A Topic of Quadratic First Integral of Linear Symplectic System

By

Shigeru MAEDA

Department of Mathematical Sciences, Faculty of Integrated Arts and Sciences, The University of Tokushima Minami-Josanjima, Tokushima 770, JAPAN e-mail address: maeda@ias. tokushima-u. ac. jp (Received September 13, 1996)

Abstract

It is shown that every quadratic first integral of a linear symplectic system is expressed as a linear combination of quadratic forms constructed from generalized eigenvectors corresponding to four coupled eigenvalues.

1991 Mathematics Subject Classification. 58F08, 15A18

1. Problem and preliminaries

In this introductory section, the problem to be treated is presented and a few preliminaries are arranged.

Let T denote a 2N-dimensional real symplectic matrix, that is,

(1)
$$T'JT = J, \text{ where } J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix},$$

where the dash means matrix transposed. Throughout the paper, we suppose that T does not have eigenvalues ± 1 , and W_a and \tilde{W}_a denote the eigenspace and the generalized eigenspace of T corresponding to an eigenvalue a, respectively. We consider the linear recurrence on R^{2N} which is a discrete version of a linear Hamiltonian system:

(2)
$$x_{n+1} = Tx_n \quad (n = 0, 1, ...).$$

By supposition, the recurrence has no 2-periodic point except for the origin. A function f on R^{2N} is called *an invariant* of (2) if its value remains constant along every solution $\{x_n\}$ of (2). For any real symmetric matrix S, the quadratic form

 $x^{2}Sx/2$ is denoted by S[x], and an invariant S[x] is called a quadratic invariant. Our problem is to make clear the structure of quadratic invariants of a discrete Hamiltonian system. Let us start by showing an obvious but basic lemma.

Lemma 1. S[x] is a quadratic invariant of (2) if and only if

(3)
$$T'ST = S$$
, or $(T')^{-1}ST^{-1} = S$.

The symbol Ω is used to mean the set of all coefficient matrices of quadratic invariants:

$$\Omega = \{ S \in M(2N, R) | T'ST = S, S' = S \}.$$

For the time being, we assume that matrices and vectors are complex-valued, the field of scalars being C, and L and \langle , \rangle mean C^{2N} and a symplectic inner product $\langle x, y \rangle = x'Jy$ on L.

Lemma 2. Let $\xi_1, \xi_2, ..., \xi_u$ be linearly independent vectors. Then, the u^2 matrices defined by $(J\xi_i)(J\xi_j)'$ are linearly independent, and further, it holds that $(T')^{-1}\{(J\xi_i)(J\xi_j)'\}T^{-1}=\{J(T\xi_i)\}\{J(T\xi_j)\}'$.

Proof. Choose a vector η subject to $(J\xi_j)'\eta \neq 0$ and $(J\xi_i)'\eta = 0$ $(i \neq j)$. Put $\Sigma c_{ij}(J\xi_i)(J\xi_j)' = 0$ and multiply η from the right, and it follows that $\Sigma_i((J\xi_j)'\eta) \cdot c_{ij}J\xi_i = 0$. Since $J\xi_i$ are linearly independent, we have $c_{ij} = 0$. The second assertion is obvious due to T'JT = J.

2. Quadratic invariant

This section is devoted to determination of all quadratic invariants.

Let $\{\xi_1, \xi_2, ..., \xi_u\}$ and $\{\eta_1, \eta_2, ..., \eta_v\}$ be generalized eigenvectors of T which form two distinct Jordan blocks with eigenvalues a and b, respectively. That is,

$$T\xi_1 = a\xi_1, \quad T\xi_i = a\xi_i + \xi_{i-1} \qquad (2 \le i \le u),$$

 $T\eta_1 = b\eta_1, \quad T\eta_i = b\eta_i + \eta_{i-1} \qquad (2 \le j \le v),$

For every vector
$$\zeta$$
, $\xi_u \neq (T - aI)\zeta$ and $\eta_v \neq (T - bI)\zeta$.

We define uv matrices M_{ij} and introduce a linear combination S of them:

(4)
$$M_{ij} = (J\xi_i)(J\eta_j)'$$
 $(1 \le i \le u, 1 \le j \le v), S = \sum_{1 \le i \le u, 1 \le j \le v} c_{ij}M_{ij}.$

where c_{ij} are complex constants. Our first schedule is to obtain a condition that S satisfies (3) by disregarding a restriction that S is either real or symmetric.

Owing to Lemma 2, $(T^{-1})^{r}ST^{-1}$ is equal to S, if and only if all of the

following equations hold good.

$$(1 - ab) c_{uv} = 0,$$

$$(1 - ab) c_{iv} = bc_{i+1,v} \quad (1 \le i \le u - 1),$$

$$(1 - ab) c_{uj} = ac_{u,j+1} \quad (1 \le j \le v - 1),$$

$$(1 - ab) c_{ij} = ac_{i,j+1} + bc_{i+1,j} + c_{i+1,j+1} \quad (1 \le i \le u - 1, 1 \le j \le v - 1).$$

By m is denoted min (i, j). When $ab \neq 1$, it is easy to prove that all of c_{ij} vanish. When ab = 1, c_{ij} vanishes for i + j > m + 1 and the remaining coefficients are subject to $ac_{i,j+1} + bc_{i+1,j} + c_{i+1,j+1} = 0$. Concerning the latter ones, we put

$$c_{ij} = (-a/b)^{i-1} f_{(m+1)-(i+j)}(i)$$
 $(2 \le i+j \le m+1).$

Then, the equations among the remaining c_{ij} turn out to be equivalent to

(5)
$$f_0(i) = \text{arb. const.}, \quad f_k(1) = \text{arb. const.} \qquad (0 \le k \le m - 1),$$

$$f_{k+1}(i) = f_{k+1}(1) - \frac{1}{b} (f_k(2) + f_k(3) + \dots + f_k(i))$$

$$(1 \le k \le m - 2, \ 2 \le i \le m + 1 - k).$$

Thus, we have attained the following lemma.

Lemma 3. With respect to matrices which are linear combinations of M_{ij} and satisfy (3), the followings hold good.

- (a) When $ab \neq 1$, there exists no non-zero matrix.
- (b) When ab = 1, there are m linearly independent matrices S_k such that

(6)
$$S_{k} = f_{k-1}(1)M_{1,m+1-k} + (-a^{2})f_{k-1}(2)M_{2,m-k} + \dots + (-a^{2})^{m-k}f_{k-1}(m+1-k)M_{m+1-k,1} \qquad (1 \le k \le m),$$

where $f_k(i)$ are constants defined by (5).

According to Lemma 2, an arbitrary matrix S is expressed as a linear combination of $(J\xi_i)(J\xi_j)$, where $\{\xi_1, \xi_2, ...\}$ denotes a whole of eigenvectors and generalized ones and is a basis of L. By use of Lemmas 2 and 3, we have the following immediately.

Lemma 4. A matrix S satisfies (3), if and only if S is expressed as a linear combination of matrices S_k which are constructed from all combinations of generalized eigenvectors with eigenvalues a and 1/a in a manner as in (6).

Now, we are in a position to study quadratic invariants. Since the coefficient matrix of a quadratic invariant is real and symmetric, two conditions S' = S and

 $\overline{S} = S$ must be satisfied besides (3). Define S_k under the condition $f_{k-1}(1) \neq 0$ (k = 1, ..., m). Then, according to Lemma 2, $\overline{S}_k \neq S_k$ and $S_k + \overline{S}_k$ are linearly independent. Furthermore, put, for each S_k ,

(7)
$$U_k = \frac{1}{4} (S_k + \bar{S}_k + S_k' + \bar{S}_k') \quad V_k = \frac{\sqrt{-1}}{4} (S_k - \bar{S}_k + S_k' - \bar{S}_k') \quad (1 \le k \le m),$$

and the matrices U_k and V_k belong to Ω , since T'S'T = S' and $T'\overline{S}T = \overline{S}$ follow automatically from T'ST = S. Due to Lemma 4, every element of Ω is expressed as a linear combination of U_k and V_k with real coefficients, though they are not necessarily linearly independent.

It is well known that if a is an eigenvalue of a real symplectic matrix, so are 1/a, \bar{a} , and $1/\bar{a}$ [1]. The above matrices U_k and V_k are constructed from the vectors selected from the four generalized eigenspaces, in other words, they depend on a quartette of \tilde{W}_a , $\tilde{W}_{1/a}$, $\tilde{W}_{\bar{a}}$, and $\tilde{W}_{1/\bar{a}}$. Hereafter, we adopt a convention that a means an eigenvalue subject to

(8)
$$|a| \ge 1, \qquad 0 \le \arg(a) \le \pi.$$

By means of this, only one eigenvalue is selected among the four. Next, suppose that \widetilde{W}_a is a direct sum of u subspaces B_i corresponding to respective Jordan blocks. We choose a set of generalized eigenvectors as follows.

(9)
$$B_{i} = \operatorname{span} \left\{ \xi_{1}^{(i)}, \dots, \xi_{j(i)}^{(i)} \right\}, \quad i = 1, \dots, u, \qquad s. \ t.$$

$$T \xi_{i}^{(i)} = a \xi_{i}^{(i)} + (1 - \delta_{i1}) \xi_{i-1}^{(i)}, \quad j = 1, \dots, j(i), \qquad j(1) \geq j(2) \geq \dots \geq j(u),$$

where dim $\widetilde{W}_a = j(1) + \cdots + j(u)$. In this case, there exists a unique basis $\{\eta_j^{(\beta)}\}$ of $\widetilde{W}_{1/a}$ which satisfy $\langle \xi_i^{(\alpha)}, \eta_j^{(\beta)} \rangle = \delta_{ij} \delta_{\alpha\beta}$, and $\widetilde{W}_{1/a}$ is a direct sum of the following u subspaces (Appendix 2).

$$C_i = \operatorname{span} \left\{ (T - I/a)^{j(i)-1} \eta_1^{(i)}, \ (T - I/a)^{j(i)-2} \eta_1^{(i)}, \dots, \eta_1^{(i)} \right\} \qquad (i = 1, \dots, u).$$

Here, $(T-I/a)^{j(i)-1}\eta_1^{(i)}$ is an eigenvector. As is easily seen, B_i and C_j are skew-orthogonal to each other when $i \neq j$. With respect to the remaining two generalized eigenspaces, we may define subspaces \bar{B}_i and \bar{C}_j similarly.

Now, under the condition that ± 1 are not eigenvalues, the four values may be reduced. To be concrete, there are three cases with respect to eigenvalues.

- (a) Case of $a \in R$ and a > 1: $\bar{a} = a$.
- (b) Case of |a| = 1 and $0 < \arg(a) < \pi$: $a = 1/\bar{a}$.
- (c) Case of $a \in R$ and |a| > 1: Four eigenvalues.

Case (a). Since all generalized eigenvectors can be selected as real-valued, V_k vanish in (7). Then, according to Lemma 3, we obtain $j(1) + 3j(2) + \cdots + (2u-1)j(u)$ linearly independent quadratic invariants from combination of B_i and C_j .

Case (b). In this case, B_i equals to \overline{C}_i . Then, from combination of B_i and C_i , only U_k are obtained, whereas neither U_k nor V_k vanish when $i \neq j$. Then, we have $j(1) + 5j(2) + \cdots + (4u - 3)j(u)$ linearly independent quadratic invariants related to an eigenvalue a.

Case (c). For all combinations of B_i and C_j , both U_k and V_k are obtained. Then, $2j(1) + 6j(2) + \cdots + (4u - 2)j(u)$ linearly independent quadratic invariants are obtained.

For an eigenvalue a, we put

$$j(1) + 3j(2) + \dots + (2u - 1)j(u)$$
 Case (a),
num (a) = $j(1) + 5j(2) + \dots + (4u - 3)j(u)$ Case (b),
 $2j(1) + 6j(2) + \dots + (4u - 2)j(u)$ Case (c).

Then, the following theorem holds good.

Theorem 1. The discrete system (2) admits Σ ' num (a) linearly independent quadratic invariants, where Σ ' means summation over eigenvalues subject to (8).

Let us pay attention to the fact that if V_k does not vanish, its rank equals to 4, and if U_k does not vanish, its rank equals to 4 or 2. Furthermore, because of Lemma 4, rank U_k is 2, if and only if there exist non-zero vectors ξ and η such that $T\xi = a\xi$ and $T\eta = (1/a)\eta$, where a is real, or complex with the absolute value one. In the former case, the signature of U_k is (1, 1), while in the latter case U_k is (semi) positive-definite. This leads to the following corollary.

Corollary 1. The discrete system (2) leaves a 2-dimensional plane Γ invariant, and every solution on Γ lies on an elliptic curve, if and only if (2) admits a quadratic invariant S[x] such that S is (semi) positive-definite and is of rank 2. In this case, Γ is characterized as $J \cdot Im(S)$.

3. Remarks on symmetry generated by quadratic invariant

According to [2], the whole of quadratic invariants is closed with respect to the Poisson bracket [1], and forms a Lie algebra Θ . The Poisson bracket is represented on Ω as follows.

$${S, T} = SJT - TJS.$$

Returning to M_{ij} defined by (4), we consider $M_1=(J\xi_1)(j\eta_1)$ ' and $M_2=(J\xi_2)$ $(J\eta_2)$ '. Then, it follows that

$$\{M_1, M_2\} = \langle \eta_1, \xi_2 \rangle (J\xi_1)(J\eta_2)' - \langle \eta_2, \xi_1 \rangle (J\xi_2)(J\eta_1)'.$$

Due to Appendix 1, we can see that $\{M_1, M_2\}$ vanishes, if $\{\xi_1, \eta_1\}$ and $\{\xi_2, \eta_2\}$ belong to different quartettes of the four generalized eigenspaces mentioned in the previous section. Therefore, U_k and V_k in §3 form a closed subalgebra and Θ is a direct sum of these subalgebras. In a word, the symmetry group generated by quadratic invariants is determined only by the structure of respective generalized eigenspaces.

Appendix 1. Skew-orthogonality of \widetilde{W}_a and \widetilde{W}_b ($ab \neq 1$).

Let $\{\xi_1, \xi_2, ..., \xi_u\}$ and $\{\eta_1, \eta_2, ..., \eta_v\}$ be generalized eigenvectors of T which form two distinct Jordan blocks subject to (9). Then, since T is symplectic, it holds that

$$\begin{split} \langle \xi_{i},\,\eta_{j}\rangle &= ab\,\langle \xi_{i},\,\eta_{j}\rangle + a(1-\delta_{j1})\langle \xi_{i},\,\eta_{j-1}\rangle + b(1-\delta_{i1})\langle \xi_{i-1},\,\eta_{j}\rangle \\ &+ (1-\delta_{j1})(1-\delta_{i1})\langle \xi_{i-1},\,\eta_{j-1}\rangle. \end{split}$$

When $ab \neq 1$, we find that every $\langle \xi_i, \eta_j \rangle$ vanishes, starting from $\langle \xi_1, \eta_1 \rangle = 0$. Then, by considering all combinations of Jordan blocks, \tilde{W}_a proves to be skew-orthogonal to \tilde{W}_b . In particular, when $a \neq \pm 1$, \tilde{W}_a is skew-orthogonal to itself, that is, null.

Appendix 2. Commutation relation between \tilde{W}_a and $\tilde{W}_{1/a}(a \neq 1)$.

Suppose that \widetilde{W}_a is a direct sum of u Jordan blocks K_1, \ldots, K_u , and K_i is spanned by a set of generalized eigenvectors $\{\xi_1^{(i)}, \xi_2^{(i)}, \ldots, \xi_{j(i)}^{(i)}\}$ subject to $T\xi_i^{(i)} = a\xi_i^{(i)} + (1 - \delta_{i1})\xi_{i-1}^{(i)}$. Then, the followings hold good.

- (1) There is a unique basis $\{\eta_1^{(1)}, \dots, \eta_{j(1)}^{(1)}, \dots, \eta_1^{(u)}, \dots, \eta_{j(u)}^{(u)}\}$ of $\widetilde{W}_{1/a}$ such that $\langle \xi_i^{(\alpha)}, \eta_j^{(\beta)} \rangle = \delta_{ij} \delta_{\alpha\beta}$.
- (2) For any i subject to $1 \le i \le u$, it holds that $(T I/a)^k \eta_1^{(i)} \ne 0$ $(0 \le k \le j(i) 1)$ and $(T I/a)^{j(i)} \eta_1^{(i)} = 0$. In other words, $\{(T I/a)^k \eta_1^{(i)}\}_{k=j(i)-1,\ldots,0}$ constructs a Jordan block in $\widetilde{W}_{1/a}$.
- (3) $(T I/a)^k \eta_1^{(i)}$ $(0 \le k \le j(i) 1)$ is expressed as a linear combination of $\eta_{j(i)}^{(i)}, \ldots, \eta_{k+1}^{(i)}$.

First, we intend to verify the following proposition. When L is a direct sum of three subspaces: $L = L_1 + L_2 + L_3$ such that L_1 and L_2 are null, and L_3 is skew-orthogonal to L_1 and L_2 , then it follows that

- (a) dim L_1 = dim L_2 .
- (b) For an arbitrary basis $\{\xi_i\}$ of L_1 there is a unique basis $\{\eta_i\}$ of L_2 subject to $\langle \xi_i, \eta_i \rangle = \delta_{ij}$.

It is to be noted that for any non-zero vector $\xi \in L_1$ there is a vector η subject to $\langle \xi, \eta \rangle = 1$ because of nondegeneracy, and η can be chosen as a vector in L_2 by supposition. By using the fact, induction with respect to k can prove that there are vectors $\xi_1, \ldots, \xi_k \in L_1$ and $\eta_1, \ldots, \eta_k \in L_2$ subject to $\langle \xi_i, \eta_j \rangle = \delta_{ij}$, as far as $k \leq \dim L_1$. Exchanging the roles of L_1 and L_2 , we have (a) and have

shown that there are bases of L_1 and L_2 subject to $\langle \xi_i, \eta_j \rangle = \delta_{ij}$. Next, fix a pair of bases mentioned above, and choose an arbitrary basis $\{\xi_i^c\}$ of L_1 such that $\xi_i^c = \Sigma_j a_{ji} \xi_j$. Then, $\eta_i^c = \Sigma_j b_{ji} \eta_j$ satisfies $\langle \xi_i^c, \eta_j^c \rangle = \delta_{ij}$, if and only if $\Sigma_k a_{ki} b_{kj} = \delta_{ij}$. This proves (b).

If we put $L_1 = \tilde{W}_a$ and $L_2 = \tilde{W}_{1/a}$, and let L_3 be a direct sum of the remaining generalized eigenspaces, the assumption is satisfied because of Appendix 1. Then, Assertion (1) is verified.

Assertion (1) means that there is a symplectic matrix X such that $X^{-1}TX$ is block-diagonal, and that a half of its blocks are Jordan ones. For each Jordan block A, another block A'^{-1} exists, for $X^{-1}TX$ is also symplectic. That is, with respect to the vectors listed in (1), it holds that

$$T(\xi_1^{(i)},...,\xi_{j(i)}^{(i)}) = (\xi_1^{(i)},...,\xi_{j(i)}^{(i)}) \begin{pmatrix} a & 1 & 0 & . & . \\ 0 & a & 1 & 0 & . \\ 0 & 0 & a & 1 & . . \\ . & . & . & . & . \end{pmatrix},$$

$$T(\eta_1^{(i)}, \dots, \eta_{j(i)}^{(i)}) = (\eta_1^{(i)}, \dots, \eta_{j(i)}^{(i)}) \begin{pmatrix} 1/a & 0 & 0 & 0 & \dots \\ -1/a^2 & 1/a & 0 & 0 & \dots \\ 1/a^3 & -1/a^2 & 1/a & 0 & \dots \\ & \ddots & \ddots & \ddots & \dots \end{pmatrix}.$$

This proves (2) and (3).

This work was partially supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.

References

- [1] V. I. Arnold, Mathematical methods of classical mechanics, 2nd. ed. (Translated by K. Vogtmann and A. Weinstein), Springer, New York, 1989.
- [2] S. Maeda, Quadratic conservatives of linear symplectic system, Proc. Japan Acad., 64A, 45-48 (1988).