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Abstract

It is shown that every quadratic first integral of a linear symplectic system is expressed
as a linear combination of quadratic forms constructed from generalized eigenvectors
corresponding to four coupled eigenvalues.
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1. Problem and preliminaries

In this introductory section, the problem to be treated is presented and a
few preliminaries are arranged.
Let T denote a 2N-dimensional real symplectic matrix, that is,

1) T'JT=J, where J=( 0 I>,

-1 0
where the dash means matrix transposed. Throughout the paper, we suppose
that T does not have eigenvalues + 1, and W, and W, denote the eigenspace
and the generalized eigenspace of T corresponding to an eigenvalue a, respectively.
We consider the linear recurrence on R?M which is a discrete version of a linear
Hamiltonian system:

) X,+q = TX, n=01,..).

By supposition, the recurrence has no 2-periodic point except for the origin. A
function f on R2V is called an invariant of (2) if its value remains constant along
every solution {x,} of (2). For any real symmetric matrix S, the quadratic form
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x’Sx/2 is denoted by S[x], and an invariant S[x] is called a quadratic
invariant. Our problem is to make clear the structure of quadratic invariants
of a discrete Hamiltonian system. Let us start by showing an obvious but basic
lemma.

Lemma 1. S[x] is a quadratic invariant of (2) if and only if
(3) T'ST=S, or (T) ST '=S&.

The symbol Q is used to mean the set of all coefficient matrices of quadratic
invariants:

Q = {SeM@N, R)|T'ST=S, §' =§}.

For the time being, we assume that matrices and vectors are complex-valued,
the field of scalars being C, and L and {,) mean C?" and a symplectic inner
product {x, y) =x’Jy on L.

Lemma 2. Let &,,¢&,,...,&, be linearly independent vectors. Then, the u?
matrices defined by (JE)(JE) are linearly independent, and further, it holds that

(T HIEUENIT ™ = {J(TEHITE))

Proof. Choose a vector n subject to (J&;))'n #0 and (JEyn =0( #j). Put
Ze(JE)JIEY =0 and multiply n from the right, and it follows that
Zi((JE)n) - ¢;;JE = 0. Since J¢; are linearly independent, we have ¢;; = 0. The
second assertion is obvious due to T°JT =J.

2. Quadratic invariant

This section is devoted to determination of all quadratic invariants.
Let {¢y, &,,...,¢&,} and {n;, n5,...,n,} be generalized eigenvectors of T which
form two distinct Jordan blocks with eigenvalues a and b, respectively. That is,

T¢ =aly, Té=ali+6-, (2=isu),
Tny=bn, Tmi=bn+n_; Q=<j<o),
For every vector {, &, # (T — al){ and #, # (T — bI){.
We define uv matrices M;; and introduce a linear combination S of them:
@ My=(&)Un) (1Sisu1<j<0), S= % oM,
I;iéu,léjév

where ¢;; are complex constants. Our first schedule is to obtain a condition
that S satisfies (3) by disregarding a restriction that S is either real or symmetric.
Owing to Lemma 2, (T~!yST~! is equal to S, if and only if all of the
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following equations hold good.
(1 —ab)c,, =0,
(1 —ab)c;, =bciyy,, (1ZiZu—1),
(1—ab)e,=ac, oy (1SjSv—1),
(1 —ab)c;j=ac;ji + by j+Cirg o1 (1Sisu—1,15js0-1).
By m is denoted min (i, j). When ab # 1, it is easy to prove that all of ¢;
vanish. When ab=1, c; vanishes for i+j>m+1 and the remaining

coefficients are subject to ac; j41 + bc;4q,; + Civ1,j+1 = 0. Concerning the latter
ones, we put

¢y =(—a/bf Ypin-arpl) Q=Li+jsm+1).
Then, the equations among the remaining c;; turn out to be equivalent to

fo(i) = arb. const., f,(1) = arb. const. O0O=k=sm-1),
)
Jer1()) = frua (1) = %(fk(2) + £03) + -+ £ilD)

(1£kE£m—-2,2<5i<m+1-k).
Thus, we have attained the following lerﬁma.

Lemma 3. With respect to matrices which are linear combinations of M;;
and satisfy (3), the followings hold good.

(@) When ab # 1, there exists no non-zero matrix.

(b) When ab = 1, there are m linearly independent matrices S, such that

Sk=fi-tDMy py1 o +(— az)fk—1(2)M2,m—k |

¢ 7 .
(6) 4ot (—a)" M m+ 1 — KMy gy (1=k=m),

where f,(i) are constants defined by (5).

According to Lemma 2, an arbitrary matrix S is expressed as a linear
combination of (J&)(J¢&;), where {&,, &,,...} denotes a whole of eigenvectors and
generalized ones and is a basis of L. By use of Lemmas 2 and 3, we have the
following immediately.

Lemma 4. A matrix S satisfies (3), if and only if S is expressed as a linear
combination of matrices S, which. are constructed from all combinations of
generalized eigenvectors with eigenvalues a and 1/a in a manner as in (6).

Now, we are in a position to study quadratic invariants. Since the coefficient
matrix of a quadratic invariant is real and symmetric, two conditions S’ = S and
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S =S must be satisfied besides (3). Define S, under the condition fio (D #0
(k=1,...,m). Then, according to Lemma 2, S, # S, and S, + S, are linearly
independent. Furthermore, put, for each S,,

1 _ _ / —1 _ —
(7) Uk=z(sk+sk'+sll¢+sﬂ)' K=T(Sk—sk+sfc—sxlc) (1=k=m),

and the matrices U, and ¥ belong to €, since T°S’T=§’ and T’ST = § follow
automatically from T°ST = S. Due to Lemma 4, every element of Q is expressed
as a linear combination of U, and ¥ with real coefficients, though they are not
necessarily linearly independent. '

It is well known that if a is an eigenvalue of a real symplectic matrix, so
are 1/a, a, and 1/a [1]. The above matrices U, and ¥ are constructed from
the vectors selected from the four generalized eigenspaces, in other words, they
depend on a quartette of W, W, o> Wz, and W, a- Hereafter, we adopt a
convention that a means an eigenvalue subject to

@®) lalz1, O0=Zarg(a)<n

By means of this, only one eigenvalue is selected among the four. Next, suppose
that W, is a direct sum of u subspaces B; corresponding to respective Jordan
blocks. We choose a set of generalized eigenvectors as follows.

B; =span {¢9,..,EQ}, i=1..,u, s. L.
Tﬁg'i) = aé_(ii) + (1 - 5j1)£_(ii)—1’ ] = 15---’j(i)’ J(l) 21(2) g gj(u)y

where dim W, = j(1) + --- + j(u). In this case, there exists a unique basis {n$}
of W, which satisfy <&, n¥) = 6,;0,5, and W, , is a direct sum of the following
u subspaces (Appendix 2).

©)

C; = span {(T — I/ay®~'nQ, (T — 1/ay O~ 24D, ....nP (i=1,...,u).

Here, (T'—1/ay®~'#{ is an eigenvector. As is easily seen, B, and C; are
skew-orthogonal to each other when i #j. With respect to the remaining two
generalized eigenspaces, we may define subspaces B; and Cj similarly.

Now, under the condition that + 1 are not eigenvalues, the four values may
be reduced. To be concrete, there are three cases with respect to eigenvalues.

(a) Case of aeR and a > 1: a=a.
(b) Case of |a|]=1 and 0 < arg(a) < m: a=1/a
(c) Case of aeR and |a| > 1: Four eigenvalues.

Case (a). Since all generalized eigenvectors can be selected as real-valued, ¥
vanish in (7). Then, according to Lemma 3, we obtain j(1) + 3j(2) +--- +
(2u — 1)j(u) linearly independent quadratic invariants from combination of B; and
C.

je
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Case (b). In this case, B; equals to C;. Then, from combination of B; and C;,
only U, are obtained, whereas neither U, nor ¥ vanish when i #j. Then, we
have j(1) + 5j(2) + - + (4u — 3)j(u) linearly independent quadratic invariants
related to an eigenvalue a.

Case (c). For all combinations of B; and C;, both U, and ¥ are obtained.
Then, 2j(1) + 6j(2) + --- + (4u — 2)j(u) linearly independent quadratic invariants
are obtained.

For an eigenvalue a, we put
JO+3i@)+ -+ Qu—1)jw Case (a),
num (a) = j(1) + 5j(2) + --- + (4u — 3)j(u) Case (b),
2i(1) + 6j(2) + --- + (4u — 2)j(u) Case (c).
Then, the following theorem holds good.

Theorem 1. The discrete system (2) admits 2’ num (a) linearly independent
quadratic invariants, where X’ means summation over eigenvalues subject to (8).

Let us pay attention to the fact that if [ does not vanish, its rank equals
to 4, and if U, does not vanish, its rank equals to 4 or 2. Furthermore, because
of Lemma 4, rank U, is 2, if and only if there exist non-zero vectors ¢ and 7
such that T¢ = a¢ and Tn = (1/a)n, where a is real, or complex with the absolute
value one. In the former case, the signature of U, is (1, 1), while in the latter
case U, is (semi) positive-definite. This leads to the following corollary.

Corollary 1. The discrete system (2) leaves a 2-dimensional plane I’ invariant,
and every solution on I' lies on an elliptic curve, if and only if (2) admits a
quadratic invariant S[x] such that S is (semi) positive-definite and is of rank 2. In
this case, I' is characterized as J - Im (S).

3. Remarks on symmetry generated by quadratic invariant

According to [2], the whole of quadratic invariants is closed with respect
to the Poisson bracket [1], and forms a Lie algebra @. The Poisson bracket
is represented on Q as follows.

{S, T} = SJT — TJS.

Returning to M;; defined by (4), we consider M, = (J&,)(jn,) and M, = (J¢&)
(Jn,). Then, it follows that

{M,, Mz} =Ny, &0 (JE)(Ung) —<nas &0 (JE)(Uny)'-
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Due to Appendix 1, we can see that {M,, M,} vanishes, if {&,, n,} and {¢,, n,}
belong to different quartettes of the four generalized eigenspaces mentioned in
the previous section. Therefore, U, and ¥, in §3 form a closed subalgebra and
O is a direct sum of these subalgebras. In a word, the symmetry group generated
by quadratic invariants is determined only by the structure of respective
generalized eigenspaces.

Appendix 1. Skew-orthogonality of ﬁ{, and W, (ab # 1).

Let {4, &,,...,&.} and {ny, n,,...,n,} be generalized eigenvectors of T which
form two distinct Jordan blocks subject to (9). Then, since T is symplectic, it
holds that

Cumip>=ab{&,n;>+a(l —06;)<&;nj—1> +b(l —d;))<&_y, m;D
+ (1 —6;)(1 —6;)<&im s Mj-1)-

When ab # 1, we find that every (¢, #;> vamshes starting from {(&,,#%,> =0.
Then, by conSIderlng all combinations of Jordan blocks, W, proves to be
skew-orthogonal to W,. In particular, when a # + 1, W, is skew-orthogonal to
itself, that is, null.

Appendix 2. Commutation relation between W, and W, a(@ # 1).

Suppose that W is a direct sum of u Jordan blocks K,,...,K,, and K, is
spanned by a set of generalized eigenvectors {&9, &9, ;‘(’,,} subject to
TEP = alP + (1 — 6;,) &% ,. Then, the followings hold good

(1) There is a unique basis {n{",...,n51),....n%,...,n%,} of Wl,,, such that
<ffa), '13’”) = 5ij5aﬂ-

(2) For any i subject to 1 <i < u, it holds that (T — I/afs # 0 (0 £ k < j(i)
— 1) and (T—1/ay®yP =0. In other words, {(T—I/a}n}i=jo-1,..0
constructs a Jordan block in W, ,.

(3) (T I /a)"n“’ (0<k<j(i)—1) is expressed as a linear combination of
’71(1),---”1k+1-

First, we intend to verify the following proposition. When L is a direct
sum of three subspaces: L= L, + L, + L, such that L, and L, are null, and
L, is skew-orthogonal to L, and L,, then it follows that

(@ dimL, =dimL,.

(b) For an arbitrary basis {£;} of L, there is a unique basis {#;} of L, subject
to <&, n;> =y

It is to be noted that for any non-zero vector ¢{eL, there is a vector g
subject to (¢, n) = 1 because of nondegeneracy, and # can be chosen as a vector
in L, by supposition. By using the fact, induction with respect to k can prove
that there are vectors ¢y,...,§ €Ly and n,...,m,€ L, subject to (&, n;> = 0;j, as
far as k < dim L;. Exchanging the roles of L, and L,, we have (a) and have
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shown that there are bases of L, and L, subject to <&, n;> = ;. Next, fix a
pair of bases mentioned above, and choose an arbitrary basis {5} of L, such
that & = X;a;¢;. Then, nf=Xb;n; satisfies (&, n5> =0, if and only if
Ziab; = 6, This proves (b).

If weput L, = W,and L, = W, /e and let L, be a direct sum of the remaining
generalized eigenspaces, the assumption is satisfied because of Appendix 1. Then,

Assertion (1) is verified.

Assertion (1) means that there is a symplectic matrix X such that X iTX
is block-diagonal, and that a half of its blocks are Jordan ones. For each Jordan
block A, another block 4’1 exists, for X “'TX is also symplectic. That is, with
respect to the vectors listed in (1), it holds that

aloO
0aloO

) M) = (£D 0] -
T(é -af z)) (é -’51(1)) 0 0 a 1 .. ’

1/a 0o 0 0 .
—1/a> 1/a 0 O

T( 't ’r’gl()l)) = (71(’) . 115'(),)) 1/a3 _ 1/(12 l/a 0

This proves (2) and (3).
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