally in time under the assumptions which $u_0 \in \mathcal{W}_*$ and $0 \leq E(u_0, u_1) < d$ (e.g. see [20]).

In the case of $\delta_2 = 0$ in (0.1), Levine [10–12] has given an upper estimate of the blowup time T under $E(u_0, u_1) < 0$ by using the so-called concavity methods. We note that $u \in \mathcal{V}_*$ if E(u, u') < 0. Recently, when $\alpha \leq 4/(N-2)$ ($\alpha < +\infty$ if N = 1, 2), in the case of $\delta_1 > 0$ and $\delta_2 = \delta_3 = 0$ in (0.1), Ohta [18] has proved that the solution can not be extended globally in time under the assumptions which $u_0 \in \mathcal{V}_*$ and $E(u_0, u_1) < d$. On the other hand, we shall prove that the problem (0.1) admits a unique global solution, and that the solution has some decay properties under the assumptions which $u_0 \in \mathcal{W}_*$ and $0 \leq E(u_0, u_1) \ll 1$ without the assumption $\alpha \leq 4/(N-2)$ in Section 5.

In the case of $\delta_2 > 0$ and $\delta_1 = \delta_3 = 0$ in (0.1), Georgiev and Todorova [6] have proved that the solution can not be extended globally in time under the assumptions which the initial energy is sufficiently negative $(E(u_0, u_1) \ll -1)$ and $\beta < \alpha \leq 2/(N-2)$ without any estimates of the blowup time T. Our purpose of the present paper is mainly to relax the assumption connected with the initial energy to $E(u_0, u_1) < 0$, and to derive an upper estimate of the blowup time T, where we treat the case of $\delta_1 \geq 0$, $\delta_2 > 0$, and $\delta_3 \geq 0$ in Section 2. Moreover, we also give the arranged proof for blowup results in the case of $\delta_2 = 0$ in Sections 3 and 4.

On the other hand, in the case of $\delta_1 + \delta_2 + \delta_3 > 0$ in (0.1), we show that the problem (0.1) admits a unique global solution, and that the solution and its energy have some decay properties under the assumptions which $u_0 \in \mathcal{W}_*$ and $0 \leq E(u_0, u_1) \ll 1$. In particular, when $\delta_2 > 0$ in (0.1), the energy E(u(t), u'(t)) has some decay rate polynomially. When $\delta_1 + \delta_3 > 0$ in (0.1), the energy E(u(t), u'(t)) has some decay rate exponentially (see Section 5). Nakao [16] has studied the existence and decay properties of a unique global solution for the problem (0.1) with $-|u|^{\alpha}u$ (monotone) instead of $|u|^{\alpha}u$ in the case of $\delta_2 > 0$ and $\delta_1 = \delta_3 = 0$, but his results can not apply our problem immediately. Our results of the global in time solvability can apply to the problem (0.1) with $|u|^{\alpha}u$ replaced by the nonlinear function f(u) such that $|f(u)| \leq k_1|u|^{\alpha+1}$ and $|f'(u)| \leq k_2|u|^{\alpha}$ with positive constants k_1 and k_2 .

We denote $[a]^+ = \max\{0, a\}$ where $1/[a]^+ = +\infty$ if $[a]^+ = 0$.

1. Preliminaries

We give the local in time existence theorem for the problem (0.1) applying the Banach contraction mapping theorem.

Theorem 1. (Local Existence) Let the initial data $\{u_0, u_1\}$ belong to $\mathcal{D}(A) \times \mathcal{D}(A^{1/2})$. Suppose that

$$\alpha \leq 2/(N-4)$$
 $(\alpha < +\infty \text{ if } N \leq 4)$.

Then the problem (0.1) admits a unique local solution u belonging to

$$C^0_w([0,T);\mathcal{D}(A))\cap C^1_w([0,T);\mathcal{D}(A^{1/2}))\cap C^0([0,T);\mathcal{D}(A^{1/2}))\cap C^1([0,T);H)$$

for some $T = T(||Au_0||, ||A^{1/2}u_1||) > 0$, and u satisfies

(1.1)
$$u' \in L^{\beta+2}((0,T) \times \Omega) \quad \text{if} \quad \delta_2 > 0,$$

(1.2)
$$u' \in L^2(0,T; \mathcal{D}(A^{1/2})) \quad \text{if} \quad \delta_3 > 0.$$

Moreover, if $\delta_2 = 0$, then

$$(1.3) u \in C^0([0,T); \mathcal{D}(A)) \cap C^1([0,T); \mathcal{D}(A^{1/2})) \cap C^2([0,T); H).$$

Furthermore, at least one of the following statements is valid:

(i)
$$T = +\infty$$

(ii)
$$||Au(t)||^2 + ||A^{1/2}u'(t)||^2 \to +\infty$$
 as $t \to T$.

PROOF. For T > 0 and R > 0, we define the two-parameter space $X_{T,R}$ of the solutions by

$$X_{T,R} \equiv \{v(t) \in C_w^0([0,T]; \mathcal{D}(A)) \cap C_w^1([0,T]; \mathcal{D}(A^{1/2})) \cap C^0([0,T); \mathcal{D}(A^{1/2})) \cap C^1([0,T); H) : ||A^{1/2}v'(t)||^2 + ||Av(t)||^2 \le R^2 \text{ on } [0,T]\}.$$

It is easy to see that $X_{T,R}$ can be organized as a complete metric space with the distance:

$$d(u,v) \equiv \sup_{0 \le t \le T} \{ \|u'(t) - v'(t)\|^2 + \|A^{1/2}(u(t) - v(t))\|^2 \}.$$

We define a nonlinear mapping S as follows. For $v \in X_{T,R}$, u = Sv is the unique solution of the following equations:

$$\begin{cases} u'' + Au' + \delta_1 u' + \delta_2 |u'|^{\beta} u' + \delta_3 Au' = |v|^{\alpha} v & \text{in } \Omega \times [0, T] \\ u(0) = u_0, \quad u'(0) = u_1, \quad \text{and} \quad u|_{\partial\Omega} = 0. \end{cases}$$

Using the fact that $(|u_1'|^{\beta}u_1' - |u_2'|^{\beta}u_2', u_1' - u_2') \ge 0$, we can prove that there exist T > 0 and R > 0 such that S maps $X_{T,R}$ into itself; S is a contraction mapping with respect to the metric $d(\cdot, \cdot)$ (e.g. see Theorem 3.1 in [13], Theorem 2.1 in [6]). By applying the Banach contraction mapping theorem, we obtain a unique solution u belonging to $X_{T,R}$ of (0.1). Moreover, noting that $(|u'|^{\beta}u', u') = ||u'||^{\beta+2}_{\beta+2}$ and $(Au', u') = ||A^{1/2}u'||^2$, we get (1.1) and (1.2), respectively (see [23]). When $\delta_2 = 0$, by the continuity argument for wave equations (e.g. see [13, 22, 25]), we see that the solution u belongs to (1.3). We omit the detail here. \square

In what follows, we put E(t) = E(u(t), u'(t)), $f(u) = |u|^{\alpha} u$, and $g(u') = |u'|^{\beta} u'$ for simplicity.

Multiplying Eq.(0.1) by 2u' (or u) and integrating it over Ω , we have immediately the following differential equalities associated with Eq.(0.1).

Lemma 1.1. Let u be a solution of (0.1). Then

$$(1.4) \partial_t E(t) + 2\{\delta_1 \| u'(t) \|^2 + \delta_2 \| u'(t) \|_{\beta+2}^{\beta+2} + \delta_3 \| A^{1/2} u'(t) \|^2\} = 0$$

where E(t) = E(u(t), u'(t)), and

$$(1.5) K(u(t)) = ||u'(t)||^2 - \partial_t(u(t), u'(t)) - (\delta_1 u'(t) + \delta_2 g(u'(t)) + \delta_3 A u'(t), u(t))$$

where
$$K(u) = ||A^{1/2}u||^2 - ||u||_{\alpha+2}^{\alpha+2}$$
 and $g(u') = |u'|^{\beta}u'$.

We see from (1.4) that

(1.6)
$$E(t) + 2 \int_0^t \{\delta_1 \|u'(s)\|^2 + \delta_2 \|u'(s)\|_{\beta+2}^{\beta+2} + \delta_3 \|A^{1/2}u'(s)\|^2\} ds = E(0)$$

where $E(0) = E(u_0, u_1)$.

To pull out blowup properties of solutions, we apply the concavity methods (see Levine [10-12]). We define the nonnegative function P by

(1.7)
$$P(t) \equiv ||u(t)||^2 + \int_0^t (\delta_1 ||u(s)||^2 + \delta_3 ||A^{1/2}u(s)||^2) ds + (T_0 - t)(\delta_1 ||u_0||^2 + \delta_3 ||A^{1/2}u_0||^2) + r(t + \tau)^2$$

for a solution $u(t), t \in [0, T_0]$, where $T_0 > 0, r \ge 0$, and $\tau > 0$ are some constants which are specified later on, then we observe the following properties.

Proposition 1.2. The function P(t) satisfies

(1.8)
$$P''(t) = 2\{r - E(t) + 2\|u'(t)\|^2 + \frac{\alpha}{\alpha + 2}\|u(t)\|_{\alpha + 2}^{\alpha + 2} - \delta_2(g(u'(t)), u(t))\}$$

with $g(u') = |u'|^{\beta}u'$, and

(1.9)
$$P(t)P''(t) - (\alpha/4 + 1)P'(t)^2 \ge P(t)Q(t),$$

where

(1.10)
$$Q(t) = -(\alpha + 2)(r + E(0))$$

$$+ \alpha \{ \|A^{1/2}u(t)\|^2 + \int_0^t (\delta_1 \|u'(s)\|^2 + \delta_3 \|A^{1/2}u'(s)\|^2) ds \}$$

$$+ 2\delta_2 \{ (\alpha + 2) \int_0^t \|u'(s)\|_{\beta+2}^{\beta+2} ds - (g(u'(t)), u(t)) \}.$$

PROOF. Differentiating (1.7) with respect to t, we have

$$P'(t) = 2(u(t), u'(t)) + (\delta_1 ||u(t)||^2 + \delta_3 ||A^{1/2}u(t)||^2)$$

$$- (\delta_1 ||u_0||^2 + \delta_3 ||A^{1/2}u_0||^2) + 2r(t+\tau)$$

$$= 2\{(u(t), u'(t)) + \int_0^t (\delta_1(u(s), u'(s)) + \delta_3(A^{1/2}u(s), A^{1/2}u'(s))) ds$$

$$+ r(t+\tau)\}$$
(1.11)

and

$$P''(t) = 2\{(u(t), u''(t) + \delta_1 u'(t) + \delta_3 A u'(t)) + ||u'(t)||^2 + r\}$$

$$= 2\{r + ||u'(t)||^2 - K(u(t)) - \delta_2(g(u'(t)), u(t))\}$$

$$= 2\{r - E(t) + 2||u'(t)||^2 + \frac{\alpha}{\alpha + 2}||u(t)||_{\alpha + 2}^{\alpha + 2} - \delta_2(g(u'(t)), u(t))\},$$

which implies the desired equality (1.8). Next, we set

$$R(t) \equiv \{\|u(t)\|^{2} + \int_{0}^{t} (\delta_{1}\|u(s)\|^{2} + \delta_{3}\|A^{1/2}u(s)\|^{2}) ds + r(t+\tau)^{2}\} \times$$

$$\times \{\|u'(s)\|^{2} + \int_{0}^{t} (\delta_{1}\|u'(s)\|^{2} + \delta_{3}\|A^{1/2}u'(s)\|^{2}) ds + r\}$$

$$- \{(u(t), u'(t)) + \int_{0}^{t} (\delta_{1}(u(s), u'(s)) + \delta_{3}(A^{1/2}u(s), A^{1/2}u'(s))) ds$$

$$+ r(t+\tau)\}^{2},$$

then we see $R(t) \geq 0$ and

$$R(t) = \{P(t) - (T_0 - t)(\delta_1 ||u_0||^2 + \delta_3 ||A^{1/2}u_0||^2)\}$$

$$\times \{||u'(t)||^2 + \int_0^t (\delta_1 ||u'(s)||^2 + \delta_3 ||A^{1/2}u'(s)||^2) ds + r\} - (1/4)P'(t)^2$$

or

(1.13)

$$P'(t) = 4[\{P(t) - (T_0 - t)(\delta_1 ||u_0||^2 + \delta_3 ||A^{1/2}u_0||^2)\}$$

$$\times \{||u'(t)||^2 + \int_0^t (\delta_1 ||u'(s)||^2 + \delta_3 ||A^{1/2}u'(s)||^2) ds + r\} - R(t)].$$

Thus it follows from (1.13) that

$$P(t)P''(t) - (\alpha/4 + 1)P'(t)^{2}$$

$$\geq P(t)[P''(t) - (\alpha + 4)\{\|u'(t)\|^{2} + \int_{0}^{t} (\delta_{1}\|u'(s)\|^{2} + \delta_{3}\|A^{1/2}u'(s)\|^{2}) ds + r\}].$$

To derive (1.9), we shall show that the above $[\cdots]$ is equal to Q(t).

$$[\cdots] = 2\{r + \|u'(t)\|^2 - K(u(t)) - \delta_2(g(u'(t)), u(t))\}$$

$$- (\alpha + 4)\{r + \|u'(t)\|^2 + \int_0^t (\delta_1 \|u'(s)\|^2 + \delta_3 \|A^{1/2}u'(s)\|^2) ds\}$$

$$= -(\alpha + 2)(r + \|u'(t)\|^2) + 2\{-K(u(t)) - \delta_2(g(u'(t)), u(t))\}$$

$$- (\alpha + 4) \int_0^t (\delta_1 \|u(s)\|^2 + \delta_3 \|A^{1/2}u(s)\|^2) ds$$

$$= -(\alpha + 2)\{r + E(t) + 2 \int_0^t (\delta_1 \|u'(s)\|^2 + \delta_2 \|u'(s)\|_{\beta+2}^{\beta+2} + \delta_3 \|A^{1/2}u'(s)\|^2) ds\}$$

$$+ \alpha\{\|A^{1/2}u(t)\|^2 + \int_0^t (\delta_1 \|u'(s)\|^2 + \delta_3 \|A^{1/2}u'(s)\|^2) ds\}$$

$$+ 2\delta_2\{(\alpha + 2) \int_0^t \|u'(s)\|_{\beta+2}^{\beta+2} ds - (g(u'(t)), u(t))\},$$

and noting (1.6), it is equal to Q(t). The proof of Proposition 1.2 is now completed. \Box

2. Blow Up I $(\delta_2 > 0)$

When $\delta_2 > 0$ ($\delta_1 \ge 0, \delta_3 \ge 0$) in Eq.(0.1), we shall show that the solution u(t) blows up at some finite time under the assumptions which E(0) < 0 and $(u_0, u_1) > 0$ and $\alpha > \beta$. We denote by $|\Omega|$ the measure of Ω , and we assume $|\Omega| \ge 1$ for simplicity.

Our main result is as follows.

Theorem 2. $(\delta_2 > 0)$ Let $\delta_2 > 0$ in (0.1). Suppose that $\alpha > \beta$ and

$$E(0) < 0$$
 and $G(0) \equiv (-E(0))^{\omega} + 2\omega m_0^{-1}(u_0, u_1) > 0$.

Then there exists a T such that

$$0 < T \le m_0 m_1 \omega (1 - \omega)^{-1} G(0)^{-(1 - \omega)/\omega}$$

and the local solution u(t) in the sense of Theorem 1 blows up at the finite time T, where ω, m_0 , and m_1 are positive constants such that

$$\begin{split} &\omega = 1 - (\frac{1}{\beta + 2} - \frac{1}{\alpha + 2}) - (1/2 < \omega < 1) \,, \\ &m_0 = (2\delta_2(1 + 2/\alpha)|\Omega|^{\frac{\alpha - \beta}{\alpha + 2}} (-E(0))^{-(1 - \omega)})^{1/(\beta + 1)} \,, \\ &m_1 = 2\max\left\{1 \,,\, (1 + 2/\alpha)(2|\Omega|^{\frac{\alpha}{2(\alpha + 2)}} m_0^{-1})^{\frac{2}{2\omega - 1}} (-E(0))^{-(1 - \frac{2}{(2\omega - 1)(\alpha + 2)})}\right\}. \end{split}$$

PROOF. We put r = 0 in (1.7) and we shall estimate P''(t) given by (1.8) with r = 0. We have that for $g(u') = |u'|^{\beta} u'$

$$\begin{aligned} |\delta_{2}(g(u'), u)| &\leq \delta_{2} \|u'\|_{\beta+2}^{\beta+1} \|u\|_{\beta+2} \leq \delta_{2} B_{1} \|u'\|_{\beta+2}^{\beta+1} \|u\|_{\alpha+2} \\ &= \delta_{2} B_{1} \|u'\|_{\beta+2}^{\beta+1} \|u\|_{\alpha+2}^{\frac{\alpha+2}{\beta+2}} \|u\|_{\alpha+2}^{-(\frac{\alpha+2}{\beta+2}-1)} \end{aligned}$$

with $B_1 = |\Omega|^{\frac{\alpha-\beta}{(\alpha+2)(\beta+2)}}$. Since we see from (0.2), (0.3), and (1.6) that

(2.2)
$$||u(t)||_{\alpha+2} \ge (-E(t))^{1/(\alpha+2)} \ge (-E(0))^{1/(\alpha+2)} > 0$$

and from the Young inequality that

$$\delta_2 B_1 \|u'\|_{\beta+2}^{\beta+1} \|u\|_{\alpha+2}^{\frac{\alpha+2}{\beta+2}} \le \frac{\beta+1}{\beta+2} (\varepsilon^{-1} \delta_2 B_1)^{\frac{\beta+2}{\beta+1}} \|u'\|_{\beta+2}^{\beta+2} + \frac{\varepsilon^{\beta+2}}{\beta+2} \|u\|_{\alpha+2}^{\alpha+2}$$

for any $\epsilon > 0$, we observe from (2.1) that

$$\begin{aligned} \delta_{2}|(g(u'(t)), u(t))| &\leq (\varepsilon^{-1}\delta_{2}B_{1})^{\frac{\beta+2}{\beta+1}}(-E(t))^{-(\frac{1}{\beta+2}-\frac{1}{\alpha+2})}\|u'(t)\|_{\beta+2}^{\beta+2} \\ &+ \varepsilon^{\beta+2}(-E(0))^{-(\frac{1}{\beta+2}-\frac{1}{\alpha+2})}\|u(t)\|_{\alpha+2}^{\alpha+2} \end{aligned}$$

if $\alpha > \beta$, and we obtain from (1.8) with r = 0 that

$$P''(t) \geq 2\{(-E(t)) + 2\|u'(t)\|^{2} + \frac{\alpha}{\alpha + 2}\|u(t)\|_{\alpha+2}^{\alpha+2}$$

$$-(\varepsilon^{-1}\delta_{2}B_{1})^{\frac{\beta+2}{\beta+1}}(-E(t))^{-(\frac{1}{\beta+2} - \frac{1}{\alpha+2})}\|u'(t)\|_{\beta+2}^{\beta+2}$$

$$-\varepsilon^{\beta+2}(-E(0))^{-(\frac{1}{\beta+2} - \frac{1}{\alpha+2})}\|u(t)\|_{\alpha+2}^{\alpha+2}\}$$

$$\geq 2\{(-E(t)) + 2\|u'(t)\|^{2} + \frac{\alpha}{2(\alpha+2)}\|u(t)\|_{\alpha+2}^{\alpha+2}$$

$$-\delta_{2}m_{0}(-E(t))^{-(\frac{1}{\beta+2} - \frac{1}{\alpha+2})}\|u'(t)\|_{\beta+2}^{\beta+2}\},$$

$$(2.3)$$

where we put $\varepsilon^{\beta+2} = (\alpha/2)(\alpha+2)^{-1}(-E(0))^{(\frac{1}{\beta+2}-\frac{1}{\alpha+2})}$ (> 0 if E(0)<0) and $m_0=(2\delta_2(1+2/\alpha)B_1^{\beta+2}(-E(0))^{-(\frac{1}{\beta+2}-\frac{1}{\alpha+2})})^{1/(\beta+1)}$.

We introduce the function G(t) as

$$G(t) \equiv (-E(t))^{\omega} + \omega m_0^{-1} P'(t)$$

with $\omega = 1 - (\frac{1}{\beta+2} - \frac{1}{\alpha+2})$ (1/2 < ω < 1), then we observe the following.

Claim A. If E(0) < 0 and $\alpha > \beta$, then

(2.4)
$$G'(t) \ge m_0^{-1} H(t) \,,$$

where

(2.5)
$$H(t) \equiv (-E(t)) + 2\|u'(t)\|^2 + \frac{\alpha}{2(\alpha+2)}\|u(t)\|_{\alpha+2}^{\alpha+2} \quad (>0).$$

Indeed, we see from (1.4) and (2.3) that

$$G'(t) = \omega(-E(t))^{-(1-\omega)}(-E'(t)) + \omega m_0^{-1} P''(t)$$

$$\geq 2\omega(-E(t))^{-(1-\omega)}(\delta_1 ||u'(t)||^2 + \delta_2 ||u'(t)||_{\beta+2}^{\beta+2} + \delta_3 ||A^{1/2}u'(t)||^2)$$

$$+ 2\omega m_0^{-1} \{(-E(t)) + 2||u'(t)||^2 + \frac{\alpha}{2(\alpha+2)} ||u(t)||_{\alpha+2}^{\alpha+2}$$

$$- \delta_2 m_0(-E(t))^{-(1-\omega)} ||u'(t)||_{\beta+2}^{\beta+2} \}$$

$$\geq 2\omega m_0^{-1} \{(-E(t)) + 2||u'(t)||^2 + \frac{\alpha}{2(\alpha+2)} ||u(t)||_{\alpha+2}^{\alpha+2} \} \geq m_0^{-1} H(t),$$

where we used the fact $1/2 < \omega < 1$, which implies (2.4). Moreover, we observe the following.

Claim B. If E(0) < 0 and $\alpha > \beta$, then

$$(2.6) G(t)^{1/\omega} \le m_1 H(t)$$

with $m_1 = 2 \max\{1, (1+2/\alpha)(2B_2m_0^{-1})^{\frac{2}{2\omega-1}}(-E(0))^{-(1-\frac{2}{(2\omega-1)(\alpha+2)})}\}$ and $B_2 = |\Omega|^{\frac{\alpha}{2(\alpha+2)}}$.

Indeed, Since $|(u',u)| \leq B_2||u'|| ||u||_{\alpha+2}$, we have that

$$G(t)^{1/\omega} \leq 2\{(-E(t)) + (m_0^{-1}|P'(t)|)^{1/\omega}\}$$

$$\leq 2\{(-E(t)) + (2B_2m_0^{-1}||u'(t)|||u(t)||_{\alpha+2})^{1/\omega}\}$$

$$\leq 2\{(-E(t)) + 2||u'(t)||^2 + (1/2)(2B_2m_0^{-1}||u(t)||_{\alpha+2})^{2/(2\omega-1)})\},$$

where we used the Young inequality. Moreover, since $2/(2\omega - 1) < \alpha + 2$ and

$$(-E(0))^{-1/(\alpha+2)} ||u(t)||_{\alpha+2} \ge 1$$
 if $E(0) < 0$

(see (2.2)), we observe that

$$G(t)^{1/\omega} \le 2\{(-E(t)) + 2\|u'(t)\|^2 + (1/2)(2B_2m_0^{-1})^{\frac{2}{2\omega-1}}(-E(0))^{-(1-\frac{2}{(2\omega-1)(\alpha+2)})}\|u(t)\|_{\alpha+2}^{\alpha+2}\},$$

and hence, we obtain (2.6).

Therefore it follows from Claim A and Claim B that

$$\partial_t \{G(t)^{1-1/\omega}\} = -\frac{1-\omega}{\omega} G(t)^{-1/\omega} G'(t) \le -\frac{1-\omega}{\omega} (m_0 m_1)^{-1},$$

and hence,

$$G(t) \ge \{G(0)^{-(1-\omega)/\omega} - \frac{1-\omega}{\omega}(m_0m_1)^{-1}t\}^{-\omega/(1-\omega)}$$

for some t > 0 if G(0) > 0. Here, we put $T_0 \equiv m_0 m_1 \omega (1 - \omega)^{-1} G(0)^{-(1-\omega)/\omega}$. Then there exists a T such that $0 < T \le T_0$ and $\lim_{t \to T_-} G(t) = +\infty$.

Since it follows from (0.2) and (0.3) that $(-E(t)) + \|u'(t)\|^2 \le 2(\alpha+2)^{-1}\|u(t)\|_{\alpha+2}^{\alpha+2}$, we have from (2.5) and (2.6) that $G(t)^{1/\omega} \le \text{Const.} \|u(t)\|_{\alpha+2}^{\alpha+2}$. Thus, we see that $\lim_{t\to T^-} \|u(t)\|_{\alpha+2}^2 = \lim_{t\to T^-} \{\|Au(t)\|^2 + \|A^{1/2}u'(t)\|^2\} = +\infty$, and hence, the local solution u(t) can not be continued to the finite time T. The proof of Theorem 2 is now completed. \square

Remark 2.1. Since $G'(t) \ge m_0^{-1}H(t) \ge m_0^{-1}(-E(0)) > 0$, there exits a $t_0 > 0$ such that G(t) > 0 for $t \ge t_0$, and hence, we see that if $\alpha > \beta$ and E(0) < 0 (without G(0) > 0), the local solution blows up at some finte time.

3. Blow Up II $(\delta_2 = 0)$

When $\delta_2 = 0$ ($\delta_1 \ge 0, \delta_3 \ge 0$) in Eq.(0.1), we shall show that the solution blows up at some finite time under the assumptions which E(0) < 0, or E(0) = 0 and $(u_0, u_1) > 0$ (see [10-12]).

Our results are as follows.

Theorem 3. $(\delta_2 = 0)$ Let $\delta_2 = 0$ in (0.1). Suppose that

$$E(0) < 0$$
.

Then there exists a T such that

$$0 < T \le \alpha^{-2} (-E(0))^{-1} [\{(2\delta_1 ||u_0||^2 + 2\delta_3 ||A^{1/2}u_0||^2 - \alpha(u_0, u_1))^2 + \alpha^2 (-E(0)) ||u_0||^2\}^{1/2} + 2\delta_1 ||u_0||^2 + 2\delta_3 ||A^{1/2}u_0||^2 - \alpha(u_0, u_1)]$$

and the local solution u(t) in the sense of Theorem 1 blows up at the finite time T.

Theorem 4. $(\delta_2 = 0)$ Let $\delta_2 = 0$ in (0.1). Suppose that

$$E(0) = 0$$
 and $(u_0, u_1) > 0$.

Then there exists a T such that

$$0 < T \le 2\alpha^{-1}(u_0, u_1)^{-1}||u_0||^2$$

and the local solution u(t) in the sense of Theorem 1 blows up at the finite time T.

Here, we denote the Sobolev-Poincaré constant by

(3.1)
$$c_{*,p} \equiv \sup\{\|v\|_p \|A^{1/2}v\|^{-1} : v \in \mathcal{D}(A^{1/2}), v \neq 0\}$$

for
$$2 \le p \le 4/[N-2]^+$$
 $(2 \le p < +\infty \text{ if } N=2)$.

Theorem 5. $(\delta_1 = \delta_2 = \delta_3 = 0)$ Let $\delta_1 = \delta_2 = \delta_3 = 0$ in (0.1). Suppose that

(3.2)
$$E(0) \le \alpha(\alpha+2)^{-1} c_{*,2}^{-2} ||u_0||^2 \quad and \quad (u_0, u_1) > 0.$$

Then there exists a T such that

$$(3.3) 0 < T \le 2\alpha^{-1}(u_0, u_1)^{-1} ||u_0||^2$$

and the local solution u(t) in the sense of Theorem 1 blows up at the finite time T.

PROOF OF THEOREM 3 AND 4. We put r = -E(0) (≥ 0) and $\delta_2 = 0$ in (1.7), then we see from (1.10) that

$$Q(t) = \alpha \{ \|A^{1/2}u(t)\|^2 + \int_0^t (\delta_1 \|u'(s)\|^2 + \delta_3 \|A^{1/2}u'(s)\|^2) \, ds \} \geq 0$$

and from (1.9) that

$$(P(t)^{-\alpha/4})'' = -(\alpha/4)P(t)^{-(\alpha/4+2)}\{P(t)P''(t) - (\alpha/4+1)P'(t)^2\} \le 0,$$

and hence,

(3.4)
$$P(t) \ge \left\{ \frac{P(0)^{\alpha/4+1}}{4P(0) - \alpha P'(0)t} \right\}^{\alpha/4}$$

for some t > 0 if P(0) > 0.

Case I. When E(0) < 0, we choose $\tau > 0$ such that

$$P'(0) = 2\{(u_0, u_1) + (-E(0))\tau\} > 0,$$

and we take

$$T_0 = 4P(0)/(\alpha P'(0)) \quad (>0).$$

Then we see that

$$T_0 = T(\tau) \equiv \frac{2\{\|u_0\|^2 + (-E(0))\tau^2\}}{\alpha\{(u_0, u_1) + (-E(0))\tau\} - 2(\delta_1\|u_0\|^2 + \delta_3\|A^{1/2}u_0\|^2)},$$

and we find that $T(\tau)$ takes a minimum at

$$\tau = \tau_0 \equiv \alpha^{-2} (-E(0))^{-1} [\{(2\delta_1 ||u_0||^2 + 2\delta_3 ||A^{1/2}u_0||^2 - \alpha(u_0, u_1))^2 + \alpha^2 (-E(0)) ||u_0||^2\}^{1/2} + 2\delta_1 ||u_0||^2 + 2\delta_3 ||A^{1/2}u_0||^2 - \alpha(u_0, u_1)].$$

Here, we put

$$T_0 = \min_{\tau > 0} T(\tau) = T(\tau_0)$$
.

Then, we see from (3.4) that there exists a T such that $0 < T \le T_0$ and

(3.5)
$$\lim_{t \to T_{-}} \{ \|u(t)\|^{2} + \int_{0}^{t} (\delta_{1} \|u(s)\|^{2} + \delta_{3} \|A^{1/2}u(s)\|^{2}) ds \} = +\infty,$$

that is, $\lim_{t\to T^-} \|A^{1/2}u(t)\| = +\infty$ if $\delta_3 > 0$ and $\lim_{t\to T^-} \|u(t)\| = +\infty$ if $\delta_3 = 0$, and hence, the local solution u(t) can not be continued to the finite time T. The proof of Theorem 3 is now completed.

Case II. When E(0) = 0 and $(u_0, u_1) > 0$, we see that

$$P(0) > 0$$
 and $P'(0) > 0$.

Putting $T_0 = 4P(0)/(\alpha P'(0))$ (> 0), we see from (3.4) that (3.5) holds for some 0 < $T \le T_0$. The proof of Theorem 4 is now completed. \square

PROOF OF THEOREM 5 We put r=0 and $\delta_1=\delta_2=\delta_3=0$ in (1.7) i.e. $P(t)=\|u(t)\|^2$, then we see from (1.10) that

$$Q(t) = -(\alpha + 2)E(0) + \alpha ||A^{1/2}u(t)||^2.$$

We assume that $(u_0, u_1) > 0$, then

$$P'(t) = 2(u(t), u'(t)) > 0$$

for near t = 0, that is, P(t) is a increasing function and

$$0 < \|u_0\|^2 = P(0) \le P(t) = \|u(t)\|^2 \le c_{*,2}^2 \|A^{1/2}u(t)\|^2$$

for near t = 0. Thus we obtain that

$$Q(t) \ge -(\alpha + 2)E(0) + \alpha c_{\star 2}^{-2} ||u_0||^2 \ge 0$$

if $E(0) \leq \alpha(\alpha+2)^{-1}c_{*,2}^{-2}||u_0||^2$. Then it follows from (1.9) that

$$(P(t)^{-\alpha/4})'' = -(\alpha/4)P(t)^{-(\alpha/4+2)}\{P(t)P''(t) - (\alpha/4+1)P'(t)^2\} \le 0$$

and

$$(P(t)^{-\alpha/4})' = -(\alpha/4)P(t)^{-(\alpha/4+1)}P'(t) < 0$$

for near t = 0. Thus we have that

$$\partial_t \{ (P(t)^{-\alpha/4})' \}^2 = 2(P(t)^{-\alpha/4})'' (P(t)^{-\alpha/4})' \ge 0,$$

and hence,

$$\{(P(t)^{-\alpha/4})'\}^2 \ge \{(P(0)^{-\alpha/4})'\}^2 = \{-(\alpha/4)P(0)^{-(\alpha/4+1)}P'(0)\}^2 > 0$$

for near t = 0. Therefore, we conclude that $(P(t)^{-\alpha/4})'$ can not be change sign for t > 0, and we see that

$$P(t) > 0$$
, $P'(t) > 0$, and $(P(t)^{-\alpha/4})'' \le 0$

for $t \geq 0$. Putting $T_0 = 4P(0)/(\alpha P'(0))$ (> 0), we see from (3.4) that (3.5) with $\delta_1 = \delta_3 = 0$ holds for some $0 < T \leq T_0$. The proof of Theorem 5 is now completed. \square

4. Blow Up III
$$(\delta_2 = \delta_3 = 0 \& \alpha \le 4/(N-2))$$

In this section, even if initial energy E(0) is positive, we shall show that the solution for the problem (0.1) with $\delta_2 = \delta_3 = 0$ ($\delta_1 \geq 0$) can not be continued globally under the assumptions which $u_0 \in \mathcal{V}_*$ and $E(0) \ll 1$ and $\alpha \leq 4/(N-2)$ ($\alpha < +\infty$ if N = 1, 2).

We observe the following useful results connected with the K-negative set \mathcal{V}_* .

Proposition 4.1. Let u be a solution of Eq.(0.1). Suppose that

(4.1)
$$\alpha \le 4/(N-2) \quad (\alpha < +\infty \text{ if } N = 1,2), \\ u_0 \in \mathcal{V}_* \equiv \{u \in \mathcal{D}(A) : K(u) < 0\},$$

and

(4.2)
$$E(0) < \alpha(\alpha + 2)^{-1} c_{*,\alpha+2}^{-2(\alpha+2)/\alpha} \quad (\equiv D_*)$$

with a positive constant $c_{*,\alpha+2}$ given by (3.1). Then

(4.3)
$$K(u(t)) \equiv ||A^{1/2}u(t)||^2 - ||u(t)||_{\alpha+2}^{\alpha+2} < 0$$

and

(4.4)
$$E(t) < D_* \le \alpha(\alpha+2)^{-1} ||A^{1/2}u(t)||^2$$

for $t \geq 0$ (cf. (3.2)).

PROOF. Since $E(t) \leq E(0)$ (see (1.6)), we get from (4.2) immediately that

$$(4.5) E(t) < D_*.$$

Let

$$T \equiv \sup\{t \in [0, +\infty) : K(u(s)) < 0 \text{ for } 0 \le s < t\},$$

then we see T > 0 by (4.1) and K(u(t)) < 0 and $u(t) \neq 0$ for $0 \leq t < T$. If $T < +\infty$, then K(u(T)) = 0, and hence,

(4.6)
$$J(u(T)) = \frac{\alpha}{\alpha + 2} ||A^{1/2}u(T)||^2.$$

Now, when K(u) < 0 and $u \neq 0$, we see from (3.1) that

$$||A^{1/2}u||^2 < ||u||_{\alpha+2}^{\alpha+2} \le c_{*,\alpha+2}^{\alpha+2} ||A^{1/2}u||^{\alpha+2}$$

for $\alpha \le 4/(N-2)$ ($\alpha < +\infty$ if N = 1, 2), and hence,

(4.7)
$$||A^{1/2}u||^2 > c_{*,\alpha+2}^{-2(\alpha+2)/\alpha} (>0).$$

Thus, we have from (4.7) and the continuity that

(4.8)
$$||A^{1/2}u(T)||^2 \ge c_{*,\alpha+2}^{-2(\alpha+2)/\alpha}.$$

Thus we get from (0.2), (4.6), and (4.8) that

$$E(T) \ge J(T) \ge \alpha(\alpha+2)^{-1} ||A^{1/2}u(T)||^2 \ge D_*$$

which contradicts (4.5), and hence, we see $T = +\infty$. Moreover, from (4.5) and (4.7) we obtain (4.4). \square

When $\delta_1 = \delta_2 = \delta_3 = 0$ in (0.1) (non-dissipative case), we obtain the following result.

Theorem 6. $(\delta_1 = \delta_2 = \delta_3 = 0)$ Let $\delta_1 = \delta_2 = \delta_3 = 0$ in (0.1). Under the assumption of proposition 4.1, the local solution blows up at some finite time.

Remark 4.2. If we assume that $(u_0, u_1) > 0$, then the conclusion of Theorem 3 holds true, that is, the local solution blows up at the finite time T given by (3.3).

PROOF. We put r=0 and $\delta_1=\delta_2=\delta_3=0$ in (1.7) i.e. $P(t)=\|u(t)\|^2$, then we see from (1.12) that

(4.9)
$$P''(t) = 2\{\|u'(t)\|^2 - K(u(t))\}$$

$$= (\alpha + 4)\|u'(t)\|^2 + \{\alpha\|A^{1/2}u(t)\|^2 - (\alpha + 2)E(t)\}$$

$$> (\alpha + 4)\|u'(t)\|^2.$$

where we used (4.4) at the last inequality. Thus we have that

$$P''(t)P(t) - (\alpha/4 + 1)P'(t)^{2}$$

$$\geq (\alpha + 4)\{\|u'(t)\|^{2}\|u(t)\|^{2} - (u(t), u'(t))^{2}\} \geq 0$$

for $t \geq 0$.

On the other hand, we see from (4.10), (4.7), and (1.6) with $\delta_1 = \delta_2 = \delta_3 = 0$ that

$$P''(t) \ge \alpha ||A^{1/2}u(t)||^2 - (\alpha + 2)E(t)$$

$$\ge (\alpha + 2)\{D_* - E(0)\} \equiv n_0 > 0,$$

where we used the assumption (4.2). Then we obtain that

$$P'(t) \geq P'(0) + n_0 t,$$

and hence, there exists t_0 such that

$$(4.12) P'(t) = 2(u(t), u'(t)) > 0$$

for $t \ge t_0$. Thus, from (4.11) and (4.12) we arrived at our conclusion by the argument as in Section 2. \square

Theorem 7. $(\delta_1 > 0, \delta_2 = \delta_3 = 0)$ Let $\delta_1 > 0$ and $\delta_2 = \delta_3 = 0$ in (0.1). Under the assumption of Proposition 4.1, the local solution blows up at some finite time.

Proof. Following Ohta [18], we shall prove the theorem. We put

$$\tilde{P}(t) \equiv \|u(t)\|^2 \,,$$

then we see from (1.5) (cf. (4.9)) that

$$\tilde{P}''(t) + \delta_1 \tilde{P}'(t) = 2(\|u'(t)\|^2 - K(u(t)))$$

$$= (\alpha + 4)\|u'(t)\|^2 + \{\alpha \|A^{1/2}u(t)\|^2 - (\alpha + 2)E(t)\}$$

$$\geq (\alpha + 4)\|u'(t)\|^2 + (\alpha + 2)\{D_* - E(t)\},$$
(4.13)

where we used (4.7). Next, we put

(4.14)
$$H(t) \equiv \delta_1 \tilde{P}'(t) - (\alpha/2 + 2) \{ D_* - E(t) \},$$

then we see from (1.4) with $\delta_2 = \delta_3 = 0$ and (4.13) that

$$H'(t) = \delta_1 \tilde{P}''(t) + (\alpha/2 + 2)E'(t)$$

$$= \delta_1 \tilde{P}''(t) - (\alpha + 4)\delta_1 ||u'(t)||^2$$

$$\geq -\delta_1^2 \tilde{P}'(t) + \delta_1(\alpha + 2)\{D_* - E(t)\}$$

$$\geq -\delta_1 H(t) + \delta_1(\alpha/2)\{D_* - E(0)\},$$

where we used the fact $E(t) \leq E(0)$ (see (1.6)). Thus we get

$$H(t) \ge e^{-\delta_1 t} (H(0) - n_1) + n_1$$
,

where $n_1 = (\alpha/2)\{D_* - E(0)\}\ (> 0 \text{ by } (4.2))$, and hence, there exists a t_1 such that

$$H(t) > 0$$
 for $t \ge t_1$.

Therefore, it follows from (4.14) and (4.4) that

(4.15)
$$\delta_1 \tilde{P}'(t) > (\alpha/2 + 2)\{D_* - E(t)\} > 0,$$

that is,

$$P(t) > 0$$
 and $P'(t) > 0$ for $t \ge t_1$.

On the other hand, we observe from (4.15) and (1.4) with $\delta_2 = \delta_3 = 0$ that

$$\begin{split} \partial_t \{ (D_* - E(t)) \tilde{P}(t)^{-(\alpha/4+1)} \} \\ &= -E'(t) \tilde{P}(t)^{-(\alpha/4+1)} - (\alpha/4+1) (D_* - E(t)) \tilde{P}'(t) \tilde{P}(t)^{-(\alpha/4+2)} \\ &\geq -\{ E'(t) \tilde{P}(t) + (\delta_1/2) \tilde{P}'(t)^2 \} \tilde{P}(t)^{-(\alpha/4+2)} \\ &= 2\delta_1 \{ \|u'(t)\|^2 \|u(t)\|^2 - (u(t), u'(t))^2 \} \tilde{P}(t)^{-(\alpha/4+2)} \geq 0 \,, \end{split}$$

and hence,

$$\{D_* - E(t)\} \ge n_2 \tilde{P}(t)^{\alpha/4+1}$$

for $t \ge t_1$, where $n_2 = \{D_* - E(t_1)\}P(t_1)^{-(\alpha/4+1)}$ (> 0 by (4.4)). Thus we have from (4.13) and (4.16) that

$$\tilde{P}''(t) + \delta_1 \tilde{P}'(t) \ge n_2 \tilde{P}(t)^{\alpha/4+1}$$

with $\tilde{P}(t) > 0$ and $\tilde{P}'(t) > 0$ for $t \ge t_1$, and hence, we conclude from Lemma 4.3 below that $\tilde{P}(t) = \|u(t)\|^2$ blows up at some finite time. The proof of Theorem 7 is now completed. \square

Lemma 4.3. (see [14, 21]) Let the function P(t) satisfy

(4.17)
$$P''(t) + \delta P'(t) \ge c_0 P(t)^{1+r}$$

for $t \ge 0$ with $\delta \ge 0$, $c_0 > 0$, r > 0, and P(0) > 0 and P'(0) > 0. Then P(t) blows up at some finite time.

PROOF. We consider that the differential equation $Q'(t) = \varepsilon Q(t)^{1+r/2}$ for $Q(t) \in C^2([0,+\infty))$ and $0 < \varepsilon \ll 1$ with Q(0) = P(0) (> 0). Then we see that $Q(t) = \{Q(0)^{-r/2} - (r/2)\varepsilon t\}^{-2/r}$ for some t > 0, and that Q(t) blows up at some finite time T_0 . Since

$$\varepsilon Q(0)^{1+r/2} (= Q'(0)) < P'(0)$$

for some small $\varepsilon > 0$, we have that

$$Q''(t) = \varepsilon (1 + r/2)Q(t)^{r/2}Q'(t) = \varepsilon^2 (1 + r/2)Q(t)^{1+r},$$

and hence, from $Q(t) \geq Q(0)$,

$$Q''(t) + \delta Q'(t) = \varepsilon^2 (1 + r/2) Q(t)^{1+r} + \varepsilon \delta Q(t)^{1+r/2}$$

$$\leq \{ \varepsilon^2 (1 + r/2) + \varepsilon \delta Q(0)^{-r/2} \} Q(t)^{1+r} \leq c_0 Q(t)^{1+r}$$
(4.18)

for small $\varepsilon > 0$. Since Q'(0) < P'(0), we see that Q'(t) < P'(t) for near t = 0. Let

$$T \equiv \sup\{t \in [0, +\infty) : Q'(s) < P'(s) \text{ for } 0 \le s < t\},$$

then we see T>0 and Q'(t) < P'(t) for $0 \le t < T$ and Q(t) < P(t) for 0 < t < T. If $T < T_0$, then we observe that

$$Q'(T) = P'(T), \quad Q''(T) \ge P''(T), \quad \text{and} \quad Q(T) < P(T).$$

On the other hand, it follows from (4.17) and (4.18) that

$$(Q''(T) - P''(T)) + \delta(Q'(T) - P'(T)) \le c_0(Q(T)^{1+r} - P(T)^{1+r}),$$

which is a contradiction, and hence, we see that $T \geq T_0$ and

$$Q(t) \le P(t)$$
 for $0 \le t \le T_0$.

Thus, P(t) blows up at some finite time. \square

5. Global Existence and Decay

In this section we shall study on the global in time existence and energy decay properties of the solution for Eq.(0.1) with $\delta_1 + \delta_2 + \delta_3 > 0$ under the assumptions that $0 \le E(0) \equiv E(u_0, u_1) \ll 1$ and

$$u_0 \in \mathcal{W}_* \equiv \{ u \in \mathcal{D}(A) : K(u) > 0 \} \cup \{ 0 \}.$$

We observe the following useful results connected with the K-positive set \mathcal{W}_* .

Proposition 5.1. (i) If $\alpha < 4/(N-4)^+$, then

- (5.1) W_* is a neighborhood of 0 in $\mathcal{D}(A^{1/2}) = H_0^1(\Omega)$ and an open set.
- (ii) If $u \in \overline{\mathcal{W}_*}$, then

(5.2)
$$d_*^{-1} ||A^{1/2}u||^2 \le J(u) \quad (\le E(u, u'))$$

where $d_* = (1 + 2\alpha^{-1}) \ (\geq 1)$.

PROOF. We see from Lemma 5.2 below that

(5.3)
$$||u||_{\alpha+2}^{\alpha+2} \le c_*^{\alpha+2} ||A^{1/2}u||^{\alpha-(\alpha+2)\theta_1} ||Au||^{(\alpha+2)\theta_1} ||A^{1/2}u||^2,$$

where $\theta_1 = [(N-2)\alpha - 4]^+/(2(\alpha+2))$ and $\alpha - (\alpha+2)\theta_1 > 0$ if $\alpha < 4/[N-4]^+$, and hence, K(u) > 0 if $\mathcal{D}(A^{1/2})$ -norm of u is sufficiently small and $u \neq 0$, which implies (5.1). From the definitions of W_* and J(u), (5.2) follows immediately. \square

We use well-known lemma without the proof.

Lemma 5.2. (Gagliardo-Nirenberg) Let $1 \le r and <math>p \ge 2$. Then, the inequality

$$||v||_{p} \le c_{*} ||A^{m/2}v||^{\theta} ||v||_{r}^{1-\theta} \quad for \quad v \in \mathcal{D}(A^{m/2}) \cap L^{r}(\Omega)$$

holds with some constant c* and

$$\theta = (\frac{1}{r} - \frac{1}{p})(\frac{1}{r} + \frac{m}{N} - \frac{1}{2})^{-1}$$

provided that $0 < \theta \le 1$ $(0 < \theta < 1 \text{ if } m - N/2 \text{ is a nonnegative integer}).$

(Sobolev-Poincaré) Let $1 \le p \le 2N/[N-2m]^+$ $(1 \le p < +\infty$ if N=2m). Then, the inequality

$$||v||_p \le c_* ||A^{m/2}v|| \quad for \quad v \in \mathcal{D}(A^{m/2})$$

holds with some constant c*

Moreover, we use the inequality $||u|| \le c_* ||u||_p$ for $u \in L^p(\Omega)$, $p \ge 2$, with some constant c_* . In what follows, we assume $c_* \ge 1$ for simplicity.

To state our results we define the second energy associated with Eq.(0.1) by

$$E_2(u, u') \equiv ||A^{1/2}u'||^2 + ||Au||^2$$
.

Then, multiplying Eq.(0.1) by 2Au' and integrating it over Ω , we have

$$\partial_t E_2(t) + 2\{\delta_1 \|A^{1/2}u'(t)\|^2 + \delta_2(\beta+1) \int_{\Omega} |u'(t)|^{\beta} |A^{1/2}u'(t)|^2 dx$$

$$+ \delta_3 \|Au(t)\|^2\} = 2(f(u(t)), Au(t)),$$

where we put $E_2(t) \equiv E_2(u(t), u'(t))$ $(E_2(0) \equiv E_2(u_0, u_1))$ for simplicity.

In what follows, we denote by c_j , $j=1,2,\cdots$, constants independent of the initial data and depending only on $\alpha,\beta,N,c_*,\delta_1,\delta_2$, and δ_3 .

Our results are as follows:

Theorem 8. $(\delta_2 > 0)$ Let $\delta_2 > 0$ and $\delta_1 = \delta_3 = 0$ in (0.1), and let the initial data $\{u_0, u_1\}$ belong to \mathcal{W}_* $(\subset \mathcal{D}(A)) \times \mathcal{D}(A^{1/2})$. Suppose that

$$\alpha < 2/[N-4]^+$$
, $\beta \le 4/(N-2)$ $(\beta < +\infty \text{ if } N = 1, 2)$, $\beta < \alpha - [(N/2-1)\alpha - 1]^+$,

and that the initial energy E(0) is small $(0 \le E(0) \ll 1 \text{ but } E_2(0) \ge 1)$ such that (i) when $\alpha \le 4/(N-2)$ ($\alpha < +\infty$ if $N \le 2$),

$$(5.5) (0 \le) c_1 E(0)^{\alpha/2} < 1 \quad and \quad \omega_1 c_3 E(0)^{\omega_2} E_2(0)^{\omega_1} < 1,$$

(ii) when
$$4/(N-2) < \alpha < 2/[N-4]^+$$
 $(N \ge 3)$,

$$(5.6) (0 \le) \{\omega_1 c_3 E(0)^{\omega_2} + c_4 E(0)^{\omega_3}\} E_2(0)^{\omega_1} < 1,$$

where $\omega_1 = [(N-2)\alpha]^+/4$ (≥ 0), $\omega_2 = (\alpha - \beta)/2 - \omega_1$ (> 0), and $\omega_3 = \omega_1(4 - (N-4)\alpha)/((N-2)\alpha - 4)$ (> 0). Then, the problem (0.1) admits a unique global solution $u \in \mathcal{W}_*$ satisfying

(5.7)
$$||u'(t)||^2 + ||A^{1/2}u(t)||^2 \le d_* E(t) \le c(1+t)^{-2/\beta}$$

for $t \geq 0$ with a constant c.

Theorem 9. $(\delta_1 + \delta_3 > 0)$ Let $\delta_1 + \delta_3 > 0$ and $\delta_2 \geq 0$ in (0.1), and let the initial data $\{u_0, u_1\}$ belong to $W_* \times \mathcal{D}(A^{1/2})$. Suppose that

$$\alpha < 2/[N-4]^+$$
 and $\beta \le 4/(N-2)$ $(\beta < +\infty \text{ if } N = 1, 2)$,

and that the initial energy E(0) is small $(0 \le E(0) \ll 1 \text{ but } E_2(0) \ge 1)$ such that (i) when $\alpha \le 4/(N-2)$ $(\alpha < +\infty \text{ if } N=1,2)$,

$$(5.8) (0 \le) c_1 E(0)^{\alpha/2} < 1 \quad and \quad \omega_1 c_5 E(0)^{\tilde{\omega}_2} E_2(0)^{\omega_1} < 1,$$

(ii) when
$$4/(N-2) < \alpha < 2/[N-4]^+$$
 $(N \ge 3)$,

$$(5.9) (0 \le) \{\omega_1 c_5 E(0)^{\tilde{\omega}_2} + c_4 E(0)^{\omega_3}\} E_2(0)^{\omega_1} < 1.$$

where $\omega_1 = [(N-2)\alpha]^+/4$ (≥ 0), $\tilde{\omega}_2 = \alpha/2 - \omega_1$ (> 0), and $\omega_3 = \omega_1(4 - (N-4)\alpha)/((N-2)\alpha-4)$ (> 0). Then, the problem (0.1) admits a unique global solution $u \in \mathcal{W}_*$ satisfying

(5.10)
$$||u'(t)||^2 + ||A^{1/2}u(t)||^2 \le d_*E(t) \le ce^{-kt}$$

for $t \geq 0$ with constants c and k > 0.

Remark 5.3. When we consider the problem (0.1) with $|u|^{\alpha}u$ replaced by the non-linear function f(u) such that

$$|f(u)| \le k_1|u|^{\alpha+1}$$
 and $|f'(u)| \le k_1|u|^{\alpha}$

with positive constants k_1 and k_2 , we can get the similar results as Theorem 8 and Theorem 9. Then we need to redefine (0.3) and (0.6) by

$$J(u) \equiv ||A^{1/2}u||^2 - 2 \int_{\Omega} F(u) \, dx$$

with $F(u) = \int_0^u f(\eta) d\eta$ and

$$K(u) \equiv ||A^{1/2}u||^2 - k_1||u||_{\alpha+2}^{\alpha+2}$$

respectively.

First, we shall prepare for those proof. We put

$$T_1 \equiv \sup\{t \in [0, +\infty) : u(s) \in \mathcal{W}_* \text{ for } 0 \le s < t\},$$

then we see $T_1 > 0$ and $u(t) \in \mathcal{W}_*$ for $0 \le t < T_1$ because $u_0 \in \mathcal{W}_*$ being an open set (see (5.1)). If $T_1 < +\infty$, then $u(T_1) \in \partial \mathcal{W}_*$, that is,

(5.11)
$$K(u(T_1)) = 0$$
 and $u(T_1) \neq 0$.

We see from (1.6), (5.2), and (5.3) that

$$||u(t)||_{\alpha+2}^{\alpha+2} \le (1/2)B(t)||A^{1/2}u(t)||^2$$

for $0 \le t \le T_1$ where

(5.13)
$$B(t) \equiv c_1 E(0)^{(\alpha - (\alpha + 2)\theta_1)/2} ||Au(t)||^{(\alpha + 2)\theta_1}$$

with $c_1 = 2c_*^{\alpha+2}d_*^{(\alpha-(\alpha+2)\theta_1)/2}$.

We put

$$T_2 \equiv \sup\{t \in [0, +\infty) : B(s) < 1 \text{ for } 0 < s < t\},$$

then we see $T_2 > 0$ and B(t) < 1 for $0 \le t < T_2$ because B(0) < 1 by (5.5), (5.6), (5.8), or (5.9). If $T_2 < T_1$ ($< +\infty$), then

$$(5.14) B(T_2) = 1,$$

and

$$(5.15) K(u(t)) \ge ||A^{1/2}u(t)||^2 - (1/2)B(t)||A^{1/2}u(t)||^2 \ge (1/2)||A^{1/2}u(t)||^2$$

for $0 \le t \le T_2$.

PROOF OF THEOREM 8. Following Nakao [16], we shall derive the decay property of the energy $E(t) \equiv E(u(t), u'(t))$ associated with Eq.(0.1) with $\delta_2 > 0$ and $\delta_1 = \delta_3 = 0$. In what follows, we put $\delta_2 = 1$ without loss of generality.

For a moment, we assume that $T_2 > 1$. Integrating (1.4) with $\delta_2 = 1$ and $\delta_1 = \delta_3 = 0$ over $[t, t+1], 0 < t < T_2 - 1$, we have

(5.16)
$$2\int_{t}^{t+1} \|u'(s)\|_{\beta+2}^{\beta+2} ds = E(t) - E(t+1) \quad (\equiv 2D(t)^{\beta+2})$$

and

(5.17)
$$\int_{t}^{t+1} \|u'(s)\|^{2} ds \leq c_{*}^{2} \int_{t}^{t+1} \|u'(s)\|_{\beta+2}^{2} ds \leq c_{*}^{2} D(t)^{2}.$$

Then there exist $t_1 \in [t, t+1/4]$ and $t_2 \in [t+3/4, t+1]$ such that

(5.18)
$$||u'(t_i)|| \leq 2c_*D(t) \quad i = 1, 2.$$

Since $|(g(u'), u)| \le ||u'||_{\beta+2}^{\beta+1} ||u||_{\beta+2}$, we see from (1.5) and (5.15) that

$$(1/2) \int_{t_{1}}^{t_{2}} \|A^{1/2}u(s)\|^{2} ds \leq \int_{t_{1}}^{t_{2}} K(u(s)) ds$$

$$\leq \int_{t}^{t+1} \|u'(s)\|^{2} ds + \sum_{i=1}^{2} \|u'(t_{i})\| \|u(t_{i})\| + \int_{t}^{t+1} \|u'(s)\|_{\beta+2}^{\beta+1} \|u(s)\|_{\beta+2} ds$$

$$\leq \int_{t}^{t+1} \|u'(s)\|^{2} ds + c_{*} \{ \sum_{i=1}^{2} \|u'(t_{i})\|$$

$$+ \int_{t}^{t+1} \|u'(s)\|_{\beta+2}^{\beta+1} ds \} \sup_{t \leq s \leq t+1} \|A^{1/2}u(s)\|,$$

$$(5.19)$$

where we used the fact that $||u||_{\beta+2} \le c_* ||A^{1/2}u||$ for $\beta \le 4/(N-2)$. Integrating (1.4) over $[t, t_2]$, we have from (5.19) that

$$\begin{split} E(t) &= E(t_2) + 2 \int_t^{t_2} \|u'(s)\|_{\beta+2}^{\beta+2} ds \\ &\leq 2 \int_{t_1}^{t_2} E(s) \, ds + 2 \int_t^{t+1} \|u'(s)\|_{\beta+2}^{\beta+2} ds \\ &\leq 2 \int_t^{t+1} \{\|u'(s)\|^2 + \|u'(s)\|_{\beta+2}^{\beta+2}\} ds + 2 \int_{t_1}^{t_2} \|A^{1/2}u(s)\|^2 ds \\ &\leq 2 \int_t^{t+1} \{3\|u'(s)\|^2 + \|u'(s)\|_{\beta+2}^{\beta+2}\} ds \\ &\leq 2 \int_t^{t+1} \{3\|u'(s)\|^2 + \|u'(s)\|_{\beta+2}^{\beta+2}\} ds \\ &+ 4c_* \{\sum_{i=1}^2 \|u'(t_i)\| + (\int_t^{t+1} \|u'(s)\|_{\beta+2}^{\beta+2} ds)^{\frac{\beta+1}{\beta+2}}\} \sup_{t \leq s \leq t+1} \|A^{1/2}u(s)\|, \end{split}$$

and from (5.16), (5.17), and (5.18) that

$$E(t) < 2\{3c_*^2D(t)^2 + D(t)^{\beta+2}\} + 4c_*\{4c_*D(t) + D(t)^{\beta+1}\}(d_*E(t))^{1/2}.$$

Since $2D(t)^{\beta+2} \le E(t) \le E(0) \le 1$, we see

$$E(t) \le 2^8 c_*^4 d_* D(t)^2 + (1/2) E(t),$$

and hence,

$$\begin{split} E(t)^{1+\beta/2} &\leq (2^9 c_*^4 d_*)^{(\beta+2)/2} D(t)^{\beta+2} \\ &\leq 2^{-1} (2^9 c_*^4 d_*)^{(\beta+2)/2} \{ E(t) - E(t+1) \} \,. \end{split}$$

Thus, noting the fact $E(t) \leq E(0)$ and applying Lemma 5.4 below, we obtain the following energy decay estimate:

(5.20)
$$E(t) \le \{E(0)^{-\beta/2} + d_0^{-1}[t-1]^+\}^{-2/\beta}$$

for $0 \le t \le T_2$ with $d_0 = \beta^{-1} (2^9 c_*^4 d_*)^{(\beta+2)/2} (\ge 1)$.

Next, using the energy decay (5.20), we shall estimate the second energy $E_2(t) \equiv E_2(u(t), u'(t))$. It follows from (5.4) and Lemma 5.2 that

$$\partial_{t}E_{2}(t) \leq 2(f(u(t)), Au'(t)) \leq 2c_{*}(\alpha + 1)\|u(t)\|_{N_{\alpha}}^{\alpha}\|Au(t)\|\|A^{1/2}u'(t)\|$$

$$\leq 2c_{*}^{\alpha+1}(\alpha + 1)\|A^{1/2}u(t)\|^{\alpha(1-\theta_{2})}\|Au(t)\|^{\alpha\theta_{2}+1}\|A^{1/2}u'(t)\|$$

$$\leq c_{2}E(t)^{\alpha(1-\theta_{2})/2}E_{2}(t)^{\omega_{1}+1},$$
(5.21)

where $c_2 = 2c_*^{\alpha+1}(\alpha+1)d_*^{\alpha(1-\theta_2)/2}$, $\theta_2 = [(N-2)\alpha-2]^+/(2\alpha)$, and $\omega_1 = \alpha\theta_2/2$. We observe from (5.20) that if $\alpha(1-\theta_2) > \beta$,

(5.22)
$$\int_0^t c_2 E(s)^{\alpha(1-\theta_2)/2} ds = \int_0^1 + \int_1^t \le c_3 E(0)^{\omega_2}$$

with $c_3 = c_2 d_0(\alpha(1-\theta_2))/(\alpha(1-\theta_2)-\beta)$ and $\omega_2 = (\alpha(1-\theta_2)-\beta)/2$. When $\alpha \leq 2/(N-2)$ (i.e. $\omega_1 = 0$), we have from (5.21) and (5.22) that

$$E_2(t) \le E_2(0) \exp\{\int_0^t c_2 E(s)^{\alpha(1-\theta_2)/2} ds\}$$

$$\le E_2(0) \exp\{c_3 E(0)^{\omega_2}\} \quad (<+\infty).$$

On the other hand, when $\alpha > [N-2]^+$ (i.e. $\omega_1 > 0$), we have

$$E_2(t) \le \{E_2(0)^{-\omega_1} - \omega_1 \int_0^t c_2 E(s)^{\alpha(1-\theta_2)/2} ds\}^{-1/\omega_1}$$

$$\le \{E_2(0)^{-\omega_1} - \omega_1 c_3 E(0)^{\omega_2}\}^{-1/\omega_1} \quad (< +\infty)$$

if $\omega_1 c_3 E(0)^{\omega_2} E_2(0)^{\omega_1} < 1$.

When $\alpha \leq 4/(N-2)$ (i.e. $\theta_1 = 0$), we have from (5.5) and (5.13) that

$$(5.25) B(t) = c_1 E(0)^{\alpha/2} < 1.$$

On the other hand, when $\alpha > 4/[N-2]^+$ (i.e. $\theta_1 > 0$), we have from (5.13) and (5.24) that

$$B(t) \le c_1 E(0)^{1 - (N - 4)\alpha/4} E_2(t)^{(N - 2)\alpha/4 - 1}$$

$$\le c_1 E(0)^{1 - (N - 4)\alpha/4} \{ E_2(0)^{-\omega_1} - \omega_1 c_3 E(0)^{\omega_2} \}^{-\frac{(N - 2)\alpha - 4}{4\omega_1}} < 1$$

if we assume (5.6), that is,

$$\{\omega_1 c_3 E(0)^{\omega_2} + c_4 E(0)^{\omega_3}\} E_2(0)^{\omega_1} < 1$$

with $c_4 = c_1^{4\omega_1/((N-2)\alpha-4)}$ and $\omega_3 = \omega_1(4-(N-4)\alpha)/((N-2)\alpha-4)$. Thus we conclude that (5.25) and (5.26) contradict (5.14), and hence, we see that $T_2 \geq T_1$. Moreover, we observe from (5.11) and (5.15) that

$$0 = K(u(T_1)) \ge (1/2) ||A^{1/2}u(T_1)||^2 > 0,$$

which is a contradiction, and hence, we see that $T_1 = +\infty$, that is, (5.20), (5.23), and (5.24) hold true for all $t \geq 0$. The proof of Theorem 8 is now completed. \square

We used the following useful lemma in the proof of Theorem 8. (We omit the proof here, see [15, 17].)

Lemma 5.4. (Nakao [15]) Let ϕ be a bounded and nonnegative function on $[0, +\infty)$ satisfying

$$\sup_{t \le s \le t+1} \phi(s)^{1+r} \le k \{ \phi(t) - \phi(t+1) \}$$

for t > 0 and k > 0. Then

$$\phi(t) \le \{\phi(0)^{-r} + rk^{-1}[t-1]^+\}^{-1/r} \quad \text{for} \quad t \ge 0.$$

PROOF OF THEOREM 9. From (1.5), we have

$$\partial_t \{ 2(u(t), u'(t)) + \delta_1 ||u(t)||^2 + \delta_3 ||A^{1/2}u(t)||^2 \}$$

= $2||u'(t)||^2 - 2K(u(t)) - 2(g(u'(t)), u(t)),$

and hence, from this and (1.4), we have

$$\partial_t E^*(t) = -2\{(\delta_1 - \varepsilon) \|u'(t)\|^2 + \delta_2 \|u'(t)\|_{\beta+2}^{\beta+2} + \delta_3 \|A^{1/2}u'(t)\|^2\}$$

$$-2\varepsilon K(u(t)) - 2\varepsilon \delta_2(g(u'(t)), u(t))$$
(5.27)

for $< \varepsilon < 1$, where we set

(5.28)
$$E^*(t) \equiv E(t) + \varepsilon \{2(u(t), u'(t)) + \delta_1 ||u(t)||^2 + \delta_3 ||A^{1/2}u(t)||^2\}.$$

Then we see that for

$$(5.29) (2d_*)^{-1}(\|u'(t)\|^2 + \|A^{1/2}u(t)\|^2) \le E^*(t) \le 2(\|u'(t)\|^2 + \|A^{1/2}u(t)\|^2).$$

if $\varepsilon \leq (2d_*(c_* + c_*^2\delta_1 + \delta_3))^{-1}$. Indeed, since

$$(5.30) d_*^{-1}(\|u'(t)\|^2 + \|A^{1/2}u(t)\|^2) \le E(t) \le \|u'(t)\|^2 + \|A^{1/2}u(t)\|^2$$

by (5.2) and

$$|2(u, u') + \delta_1 ||u||^2 + \delta_3 ||A^{1/2}u||^2 |$$

$$\leq 2c_* ||A^{1/2}u|| ||u'|| + c_*^2 \delta_1 ||A^{1/2}u||^2 + \delta_3 ||A^{1/2}u||^2$$

$$\leq (c_* + c_*^2 \delta_1 + \delta_3) (||u'||^2 + ||A^{1/2}u||^2),$$

we see (5.29) immediately.

To proceed the estimation of (5.27), we observe from (1.6) and (5.2) that

$$\begin{split} &|\delta_{2}(g(u'),u)| \leq \delta_{2} \|u\|_{\beta+2} \|u'\|_{\beta+2}^{\beta+1} \\ &\leq \delta_{2} c_{*} \|A^{1/2} u\| \|u'\|_{\beta+2}^{\beta+1}, \quad \beta \leq 4/(N-2) \\ &= \delta_{2} c_{*} \|A^{1/2} u\|_{\beta+2}^{\beta} \|A^{1/2} u\|_{\beta+2}^{\frac{2}{\beta+2}} \|u'\|_{\beta+2}^{\beta+1} \\ &\leq \delta_{2} c_{*} (d_{*}E(0))^{\frac{\beta}{2(\beta+2)}} \|u'\|_{\beta+2}^{\beta+1} \|A^{1/2} u\|_{\beta+2}^{\frac{2}{\beta+2}} \\ &\leq \frac{\beta+1}{\beta+2} (\delta_{2} c_{*} (d_{*}E(0))^{\frac{2(\beta+2)}{2(\beta+2)}})^{\frac{\beta+2}{\beta+1}} \|u'\|_{\beta+2}^{\beta+2} + \frac{1}{\beta+2} \|A^{1/2} u\|^{2} \\ &\leq (\delta_{2} c_{*} d_{*})^{\frac{\beta+2}{\beta+1}} \|u'\|_{\beta+2}^{\beta+2} + (1/2) \|A^{1/2} u\|^{2}, \end{split}$$

and hence,

$$\partial_{t}E^{*}(t) \leq -2(\delta_{1} + c_{*}^{-2}\delta_{3} - \varepsilon)\|u'(t)\|^{2} - \varepsilon\|A^{1/2}u(t)\|^{2}$$
$$-2(\delta_{2} - \varepsilon(\delta_{2}c_{*}d_{*})^{\frac{\beta+2}{\beta+1}})\|u'(t)\|_{\beta+2}^{\beta+2}$$
$$\leq -2\varepsilon(\|u'(t)\|^{2} + \|A^{1/2}u(t)\|^{2}),$$
(5.31)

where we used (5.15) and we put

$$\varepsilon = \min\{(\delta_1 + c_*^{-2}\delta_3)/2, \delta_2(\delta_2c_*d_*)^{-\frac{\beta+2}{\beta+1}}, (2d_*(c_* + c_*^2\delta_1 + \delta_3))^{-1}\}$$

(We note that $\varepsilon > 0$ by $\delta_1 + \delta_3 > 0$). Thus we obtain from (5.29), (5.30), and (5.31) that

$$E^*(t) \le E^*(0)e^{-\varepsilon t}$$

or

(5.32)
$$E(t) \le ||u'(t)||^2 + ||A^{1/2}u(t)||^2 \le (2d_*)^2 E(0)e^{-\epsilon t}$$

for $0 \le t \le T_2$.

Next, using the decay (5.32), we shall estimate the second energy $E_2(t)$. It follows from (5.4) and (5.21) that

(5.33)
$$\partial_t E_2(t) \le c_2 E(t)^{\alpha(1-\theta_2)/2} E_2(t)^{\omega_1+1}.$$

We observe from (5.32) that if $\alpha(1-\theta_2) > \beta$,

(5.34)
$$\int_0^t c_2 E(s)^{\alpha(1-\theta_2)/2} ds \le c_5 E(0)^{\tilde{\omega}_2}$$

with $c_5 = c_2 (2d_*)^{2\tilde{\omega}_2}/\tilde{\omega}_2$ and $\tilde{\omega}_2 = \alpha(1-\theta_2)/2$ (> 0). When $\alpha \leq 2/(N-2)$ (i.e. $\omega_1 = 0$), we have from (5.33) and (5.34) that

(5.35)
$$E_2(t) \le E_2(0) \exp\{c_5 E(0)^{\alpha/2}\} \quad (<+\infty).$$

On the other hand, when $\alpha > 2/[N-2]^+$, we have that

$$E_2(t) \le \{E_2(0)^{-\omega_1} - \omega_1 \int_0^t c_2 E(s)^{\alpha(1-\theta_2)/2} ds\}^{-1/\omega_1}$$

$$\le \{E_2(0)^{-\omega_1} - \omega_1 c_5 E(0)^{\tilde{\omega}_2}\}^{-1/\omega_1} \quad (< +\infty)$$

if $\omega_1 c_5 E(0)^{\tilde{\omega}_2} E_2(0)^{\omega_1} < 1$.

When $\alpha \leq 4/(N-2)$ (i.e. $\theta_1 = 0$), we have from (5.8) and (5.13) that

$$(5.37) B(t) = c_1 E(0)^{\alpha/2} < 1.$$

On the other hand, when $\alpha > 4/[N-2]^+$ (i.e. $\theta_1 > 0$), we have (5.13) and (5.36) that

$$B(t) \le c_1 E(0)^{1 - (N - 4)\alpha/4} E_2(t)^{(N - 2)\alpha/4 - 1}$$

$$\le c_1 E(0)^{1 - (N - 4)\alpha/4} \{ E_2(0)^{-\omega_1} - \omega_1 c_5 E(0)^{\tilde{\omega}_2} \}^{-\frac{(N - 2)\alpha - 4}{4\omega_1}} < 1$$

if we assume (5.9), that is,

$$\{\omega_1 c_5 E(0)^{\tilde{\omega}_2} + c_4 E(0)^{\omega_3}\} E_2(0)^{\omega_1} < 1.$$

Thus we conclude that (5.37) and (5.38) contradict (5.14), and hence, we see $T_2 \ge T_1$. Moreover, we observe from (5.11) and (5.15) that

$$0 = K(u(T_1)) \ge (1/2) ||A^{1/2}u(T_1)||^2 > 0,$$

which is a contradiction, and hence, we see $T_1 = +\infty$, that is, (5.32), (5.35), and (5.36) hold true for all $t \geq 0$. The proof of Theorem 9 is now completed. \square

References

- [1] S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Progress in Nonlinear Differential Equations and Their Applications 17, 1995.
- [2] J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford 28 (1977), 473-486.
- [3] Y. Ebihara, S. Kawashima, and H. A. Levine, On solutions to $u_{tt} |x|^{\alpha} \Delta u = f(u)$ ($\alpha > 0$), Funkcial. Ekvac. 38 (1995), 539-544.

- [4] R. T. Glassy, Blow-up theorems for nonlinear wave equation, Math. Z. 132 (1973), 183-203.
- [5] R. T. Glassey, Finite-time blow-up for solutions on nonlinear wave equations, Math. Z. 177 (1981), 323-340.
- [6] V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations 109 (1994), 295-308.
- [7] A. Harux and E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems, Arch. Rat. Mech. Anal. 100 (1988), 191-206.
- [8] R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, to appear in Hiroshima Math. J.
- [9] H. Ishii, Asymptotic stability and blowing-up of solutions of some nonlinear equations, J. Differential Equations 26 (1977), 291-319.
- [10] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt} = -Au + \mathcal{F}(u)$, Tran. Amer. Math. Soc. 192 (1974), 1-21.
- [11] H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal. 5 (1974), 138-146.
- [12] H. A. Levine, Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: The method of unbounded Fourier coefficients, Math. Ann. 214 (1975), 205-220.
- [13] J. Lions, Quelques Méthodes de Résolution des problèmes aux Limites Non-Linéaires, Dunod Gauthier-Villars, 1969, Paris.
- [14] T.-T. Li and Y. Zhou, Breakdown of solutions to $\Box u + u_t = |u|^{1+\alpha}$, Discrete Contin. Dynam. Systems 1 (1995), 503-520.
- [15] M. Nakao, A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan. 30 (1978), 747-762.
- [16] M. Nakao, Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations, Math. Z. 206 (1991), 265-276.
- [17] M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations, Math. Z. 214 (1993), 325-342.
- [18] M. Ohta, Blowup of solutions of dissipative nonlinear wave equations, to appear in Hokkaido Math.
- [19] K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation, to appear in Math. Methods Appl. Sci.
- [20] L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975), 273-303.
- [21] P. Souplet, Nonexistence of global solutions to some differential inequalities of the second order and applications, Portugal. Math. 52 (1995), 289-299.
- [22] W. A. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math. 19 (1966), 543-551.
- [23] W. A. Strauss, The Energy Methods in Nonlinear Partial Differential Equations, Notas de Matematics, Rio de Janeiro, 1969.
- [24] H. Takamura, Blow-up for nonlinear wave equations with slowly decaying data, Math. Z. 217 (1994), 567-576.
- [25] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, (Applied Mathematical Sciences), Vol.68, New York, 1988.
- [26] M. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space, Math. Japon. 17 (1972), 173-193.