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Abstract

We study the initial-boundary value problem for the nonlinear wave equa-
tions with nonlinear dissipative terms : Ou + |u'|Pu’ = |u|*u with u(0) = u,,
u'(0) = uy, and u|sg = 0. When the initial energy E(uo,u1) < 0 and the
inner product (ug,u;) > 0, the solution blows up at some finite time T
which is estimated from above. On the other hand, when 0 < E(up,u;) < 1

and ug € W,, the solution exists globally in time and has the energy decay
E(u(t),u'(t)) < c(1+t)"2/8 for t > 0.

1991 Mathematics Subject Classification. Primary 35L70 ; Secondary 35B40

1. Introduction

In this paper we mainly investigate on the blowup phenomena to the initial-boundary
value problem for the following nonlinear wave equations with nonlinear dissipative
terms : '

(0.1) { u' + Au+ §1u' + & |u'|Pu’ + 83 A = |u|*u in Qx[0,+400)
) u(z,0) = uo(z), u'(z,0)=ui(z), and wu(z,t)|sg =0,

where Q is a bounded domain in RN with smooth boundary 9%, ' = 8, = 8/dt, A =
-A= Zj\;l 9?9z is the Laplace operator with the domain D(A) = H2(Q)n H}(Q),
81 > 0,8, > 0,83 > 0,8 >0, and @ > 0 are constants. Let H be the usual real separable
Hilbert space L(Q) with norm | - || and inner product (-,-). We denote L?(£2)-norm by

-l Q- 1F= 11 N2)-
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We define the energy associated with Eq.(0.1) by
(02) Blu, ) = | + I(w),
where we put

lulloz

(0.3) T(u) = |AY2u? -

and following Nakao and Ono [17], we introduce the K-positive set and the K-negative
set :

(0.4) W, = {u € D(A) : K(u)>0}U{0}
and
(0.5) V. ={ueD(4) : K(u) <0},

respectively, where we set
(0.6) K(u) = | A" ?u® — |lufl3t3

(cf. see [9, 20, 26]).

In the non-dissipative case (§ = §; = 83 = 0), many authors have already studied
on blowup solutions for the problem (0.1), see for example the works of [1-5, 9, 24,
26). In particular, when a < 4/(N —2) (a < +o00 if N = 1,2), we observe tha.t the
solution of (0.1) with §; = §; = 83 = 0 can not be extended globally in time under
the assumptions which ug € V, and E(ug,u;1) < d (i.e. E(ug,u;) < 1), where d is the
so-called potential well depth, and that the solution can be extended globally in time
under the assumptions which uy € W, and 0 < E(ug,u;) < d (e.g. see [20]).

In the case of §; = 0'in (0.1), Levine [10-12] has given an upper estimate of the
blowup time T under E(ug,u;) <:0:by using the so-called concavity methods. We note
that u € V, if E(u,u') < 0. Recently, when & < 4/(N —2) (a < 400 if N = 1,2), in the
case of §; > 0 and §; = 83 = 0in (0.1), Ohta [18] has proved that the solution can not be
extended globally in time under the assumptions which ug € V, and :E(uo, up) < d. On
the other hand, we shall prove that the problem (0.1) admit$ a unique global solution,
and that the solution has some decay properties under the assumptions which uy € W,
and 0 < E(ug,u;) < 1 without the assumption a < 4/(N — 2) in Section 5.

In the case of 6; > 0 and 6; = &3 = 0in (0.1), Georgiev and Todorova [6] have proved
that the solution can not be extended globally in time under the assumptions which the
initial energy is sufficiently negative (E(uo,u;1) < —1) and f < a < 2/(N — 2) without
any estimates of the blowup time T. Our purpose of the present paper is mainly to
relax the assumption connected with the initial energy to E(ug,u;) < 0, and to derive
an upper estimate of the blowup time T, where we treat the case of §; > 0,6; > 0, and
63 > 0 in Section 2. Moreover, we also give the arranged proof for blowup results in the
case of 6; = 0 in Sections 3 and 4.
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On the other hand, in the case of 6; + 82 + 3 > 0 in (0.1), we show that the
problem (0.1) admits a unique global solution, and that the solution and its energy have
some decay properties under the assumptions which ug € W, and 0 < E(ug,u;) < 1.
In particular, when 6; > 0 in (0.1), the energy E(u(t),u'(t)) has some decay rate
polynomially. When §; + 83 > 0 in (0.1); the energy E(u(t),u'(t)) has some decay rate
exponentially (see Section 5). Nakao [16] has studied the existence and decay properties
of a unique global solution for the problem (0.1) with —|u|*u (monotone) instead of
|u|u in the case of §; > 0 and §; = §3 = 0, but his results can not apply our problem
immediately. Our results of the global in time solvability can apply to the problem
(0.1) with |u|*u replaced by the nonlinear function f(u) such that |f(u)| < k;|u|**?
and |f'(u)| < kz|u|* with positive constants k; and k;.

We denote [a]* = max{0,a} where 1/[a]t = +o0 if [a]t = 0.

1. Preliminaries

We give the local in time existence theorem for the problem (0.1) applying the Banach
contraction mapping theorem.

Theorem 1. (Local Existence) Let the initial data {ug,u;} belong to D(A) x
D(AY?). Suppose that

a<2/(N-4) (a<+ooif N<4).

Then the problem (0.1) admits a unique local solution u belonging to
€30, T); D(4)) N CL([0, T); D(A2)) 0 C°([0, T); D(A1/2)) 1 CH([0,T); H)
for some T = T(|| Auo |, || A*/?u1||) > 0, and u satisfies
(1.1) u' € LPY2((0,T) x Q) if &, >0,
(1.2) u' € L*(0,T; D(AY?)) if 6 >0.
Moreover, if 63 = 0, then
(1.3) u € C°([0,T); D(A)) N C*([0,T); D(A?)) n C*([0,T); H).
Furthermore, at least one of the following statements is valid :
()T =400

(i) | Au(@)I? + A2 @) = 400 as t—T-.

PROOF. For T > 0 and R > 0, we define the two-parameter space X7 g of the
solutions by

Xrr = {u(t) €03(10, 71 D(4)) N CL((0, T; D(AY?) N C°([0,T); D(AY/?)
NCY([0,T); H) : J|AY*' () + | Av(t)]* < R? on [0,T]} .
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It is easy to see that X g can be organized as a complete metric space with the distance :
d(u,v) = sup {|lu'(t) = o' () + |42 (u(t) - ()"}
0<t<T

We define a nonlinear mapping S as follows For v € X1 g,u = Sv is the unique solution
of the following equations :

{ u' + Au’ + 61u' + 6z|u'|ﬂu' + 63Au’ - |'Ula'l) in Qx [O,T]
u(0) = up, u'(0)=wu;, and ‘ulsg=0. '

Using the fact that (Ju}|Puf —|uj|Pul,u) —uj) > 0, we can prove that there exist T' > 0
and R > 0 such that § maps Xr g into itself ; S is a contraction mapping with respect
to the metric d(-,-) (e.g. see Theorem 3.1 in [13] Theorem 2.1 in [6]). By applying the
Banach contraction mapping theorem, we obtain a unique solution u belonging to X1,r

of (0.1). Moreover, noting that (|u'|?u’,u') = ||u'||gi§ and (Au',u') = ||AY2u'|2, we

get (1.1) and (1.2), respectively (see [23]). When é; = 0, by the continuity argument
for wave equations (e.g. see [13, 22, 25]), we see that the solution u belongs to (1.3).
We omit the detail here. O

In what follows, we put E(t) = E(u(t),u'(t)), f(u) = |u|“u, and g(u') = |u'|Pu’ for
simplicity.

Multiplying Eq.(0.1) by 2u' (or u) and integrating it over Q, we have immediately
the following differential equalities associated with Eq.(0.1).

Lemma 1.1. Let u be a solution of (0.1). Then
(1.4) BE(t) + 2{&1|lw'())]I* + 52lIU’(t)H§i§ + 8| A2 (4)]1%) 0 ,
where E(t) = E(u(t), u'(t)), and
(1.5)  K(u(t) = lu' ()1 — Be(u(t), u'(£)) — (810 () + S29(u'(t)) + 63 Au'(t), u(?))
where K(u) = [|AV2ul2 = [ull 53 and g(u') = '[P’

We see from (1.4) that

(1.6)  E(t)+ 2/0- {8l ()I12 + 21’ (311557 + &l A2 (s)]* Yds = E(0)
where E(0) = E(uq,u1).

To pull out blowup properties of solutions, we apply the concavity methods (see
Levine [10-12]). We define the nonnegative function P by

(1.7) P(t) =[lu(®)]” +/0 (B1llu()I* + 651l A 2u(s)]|*) ds
+(To — )(B1llwoll® + 6|4 2uo||) + r(t + 7)?
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for a solution u(t),t € [0, Ty], where Ty > 0,7 > 0, and 7 > 0 are some constants which -
are specified later on, then we observe the following properties.

Proposition 1.2. The function P(t) satisfies
(1L8)  P'(t)=2{r ~ B() + 2’ ()] + =5 lu()]1533 - da(o(u' (1)), u(t)))
with g(u') = |u'|Pu!, and
(1.9) P(t)P"(t) - (a/4+ DP'(t)* 2 P(H)Q(Y),
where
(1.10) Q(t) = — (a +2)(r + E(0))

t
+a{]| A u(t)|? +/ (Enlle (I + &Il A2 ()]I?) ds)

+25{(a+2) / 14555345 — (o(u (0, ().

Proor. Differentiating (1.7) with respect to ¢, we have
P'(t) = 2(u(t), u'() + (ullu()]* + 6|4 *u(®)]?) .
= (8ulluoll® + &[4 ?uq||?) + 2r(t + 7)
= 2{(u(®), ¥'(1)) +/0 (6:(u(s),u'(s)) + 6:(APu(s), A/?4/(5))) ds
(1.11) +r(t+7)}

PY(6) = 2((u(t), 0" (£) + 810/ (8) + 6540/ (1)) + [/ (O + 7)
(112) =20+ WO - K(u(t) - (@), u(t)
= 2{r = B(t) + 2/ (O + 5 (0I5} — fa(ow' (1), u(e))},

which implies the desired equality (1.8). Next, we set
t
R(t) ={llu()II? +/ (Exllu(s)II? + 8al| A *u(s)|®) ds + r(t + )2} x
0
t
<A+ [ @I + 847 () ds + 1)
0

~ () + [ (Eululs) () + 8o AV 7u(s), A/ (5) s
Fr(t+ ), |
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then we see R(t) > 0 and
R(t) ={P(t) — (To — t)(&ullwoll” + 8]l A" *uo|I*)}
x {lle' (O + /0 Grllu'()I1* + &)l A 2u'()%) ds + v} — (1/4)P'(2)?

or

(1.13)
P'(t) =4[{P(t) — (To — t)(61[luol* + 8[| A" *uo|I*)}

t
x Il O + / (allw' (I + &l A2/ (s)|*) ds + r} — R(2)].

0

Thus it follows from (1.13) that

P(t)P"(t) - (a/4 + 1)P'(t)?
> P(t)[P"(t) — (o + 4){ll' (D)1

+ /()t(‘Slllu'(S)Il2 + 81| AM2u'(s)|%) ds + 7]
To derive (1.9), we shall show that the above [ -] is equal to Q(t).
[ ]=2{r + W' (OII” - K(u(t)) — 62(g(u'(£)), u(t))}
~ @+ O+ WO+ [ (Gl ) + 854 ()2 ds)
= —(a+2)(r + lu'@ON*) + 2{-K(u(?)) — 62(g(u'(t)), u(t))}
~(a+) [ O + 614 () ds
= —(a+2){r + E(t) +2 /ot(51||u'(8)ll2 + 621’ (s) 1517
+ 81412 ()| ds)
+ a{ |4 u(t)|* + /ot(élll?/(éi)ll2 + 83| A2 (s)||?) ds}
+26 (et 2) [ IWNELEs (o)),
and noting (1.6), it is equal to Q(¢). The proof of Proposition 1.2 is now completed. O
2. Blow UpI (& >0)
When 8 > 0 (8; > 0,685 > 0) in Eq.(0.1), we sh"all show that the solution u(t) blows

up at some finite time under the assumptions which E(0) < 0 and (ug,u;) > 0 and
a > . We denote by |Q| the measure of 2, and we assume || > 1 for simplicity.
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‘Our main result is as follows.

Theorem 2. (6; > 0) Let §; > 0 1n (0.1). Suppose that o > ( and
E(0) <0 and G(0) = (—E(0)* + 2wmy(ug,u1) > 0.
Then there exists a T such that
0 < T < memyw(l —w) 1 G(0)~C—¥)/w

and the local solution u(t) in the sense of Theorem 1 blows up at the finite time T, where
w,mg, and my are positive constants such that

1 1
w:l—'(ﬂ—_}_—z—a—“) (1/2<w<1),

mo = (262(1 + 2/a)|ﬂ[:—3=%(_E(o))—(l—w))l/(ﬂ.;.l) ,
m = zma‘x{la (1 + z/a)(zmlﬂ:_“jmo—])W%(—E(O))_(l“(z-a_—&;m)} .

PROOF. We put r = 0in (1.7) and we shall estimate P"(t) given by (1.8) with r = 0.
We have that for g(u') = |u/|?u’

1
162(g(u"), w)] < &2l 1553 lull gz < S Bullw’ 1525 l1ull otz
2

2 _( 3—1)
(2.1) = 5231IIU'||§EHU|L512|| ull gy’
with B; = lQ|1°+¢;5—fg:F25. Since we see from (0.2), (0.3), and (1.6) that
(2.2) lu(®llarz 2 (=E@)C*D 2 (=E0))V/ =+ > 0

and from the Young inequality that

B+1, _
62 B [l | 3 nz?;_ﬁ (718, B) 512 + ﬂ+2uuuzi%

for any € > 0, we observe from (2.1) that
S2l(g(u'(£)), u())| < (676, B1) 58 (— B(t))~ T =54 |u' (1) 512
+ P (—E(0)) T F T ||u(t)|513
if &« > B, and we obtain from (1.8) with » = 0 that
P'(t) 2 2{(=E(®)) + 2w’ O + —llu(®)l1533
— (726, By) FH (—E(t)) (7~ |/ (1)1 512
—eﬂﬂ(—E(O))-‘ﬁ-ﬁTHlu( Diet:

a+2
> 2{(—E(t)) + 2llu'(t)])* + 2 +2) lu(®)llet3

(2.3) — 63mo(~E(t)) =) ||u/(1)142),
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where we put #+? = (a/2)(a + 2)'1(—E(0))(3'7'13_;1ﬁ) (> 0if E(0) < 0) and mp =
(262(1 + 2/0) B ** (= E(0))~{m =)/ 64D,
We introduce the function G(t) as

G(t) = (~E()* +wmy P'(1)
withw=1- (ﬁ+2 —37) (1/2 <w < 1), then we observe the following.

Claim A. If E(0) < 0 and o > 3, then

(2.4) G'(t) > my H(),
where |
(25) H(®) = (-E®) + 2 O + 57 Ol (> 0)-

Indeed, we see from (1.4) and (2.3) that

G'(t) = w(=E(t)) "~ (= E'(t)) + wmg ' P"(t)
> 2w(=E(#))" (& |lu ()] + &l '(t)llﬂ 2 + &l A2 ()7

+ 2wmg H {(—E(t)) + 2llw' ()1 + otz

2( + 2) "u( )”a+2
— 8mo(—E(t)) "~ |l ()II513

B+2
> 20my  {(~E(1) + 2lu'(t)|? + s—=: w532} 2 mg H(1),

2(a +2)

where we used the fact 1/2 < w < 1, which implies (2.4).
Moreover, we observe the following.

Claim B. If E(0) < 0 and o > 3, then
(26) G(P* < muH(D)

with my = 2max{1, (1+2/a)(2B2m )zw T(—E(0))" 0~ 0w} and B,
= |Q| =D,

Indeed, Since |(u,u)| < Ba||u'||||u]|a42, we have that

G(t)'/* < 2{(—E(t)) + (mg |P' (1))}
< 2{(-E(®)) + (2Bzmg ' () lu()llat2)" )
< 2{(=E(1)) + 2w’ (I + (1/2)(2Bamy ™ [lu(t)l|av2) )},
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where we used the Young inequality. Moreover, since 2/(2w — 1) < a + 2 and
(=E0)7 D u(t)llas2 21 i E(0) <0
(see (2.2)), we observe that

G()'/* < 2{(-E(t)) +2|lu' ()|’

+ (1/2)(2Bymy ) =1 (— E(0)) ~~ m=tiww ) |[u(t) || 232}

and hence, we obtain (2.6).
Therefore it follows from Claim A and Claim B that

B{GH) ) =~ =26 (1) < ~ 2= (momy)

and hence,
G(t) > {G(0)~(-)/w _ F_w(moml)—lt}—w/(l—w)
w
for some t > 0 if G(0) > 0. Here, we put Ty = memw(l —w)™*G(0)~(1=%)/“ Then
there exists a T such that 0 < T < Tp and lim;—,7. G(t) = +oo.

Since it follows from (0.2) and (0.3) that (—E(2)) + |ju'()]I* < 2(a + 2) " H|u()||22,
we have from (2.5) and (2.6) that G(¢)!/“ < Const.|u(t)] N Thus, we see that
lime 7 [lu(t)||2,, = Emer {||Au(?)]|® + ||A}/?4'(t)]|?} = 400, and hence, the local
solution u(t) can not be continued to the finite time T. The proof of Theorem 2 is now
completed. 0O

Remark 2.1. Since G'(t) > mg'H(t) > my'(~E(0)) > 0, there exits a t; > 0
such that G(t) > 0 for ¢ > to, and hence, we see that if @ > # and E(0) < 0 (without
G(0) > 0), the local solution blows up at some finte time.

3. Blow Up II (6, = 0)

When 6; = 0 (6; > 0,683 > 0) in Eq.(0.1), we shall show that the solution blows up at
some finite time under the assumptions which E(0) < 0, or E(0) = 0 and (ug,u;) > 0
(see [10-12]). :

Our results are as follows.
Theorem 3. (6; =0) Let & =0 in (0.1). Suppose that
E(0) < 0.
Then there exzists a T such that

0 < T <a™*(~E(0)) ™ [{(281luo ? + 28| A 2uo |2 — (g, uy))?
+ a®(=B(0)luoll*}/2 + 281 luol? + 26| A" *uo | — a(uto, uy)
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and the local solution u(t) in the sense of Theorem 1 blows up at the finite time T
Theorem 4. (8§, =0) Let §; =0 in (0.1). Suppose ihat
E(0)=0 and (uo,u1)>0.
Then there exists a T such that
0 < T < 2a~ Y (ug,uy) ™ ||luolf?
and the local solution u(t) in the sense of Theorem 1 blows up at the finite time T
Here, we denote the Sobolev-Poincaré constant by
(3.1) oy = sup{[oll A2 : v € D(A?), v £0)
for2<p<4/[N-2]T (2<p<+0if N =2).
Theorem 5. (§; = §; = 83 =0) Let §; = 6, = 83 = 0 in (0.1). Suppose that
(3.2) E(0) < a(a+ 2)_10;',%”110”2 and (ug,u;)>0.
Then there exists a T such that
(3.3) 0< T < 2o (ug,u1) ™ luo]?

and the local solution u(t) in the sense of Theorem 1 blows up at the finite time T

PROOF OF THEOREM 3 AND 4. We put r = —E(0) (> 0) and §; = 0 in (1.7), then

we see from (1.10) that

Q1) = af||APu())? +/o (Sullw' (s)II* + 65142/ (s)]I*) ds} 2 O
and from (1.9) that
(P()7°/*)" = —(a/4)P(t)"C/*DLP(t)P"(t) — (a/4 + 1)P'(1)*} 0,
and hence,

a/d4+1
(3.4) P(t) 2 {; ngoz B0}

}a/4

for some t > 0 if P(0) > 0.
Case I. When E(0) < 0, we choose 7 > 0 such that

P'(0) = 2{(uo,u1) + (—E(0))7} >0,
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and we take
To = 4P(0)/(aP'(0)) (> 0).

Then we see that

2{||uoll” + (=£(0))7*}
o{(uo, 1) + (= E(0))r} — 2(6 [|uo||? + 8| A1/ 2o |2)’

Ty=T(r) =

and we find that T(r) takes a minimum at

7 =10 = (= E(0) T [{(281]|uol® + 263[| A *uo||* — o(ug, u;))?
+ o (=E(0)luoll*}'/* + 281 luo|I* + 28 A 2uo |2 ~ a(uo, u1)].

Here, we put
To = m>ig T(r) =T(m).

Then, we see from (3.4) that there exists a T such that 0 < T < Tj and
¢
(35) lrp (I + [ (Gulu()I? + 65l 42w )] ds) = +oo,
—T- 0

that is, limy— 7 ||AY2u(t)]| = 400 if 65 > 0 and lim,_ . lu(t)]] = +o0 if 63 = 0, and
hence, the local solution u(t) can not be continued to the finite time T. The proof of
Theorem 3 is now completed.
Case I. 'When E(0) = 0 and (ug,u;) > 0, we see that
P(0)>0 and P'(0)>0.

Putting To = 4P(0)/(aP'(0)) (> 0), we see from (3.4) that (3:5) holds for some 0 <
T < Ty. The proof of Theorem 4 is now completed. O

PROOF-OF THEOREM 5 We put r =0 and §; = § = § = 0 in (1.7) i.e. P(t) =
||lu(?)|{?, then we see from (1.10) that

Qt) = ~(a+2)B(0) + a4/ 2u(t)|?
We assume that (ug,u;) > 0, then
P'(t) = 2(u(t),u'(t)) > 0
for near t = 0, that is, P(t) is a increasing function and
0 < [luol* = P(0) < P(t) = [u(®)|? < & ]| A" 2u(t)]]?
for near ¢ = 0. Thus we obtain that

Q(t) 2 —(a + 2)E(0) + ac_3lluo|® 2 0
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if E(0) < afa+ 2)“1c;§|lu0||2. Then it follows from (1.9) that
(P(t)~*/*)" = —(a/4)P(t)" /"D {P(t)P"(t) - (2/4 + 1)P'(t)’} <O

and
(P(t)™*/*) = —(a/4)P(t)"/**DP'(t) < 0

for near t = 0. Thus we have that
B{(P(&)/Y}? = 2(P(t) /4" (P(£) %) > 0,
and hence,
(P11} 2 {(PO)/*)}? = {~(a/4)P0) /) P'(0)}? > 0

for near t = 0. Therefore, we conclude that (P(t)™%/%)' can not be change sign for
t > 0, and we see that

P()>0, P'(t)>0, and (P(t)™*/*)" <0

for t > 0. Putting Ty = 4P(0)/(aP'(0)) (> 0), we see from (3.4) that (3.5) with
§; = 63 = 0 holds for some 0 < T < Ty. The proof of Theorem & is now completed. O

4. Blow Up III (6, =65 =0 & a <4/(N —2))

In this section, even if initial energy E(0) is positive, we shall show that the solution
for the problem (0.1) with §; = 83 = 0 (8; > 0) can not be continued globally under the
assumptions which ug € V. and E(0) € 1 and a < 4/(N —2) (a < o0 if N = 1,2).

We observe the following useful results connected with the I{-negative set V.
Proposition 4.1. Let u be a solution of Eq.(0.1). Suppose that

a<4/(N=2) (a<-+ooif N=1,2),

(4.1) ug € Vo = {u € D(A) : K(u) <0},
and
(4.2) E(0) < a(a+2) ' 2efP/* (= D,)

with a positive constant cs otz given by (3.1). Then

(4.3) K(u(t)) = |4 ?u(@)|* ~ lu(®)lisiz <0

and

(4.4) E(t) < D, < a(a +2)7 A 2u(t)|?
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fort >0 (cf (3.2)).
PROOF. Since E(t) < E(0) (see (1.6)), we get from (4.2) immediately that
(4.5) E(t) < D,.

Let
T =sup{t € [0,+00) : K(u(s))<0 for 0<s<t},

then we see T > 0 by (4.1) and K(u(t)) <O and u(t) #0for 0 <t < T. f T < +4o0,
then K(u(T)) = 0, and hence,
(4.6) J(u(T)) = ||A1/”u(T)||2

Now, when K(u) < 0 and u # 0, we see from (3.1) that

142 u? < Jlullgd? < 2,14 2ulj=t?

for a <4/(N —2) (a < +o0 if N = 1,2), and hence,

(4.7) A 2u|? > 25D/ (> 0),

Thus, we have from (4.7) and the continuity that

(4.8) A 2u(T)|? > e 253D .

Thus we get from (0.2), (4.6), and (4.8) that
E(T) 2 J(T) 2 o(a +2)"H|AY?*u(T)|* > D.,

which contradicts (4.5), and hence, we see T = +o00. Moreover, from (4.5) and (4.7) we
obtain (4.4). O

When é; = 6; = 63 = 0in (0.1) (non-dissipative case), we obtain the following result.

Theorem 6. (§ = 6, = 83 = 0) Let & = & = 6 = 0 in (0.1). Under the

assumption of proposition 4.1, the local solution blows up at some finite time.

Remark 4.2. If we assume that (ug,u;) > 0, then the conclusion of Theorem 3
holds true, that is, the local solution blows up at the finite time T given by (3.3).

PROOF. We put r =0 and 6; = 6, = 63 = 0in (1.7) i.e. P(t) = ||u(?)||?, then we
see from (1.12) that
(4.9) P"(t) = 2{|l' (DI — K(u(t))}
(4.10) = (a+ D' O + {all A2u(®))® - (a + 2)E(t)}
2 (a+ 9O,
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where we used (4.4) at the last inequality. Thus we have that

P"()P(t) - (a/4+ 1)P'(t)’
(4.11) > (o + 4){ [ O @)l = (u(®), v ()"} 2 0

fort > 0.
On the other hand, we see from (4.10), (4.7), and (1.6) with §; = §2 = 63 = 0 that

P"(t) > af| AY2u(®)|* — (a +2)E(t)
> (a +2){Ds — E(0)} =no >0,

where we used the assumption (4.2). Then we obtain that
P'(t) > P'(0) + not,

and hence, there exists o such that

(4.12) P'(t) = 2(ult), ¥ (£)) > 0

for t > to. Thus, from (4.11) and (4.12) we arrived at our conclusion by the argument
as in Section 2. O

Theorem 7. (§; > 0,62 =65 =0) Let 6 >0 and b =63 =0 in (0.1). Under the
assumption of Proposition 4.1, the local solution blows up at some finite time.

Proof. Following Ohta [18], we shall prove the theorem. We put
P(t) = u@I*
then we see from (1.5) (cf. (4.9)) that
PR+ 8P = 2l O - E(u(1)))

= (a +4)[l'()|* + {a]| A*2u(t)]]? = (a + 2)E(t)}
(4.13) > (a+ 'O + (a + 2){Ds — E(1)}, '

where we used (4.7). Next, we put
(4.14) H(t) = 6, P'(t) — («/2 + 2){D« — E(t)},
then we see from (1.4) with §, = 63 = 0 and (4.13) that
H'(t) = 6 P"(t) + (/2 + 2)E'(2)
= 8.P"(t) = (a+ 1)a[lu'(H)]”

> —82P'(1) + 6;1(a + 2){D. — E(t)}
> —6H(t) + 6:1(a/2){D. — E(0)},
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where we used the fact E(t) < E(0) (see (1.6)). Thus we get
H(t) > e "Y(H(0) — ny) + ny,
where ny = (a/2){D, — E(0)} (> 0 by (4.2)), and hence, there exists a t; such that
H(t)>0 for t>t;.
Therefore, it follows from (4.14) and (4.4) that
(4.15) 6.P'(t) > (a/2+2){D. — E(t)} >0,

that is,
P(t)>0 and P'(#)>0 for t>t,.

On the other hand, we observe from (4.15) and (1.4) with §; = §3 = 0 that

8{(Dy — E(t))P(t)=(o/++1)}
= —E'()P(t)"/*) — (a/4 + 1)(D. — E(t))P'(t)B(t)~(/*+?)
> —{E'(t)P(t) + (6:/2)P'(t)2} P(t)~(=/4+D)
= 28 {|lw' @I [w(I® = (u(t), v’ ())*}P(2)"/**D) > 0,

and hence,
(4.16) {D. — E(t)} > ny P(t)*/**!

for ¢t > t;, where n; = {D, — E(t;)}P(t;)~(®/4+D (> 0 by (4.4)). Thus we have from
(4.13) and (4.16) that
PU(t) + 8, P'(t) > np P(t)*/*H!

with P(t) > 0 and P'(t) > 0 for ¢ > t;, and hence, we conclude from Lemma 4.3 below
that P(t) = ||u(t)]|? blows up at some finite time. The proof of Theorem 7 is now
completed. O ‘

Lemma 4.3. (see [14, 21]) Let the function P(t) satisfy
(4.17) P"(t) 4 6P'(t) > o P(¢)'*"

for t >0 with § > 0,co > 0,7 >0, and P(0) > 0 and P'(0) > 0. Then P(t) blows up at
some finite time. : D A

PROOF. We consider that the differential equation Q'(t) = eQ(t)!*"/? for Q(t) €
C%*([0,+00)) and 0 < € <« 1 with @Q(0) = P(0) (> 0). Then we see that Q(t) =
{Q(0)~"/2 — (r/2)et}~*/" for some t > 0, and that Q(¢) blows up at some finite time
To. Since

eQ(0)"*7/(= Q'(0)) < P'(0)
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for some small ¢ > 0, we have that
Q"(t) = e(1+7/2)Q(t)*Q'(t) = (1 +r/2)Q(t)"*",
and hence, from Q(t) z Q(0),
Q"(1) +8Q'(t) = €*(1 +r/2)Q(t)'* +e8Q(2) +7/*
(4.18) < {21 +1/2) +€6Q(0) Q)T < o Q(t)'H
for small € > 0. Since Q'(0) < P'(0), we see that Q'(t) < P'(t) for near t = 0. Let
T = sup{t € [0, +00) : Q'(s) < P'(s) for 0 < s < t},

then we see T > 0 and Q'(t) < P'(t) for 0 <t < T and Q(t) < P(t) for 0 < t < T. If
T < Tp, then we observe that

Q(T)=P(T), Q"(T)>P'(T), and Q(T)< P(T).
On the other hand, it follows from (4.17) and (4.18) that

(Q"(T) = P"(T)) +6(Q'(T) = P'(T)) < eo(Q(T)'*" = P(T)'*7), -

which is a ;:ontradicfion, and hence, we see that T > Ty and
Q(t) < P(t) for 0<t<Ty.
Thus, P(t) blows up at some finite time. O
5. Global E)gistence and Decay
In this éectioﬁ we shall study on the global in time existence and energy decay prop-

erties of the solution for Eq(Ol) with 8; + 62 + 63 > 0 under the assumptions that
0 < E(0) = E(uo,u;) < 1 and

w €W, = {u € D(4) : K(u)>0}u{0}.
We observe the following useful res‘ults connected with the K —positi‘ve set W,.
Proposition 5.1. (i) Ifa <4/[N —4]*, then
(5.1) W, is a neighborhood of 0 in D(A'/?) =‘ Hy(Q) and an open set.
(i) IfueWs, then | |
(5.2) A Pu|? < T(w) (< E(u,u')

where d, = (1 + 2a71) (> 1).




Blowup Phenomena for Nonlinear Dissipative Wave Equations 35

ProOF. We see from Lemma 5.2 below that

(5.3) lullat? < eat? AN Zuf e (D0 Ay|| e+ DO AL 207,

where 8; = [(N — 2)a — 4] /(2(a + 2)) and a — (a + 2)8; > 0 if a < 4/[N —4]*, and
hence, K(u) > 0 if D(A'/?)-norm of u is sufficiently small and u # 0, which implies
(5.1). From the definitions of W, and J(u), (5.2) follows immediately. O

We use well-known lemma without the proof.

Lemma 5.2. (Gagliardo-Nirenberg) Letl < r < p < 400 and p > 2. Then, the
inequality
ollp < el A™ 20l *l0]l}~° for veD(A™?)NLT(Q)

holds with some constant ¢, and

b= -G+ T 2)"

T p T

provided that 0 < 6 <1 (0 <0 <1 if m — N/2 is a nonnegative integer).
(Sobolev-Poincaré) Let 1 < p < 2N/[N —2m|t (1 < p < +o0 if N = 2m). Then,
the inequality
Iollp < el A0l for v e D(A™?)

holds with some constant c,.
Moreover, ‘we use the inequality |lu]| < c«llull, for v € LP(R2),p > 2, with some

constant c,. In what follows, we assume c, > 1 for simplicity.
To state our results we define the second energy associated with Eq.(0.1) by

Ey(u,u) = ||[A2/|? + || Au|f?.

Then, multiplying Eq.(0.1) by 2Au’ and integrating it over §2, we have

O Ey(t)+2{8: | A > (1)) + 628 + 1)/n ' ()14 2! (¢)]"da

(5.4) + & Au(®)]*} = 2(f(u(?)), Au(t)),
where we put E;(t) = Ea(u(t), u'(t)) (E2(0) = Ez(uo,u1)) for simplicity.
In what follows, we denote by ¢;,7 = 1,2,--- , constants independent of the initial

data and depending only on a, 8, N, c,, d;, 62, and 63.
Our results are as follows :

Theorem 8. (62 >0) Let 63 >0 and 6; = 63 = 0 in (0.1), and let the initial date
{uo,u;} belong to W, (C D(A)) x D(A/?). Suppose that

a<?2/[N -4, B<4/(N-2) (B<+ooif N=12),
B<a-|[N/2-1)a-1]F,
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and that the initial energy E(0) 18 small (0 < E(0) < 1 but E»(0) > 1) such that
(i) when o < 4/(N —2) (a < 400 if N £ 2),

(55 0<) aB0)/2<1 and wicsE(0)*E(0) <1,

(ii) when 4/(N —2) < a <2/[N — 4]t (N >3),

(5.6) (02) {wiesE(0)** + ¢, B(0)*} Ex(0)* < 1,

where wy = [(N —2)a]t/4 (> 0), w = (a = B)/2 —w; (> 0), and w3 = w;(4— (N —
4)a)/((N = 2)a — 4) (> 0). Then, the problem (0.1) admits a unique global solution
u € W, satisfying

(5.7) ' (17 + 1A 2u())* < duE(2) < o1 +t)7*/#

for t > 0 with a constant c.

Theorem 9. (6; + 63 > 0) Let é; + 63 > 0 and 82 >0 in (0.1), and let the initial
data {uo,u;} belong to W, x D(A/?). Suppose that

a<2/[N-4* and B<4/(N-2) (B<+o0if N=1,2),

and that the initial energy E(0) is small (0 < E(0) < 1 but Ez(0) > 1) such that
(i) when o <4/(N ~2) (o < +o0 if N = 1,2),

(5.8) 0<) B0 <1 and wicsE(0)* E(0) <1,

(ii) when 4/(N —2) < a <2/[N —4]* (N >3),

(5.9) (0<) {wics E(0)** + ca E(0)**} E5(0) < 1.

where w; = [(N — 2)a]t/4 (2 0), &2 = /2 —w; (> 0), and w3 = w1(4 - (N -
4)a)/((N = 2)a — 4) (>'0): Then, the problem (0.1) admits a unique global solution
u€eEW, satz.sfymg

(5.10) ' O + 14 u(®) < du () < ce™

for t > 0 with constants c and k > 0.

Remark 5.3. When we con51der the problem (0.1) thh |u|°‘u replaced by the non-
hnear function f(u) such that : ‘

If(u)|<kx|ul"+1 and |f'(u)] < kilul®

with poéitive‘cdnstants k1 and ’Cz, we can get the similar results as Theorem ‘8 and
Theorem 9. Then we need to redefine (0.3) and (0.6) by

J(u) = ||A1/2u||2—2/nF(u) d
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with F(u) = [* f(n) dn and
K(u) = |4 %] - ki flull317,
respectively.
First, we shall prepare for those proof. We put
T =sup{t € [0,400) : u(s) € W, for 0 < s < t},

then we see Ty > 0 and u(t) € W, for 0 < t < T} because ug € W, being an open set
(see (5.1)). If T} < +o0, then u(Ty) € W, that is,

(5.11) : K(u(T1))=0 and u(Th)#0.

We see froﬁ (1.6), (5.2), and (5.3) that

(5.12) lu(DIZ12 < (1/2)B@)IAY u(t)|?
for 0 <t < T, where

(5.13) | B(t) = C1E(0)(°’_(°'+2)0')/2||Au(t)||(°‘+2)9‘

a+2d£a—(a+2)01)/2.

with ¢; = 2¢¢

We put
T, = sup{t € [0,+00) : B(s)<1lfor0<s<t},

then we see T; > 0 and B(t) < 1 for 0 < ¢t < T}, because B(0) < 1 by (5.5), (5.6), (5.8),
or (5.9). If T, < T1 (< 400), then

(5.14) B(T;)=1,

and

(5.15) K(u(t) 2 [|A?u(t)|* — (1/2) BOI A u(®)]? = (1/2)]| A 2u(t)|?
for 0 <t < T

PROOF OF THEOREM 8. Following Nakao [16], we shall derive the decay property of
the energy E(t) = E(u(t),u'(t)) associated with Eq.(0.1) with é; > 0 and 6; = 63 = 0.
In what follows, we put §; = 1 without loss of generality.

For a moment, we assume that T; > 1. Integrating (1.4) with é, =1 and §; =83 =0
over [t,t +1],0 <t < T, — 1, we have :

v t+1
(5.16) 2 [ It = B - Bt+1) (=200
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and

t+1 t+1
(5.17) [ s < [ el < DO
i t

Then there exist t; € [t,t +1/4] and t; € [t +3/4,t + 1] such that
(5.18) ' ()| < 2e.D(t) i=1,2.

Since |(g(u'), u)| < v ||52]lullg4+2, we see from (1.5) and (5.15) that

t2 ' ty :
72) [ 14 o) s < [ K
t+1 2 . . t41 .
< [ IR+ S I + [ I e prads
t =1 t )
t+1 2
< [ WP+ e Il
(5.19) ) |

t+1
+ / C(s)I8tEds) sup (1AM ?u(s)],
t Jt<s<t41

where we used the fact that ||ul|g42 < c.||A*/?u|| for B < 4/(N — 2). Integrating (1.4)
over [t,t2], we have from (5.19) that :

t2
E(t) = E(ts) + 2 /t ()8 2ds
tz

t+1
<o [ B(s)ds+2 / /()6 +2ds
t .

t

t+1 ta
< 2/ (' ()| + lw' ()43 ) ds + 2/ | AY2u(s)|*ds
t tq

<2 [ I + IR
=/ v B+2

2 t+1 .
+ 46*{2 ||u'(ti)]| + (/ Hu'(s)Hgigds)H‘z} sup ||A1/2u(s)|| ’
i=1 t , . 1<s<t+1

and from (5.16), (5.17), aﬁd (5.18) that '
E(t) < 2{3&2D(t)? + D(1)"*?} + deu{4e. D(t) + D(t)*1 }(d. E())"/2.
Sincé 2D(t)P+% < E(t) < E(0) <1, we see

E(t) < 28c4d, D(t)? + (1/2)E(t),
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and hence,
B(t)"*P/? < (2°¢1d,) P2 D(1)P 4
<271(2°cAd) PDI2E(t) - B(t + 1)} .

Thus, noting the fact E(¢) < E(0) and applying Lemma 5.4 below, we obtain the
following energy decay estimate :

(5:20) E(t) < {BO) /% + 45"t - 11+) /7

for 0 < t < Ty with dy = f71(2%c4d,)P+D/2 (> 1).
Next, using the energy decay (5.20), we shall estimate the second energy E(t) =
Ea(u(t),u'(t)). It follows from (5.4) and Lemma 5.2 that

B (1) < 2(f(u(1)), Au' () < 2es(a + Dllu(®) Kol Au@l 4 *u' @)
< 2e3 (a4 DA ()| 00| Au()[| 20| A2 (1))
(5.21) < QE(t)* =02 Bty t

where ¢; = 22T (o + l)d‘:(l_gz)/z, 62 = [(N - 2)a — 2]*/(2a), and w; = ab,/2. We
observe from (5.20) that if a(1 — 6,) > 3,

t 1 t
(5.22) / ey B(s)*(1=0)/2 s = / + / < 3 E(0)*?
0 0 1

with ¢z = cpdp(a(1 — 6;))/(a(l — 6;) — B) and wy = (a1 — 8;) — B)/2.
When a < 2/(N — 2) (i.e. w; = 0), we have from (5.21) and (5.22) that
E,(t) < Ey(0) exp{ /0 tQE(s)"(l_o’)/zds}
(5.23) < E;(0) exp{cs E(0)*?} (< 4o00).

On the other hand, when o > [N — 2]* (i.e. w; > 0), we have

E3(t) < {E2(0)™*" —wy /‘f 3 E(s)*(1=02)/2gg}=1/wn
(5.24) < {E2(0)™ — w1 E(0)** )1/ (< +o0)

if (AJIC;;E(O)szg(O)wl <1.
When a < 4/(N — 2) (i.e. ; =0), we have from (5.5) and (5.13) that
(5.25) B(t) =, E(0)*/? < 1.

On the other hand, when a > 4/[N — 2]* (i.e. 6; > 0), we have from (5.13) and (5.24)
that

B(t) < E(O)i—(N—4)a/4E2(t)(N—2)a/4-—1

2)a—4

(5.26) < e B(0) N0/ (B (0) ™ — w5 B(0)<1} T < 1
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if we assume (5.6), that is,
{w1c3E(0)“’2 + C4E(0)w3}E2(0)w1 <1
with ¢4 = c:w‘/((N—z)a_Q and w3 = w;(4— (N —4)a)/((N —2)a—4). Thus we conclude
that (5.25) and (5.26) contradict (5.14), and hence, we see that T, > T;. Moreover, we
observe from (5.11) and (5.15) that
0 = K(u(Th)) 2 (1/2)|A"*w(T1)|I* > 0,

which is a contradiction, and hence, we see that T} = +o0, that is, (5.20), (5.23); and
(5.24) hold true for all t > 0. The proof of Theorem 8 is now completed. O

We used the following useful lemma in the proof of Theorem 8. (We omit the proof
here, see {15, 17}.) :

Lemma 5.4. (Nakao [15]) Let ¢ be a bounded and nonnegative function on [0, 4+00)
satisfying '
sup ¢(s)'*7 < B{g(t) - é(t +1)}
t<s<t+1
fort >0 and k> 0. Then

#(1) < {$O) " + k[t = 11} for £20.

PROOF OF THEOREM 9. From (1.5), we have

Be(2(u(t), u' (1)) + Sillu(®)lI? + &AM 2u(t)|*)
= 2||u'())II* — 2K (u(t)) - 2(g(u'(2)), w(¥)),

and hence, from this and (1.4), we have

QE*(t) = ~2{(1 — &)l (A)II” + bellu’ (1)l 43 + 6s 1l AT 2u' (£)]1%)
(5.27) — 2e K (u(t)) — 2e82(g(u'(t)), u(t))

for < € < 1, where we set

(5.28) B*(t) = B(t) + e{2(u(t), v'(8)) + & [u(®)|* + 8|4 u(®)|?)

Then we see that for .

(529)  (2d) (WGP + AV u(®)|?) < B*() < 2w @I + |4 2u()])
if € < (2d.(ca + 261 + 83))71. Indeed, since

(5.30) &7 (e @I + 1A u(@®)?) < B(2) < Jlw' @) + 14T 2 u(0))?
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by (5.2) and

[2(u, ') + &y Jull? + &5]| A 2u]?)
< 2e, | AV Pl + 8 A 2]l + 6| A 2ul?
< (cu + 281 + )/ I2 + A" 2ul),

we see (5.29) immediately.
To proceed the estimation of (5.27), we observe from (1.6) and (5.2) that

162(9(u"), u)| < Szllull gl 1555
< Speu|| AV 2ull||Wf |52, B < 4/(N -2)
= Sy, || A 2u|| 75 || A 2| e |l | 5]

B+2
< Sacu(du E(0)) B |[u |11 A1/ 2u|| 7
B+1 2 B+2 1 1/2, 12
< At 2(626*(d*E(0))2Tlﬂa-_)'z )5'1_1]|u'"ﬂ+2 + mHA / ul|
< (Bacads) FH |l |1 542 4 (1/2))1 4120,
and hence,
QE* (1) < —2(61 + ;28 — e)|[u' (D)]* — | AM2u(t)))?
— 2(6; — e(Sacady) T ' (1)1 512
(5.31) < —2¢(flu' ()7 + |4 2u()]f?)

where we used (5.15) and we put

€= min{(61 + 6:263)/2, 62(626*d,)—§-1_3 3 (2d*(c* + 6361 + 63))_1}

(We note that € > 0 by §; + 83 > 0). Thus we obtain from (5.29), (5.30), and (5.31)
that

E*(t) < E*(0)e™*
or
(5.32) E@®) < [[W/ ()7 + A 2u(t)|* < (2d.)E(0)e™**
for 0 <t < T;.

Next, using the decay (5.32), we shall estimate the second energy E(t). It follows
from (5.4) and (5.21) that

(5.33) 0:E,(t) < czE(t)a(l_oz)/zEg(t)““"‘l )
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We observe from (5.32) that if a(1 — 62) > 3,
t
(5.34) / 2 E(5)°0-9)/2 45 < ¢y E(0)%?
0

with ¢s = ¢2(2d4)?%? /&2 and &2 = a1 — 62)/2 (> 0). :
When a < 2/(N —2) (i.e. w; = 0), we have from (5.33) and (5.34) that

(5.35) E,(t) < Ey(0) exp{cs E(0)*/?} (< +00).

On the other hand, when a > 2/[N — 2]+’ we have that
t

Ea(t) < {E2(0)™" — wl/ 2 B(s)*1=02)/2 45} =1/
0

(5.36) < {E2(0)™1 — wies E(0)#2} 7“1 (< 400)

if (.4.)1651‘3(0)‘:’2.Ez(o)wl <1
When a < 4/(N —2) (i.e. §; = 0), we have from (5.8) and (5.13) that

(5.37) B(t) = c; E(0)*/* < 1.
On the other hand, when o > 4/[N — 2]t (i.e. 8; > 0), we have (5.13) and (5.36) that
B(t) < ¢ E(0)}~(N—9a/4 g, (1)(N-D)a/4-1
(5.38) < e B(0) =N =9/ By(0)™1 — wyc5 B(0)%) ™ eh < 1
if we assume (5.9), that is,
{w1cs E(0)*2 4 ¢4 E(0)“*} E5(0)“* < 1.

Thus we conclude that (5.37) and (5.38) contradict (5.14), and hence, we see T, > T.
Moreover, we observe from (5.11) and (5.15) that

0= K(u(Th)) 2 (1/2)| A (TP >0,

which is a contradiction, and hence, we see T} = +o00, that is, (5.32), (5.35), and (5.36)
hold true for all £ > 0. The proof of Theorem 9 is now completed. O
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