On the Normal Generation of Ample Line Bundles on Abelian Varieties Defined Over Some Special Field

By

Akira Ohbuchi

Department of Mathematical Sciences, Faculty of Integrated Arts and Sciences, The University of Tokushima, 1-1 Minamijosanjima-cho, Tokushima 770, JAPAN email address: ohbuchi@ias. tokushima-u. ac. jp (Received September 13, 1996)

Abstract

Let \mathcal{L} be an ample line bundle on an abelian variety A defined over an algebraically closed field k. We already know that \mathcal{L} is normally generated if \mathcal{L} is base point free and $\operatorname{char}(k) \neq 2$. In this article, we prove that the above result is also true if $\operatorname{char}(k) = 2$.

1980 Mathematical Subject Classification (1985 Revision). 14H45, 14H10, 14C20

0 Introduction

Let \mathcal{L} be an ample line bundle on an abelian variety A defined over an algebraically closed field k. It is known that $\mathcal{L}^{\otimes n}$ is very ample and normally generated if $n \geq 3$, but in general, it is not very ample, not normally generated if n = 2. In Ohbuchi [7], we have the following result.

Theorem A $\mathcal{L}^{\otimes 2}$ is not very ample if and only if the polarized variety (A, \mathcal{L}) is isomorphic to $(A_1 \times A_2, \mathcal{O}(D_1 \times A_2 + A_1 \times D_2))$ where A_1, A_2 are abelian varieties, $\dim A_1 > 0$, $\dim \Gamma(A_1, \mathcal{O}(D_1)) = 1$ and $\dim A_2 \geq 0$.

And in Ohbuchi [8], we have the following result.

Theorem B We assume that \mathcal{L} is a symmetric ample line bundle and $\operatorname{char}(k) \neq 2$. Then $\mathcal{L}^{\otimes 2}$ is normally generated if and only if $\phi_{\mathcal{L}}(\operatorname{Bs}|\mathcal{L}|) \cap \hat{A}[2] = \emptyset$.

The main purpose of this paper is to prove Theorem B under the assumption of char(k) = 2. The main theorem is the following;

Theorem C We assume that \mathcal{L} is a symmetric ample line bundle. Then $\mathcal{L}^{\otimes 2}$ is normally generated if and only if $\phi_{\mathcal{L}}(\mathrm{Bs}|\mathcal{L}|) \cap \hat{A}[2] = \emptyset$.

NOTATIONS

 \mathcal{O}_A : The structure sheaf of a variety A

 f^* : The pull back defined by a morphism f

 f_* : The direct image defined by a morphism f

 \underline{L} : The invertible sheaf associated with a line bundle L

 $\Gamma(A, \mathcal{F})$: The global sections of a sheaf \mathcal{F}

 $H^{i}(C,\mathcal{F})$: The i-th cohomology group of a sheaf \mathcal{F}

 \underline{G} : The functor defined by a group scheme G

i(L): The index of an non-degenerate line bundle L on an abelien variety A defined by the unique integer $i=i(L), \ 0 \le i(L) \le \dim(A)$ such that $H^j(A,\underline{L}) = \{0\}$ for $j \ne i$ and $H^i(A,\underline{L}) \ne 0$

 \hat{A} : The dual abelian variety of an abelian variety \hat{A}

A[n]: The n-torsion points of an abelian variety A

 $\mathcal{G}(L)$: A theta group of a line bundle L on an abelian variety

 ϕ_L : The dualizing map on an abelian variety A defined by a line bundle L

K(L): The kernel of ϕ_L

 $T_f: A \times S \to A \times S$: The translation morphism on an abelian variety A defined by an $f \in \underline{A}(S)$

 $n_A:A\to A$: The morphism on an abelian variety defined by $n_A(x)=nx$ where n is an integer

1 General Theory of Theta Group

Let k be an algebraically closed field. The following definition is found in Mumford [5] p.221.

Definition 1 A theta group is a system of group schemes and homomorphism

$$0 \to \mathbb{G}_m \xrightarrow{i} G \xrightarrow{\pi} K \to 1$$

such that

(a) K is a commutative group scheme

(b) there is an open covering $\{U_i\}_{i\in I}$ and sections $\sigma_i: U_i \to G(i \in I)$ of π i.e. $\pi\sigma_i = \mathrm{id}_{U_i}$

(c) is a closed immersion, making \mathbb{G}_m into the kernel of π

 $(d)\mathbb{G} \subset the center of \mathcal{G}$

Let A be an abelian variety defined over k and let L be a line bundle on A. The following theorem is found in Mumford [5] p.225 Theorem 1).

Theorem 1 For any scheme S, let $\underline{Aut}(L/A)(S)$ be the group of automorphisms of $L_S = L \times S$ on $A \times S$. Then $\underline{Aut}(L/A)$ is a contravariant functor from (Sch) to (Gr) and there

is a group scheme $\mathcal{G}(L)$ and an isomorphism of group functors $\underline{Aut}(L/S) \cong \mathcal{G}(L)$.

And the natural homomorphism of groups

 $1 \to H^0(S, \mathcal{O}_S^*) \xrightarrow{\underline{i}(S)} \underline{Aut}(L/A)(S) \xrightarrow{\underline{j}(S)} \{ f \in \underline{A}(S); T_f^*(L_S) \cong L_S \} \to 1$

induces homomorphisms of groups

 $1 \to \mathbb{G}_m \xrightarrow{i} \mathcal{G}(L) \xrightarrow{j} K(L) \to 1$

making G(L) into a theta group and G_m = the center of G(L).

Proof. See Mumford [5], p.225 Theorem 1.

Q.E.D.

Lemma 1 There is a cross section $\tau: K(L) \to \mathcal{G}(L)$ such that $j\tau = \mathrm{id}$ and $(i,\tau): \mathbb{G}_m \times K(L) \to \mathcal{G}(L)$ is an isomorphism as a scheme.

Proof. See Mumford [5], p.221.

Q.E.D.

Definition 2 Let V be a finite dimensional vector space and let l be an integer. A representation of $\mathcal{G}(L)$ on V of weight l is a group scheme homomorphism $\sigma: \mathcal{G}(L) \to GL(V)$ such that $\sigma(\lambda) = \lambda^l \mathrm{id}_V$ for any $\lambda \in \underline{\mathbb{G}}_m(S)$.

Theorem 2 Let $R = \operatorname{Spec}(R)$ be an affine scheme defined over k. Then there is a functorial isomorphism $\underline{h}(S)$ such that $\underline{h}(S) : \underline{\mathcal{G}}(L)(S) \to \{(x,\psi); x \in K(L)(S), \psi : L_S \xrightarrow{\sim} T_x^*L_S\}.$

Proof. By the definition, $\underline{Aut}(L/A) \cong \{(x,\psi); x \in \underline{K(L)}(S), \psi : L_S \xrightarrow{\sim} T_x^*L_S\}$. So Theorem is given by Theorem 1.

Definition 3 Let $S = \operatorname{Spec}(R)$ be an affine scheme defined over k and let i = i(L) be the index of L. Let $(z, \psi) \in \underline{\mathcal{G}(L)}(S)$. We put $U_z : H^i(A \times S, \underline{L}_S) \xrightarrow{T_x^*} H^i(A \times S, T_x^*(\underline{L}_S)) \xrightarrow{H^i(\psi)} H^i(A \times S, \underline{L}_S)$.

By Definition 3, we have a representation of $\mathcal{G}(L)$ on $H^{i}(A,\underline{L})$ of weight 1.

Theorem 3 (Theta Structure Theorem) The representation in Definition 3 is the only irreducible representation of $\mathcal{G}(L)$ on $H^{i}(A,\underline{L})$ of weight 1. And any representation of $\mathcal{G}(L)$ of weight 1 is completely reducible.

Proof. See Sekiguchi [12] p.726 Theorem A.6.

Theorem 4 Let $f: A \to B$ be an isogeny of abelian varieties A, B with kernel K, let L be a non-degenerate line bundle on B and let M is a non-degenerate line bundle on A. We assume that there is an isomorphism $\alpha: f^*L \xrightarrow{\sim} M$. Let K^* be the level subgroup corresponding to α , let $\mathcal{G}(M)^*$ be the centeralizer of K^* in $\mathcal{G}(L)$ and let $\overline{f}: \mathcal{G}(M)^* \to \mathcal{G}(M)$ be a canonical map. If R is a k-algebra and $z \in \mathcal{G}(M)^*(\operatorname{Spec}(R))$, then we have the following commutative diagram:

$$\begin{array}{ccc} H^{i}(B,\underline{M})\otimes R & \xrightarrow{f^{*}} & H^{i}(A,\underline{L})\otimes R \\ U_{\overline{f}(z)}\downarrow & & \downarrow U_{z} \\ H^{i}(B,\underline{M})\otimes R & \xrightarrow{f^{*}} & H^{i}(A,\underline{L})\otimes R. \end{array}$$

Proof. See Mumford [6] p.297 Theorem 2 and Sekiguchi [12] p.710 Proposition 0.1. Q.E.D.

Theorem 5 Let L be a non-degenerate line bundle with index i on A and let M be a non-degenerate line bundle with index j on B. Let R be a k-algebra and let $z = (z_1, z_2) \in G(L)(\operatorname{Spec}(R)) \times \underline{G(M)}(\operatorname{Spec}(R))$ and \overline{z} is a canonical image of z in $\underline{G(p_1^*L \otimes p_2^*M)}(\operatorname{Spec}(R))$. Then we have the following commutative diagram:

$$\begin{array}{cccc} H^{i}(A,\underline{L})\otimes H^{j}(B,\underline{M})\otimes R & \to & H^{i+j}(A\times B,p_{1}^{*}\underline{L}\otimes p_{2}^{*}\underline{M})\otimes R \\ U_{z_{1}}\otimes U_{z_{2}}\downarrow & & \downarrow U_{\overline{z}} \\ H^{i}(A,\underline{L})\otimes H^{j}(B,\underline{M})\otimes R & \to & H^{i+j}(A\times B,p_{1}^{*}\underline{L}\otimes p_{2}^{*}\underline{M})\otimes R \end{array}$$

where p_1 and p_2 are projections on $A \times B$.

Proof. See Sekiguchi [12] p.710 Proposition 0.4.

Q.E.D.

Theorem 6 Let $\pi:A\to B$ be an isogeny of abelian varieties A, B and let L be a line bundle on A. Then there is a natural one-to-one correspondence between

- a) isomorphism classe of line bundle M on B such that $\pi^*M \cong L$
- b) homomorphism $ker(\pi) \to \mathcal{G}(L)$ lifting the inclusion $ker(\pi) \subset A$.

Proof. See Mumford [5] p.231 Theorem 2.

Q.E.D.

Definition 4 The subgroup scheme $ker(\pi) \subset \mathcal{G}(L)$ is called a level subgroup of $\mathcal{G}(L)$.

2 Normal Generation of $L^{\otimes 2}$

Let L be an ample line bundle on an abelian variety A defined over an algebraically closed field k. We first recall the definition of normal generation of L.

Definition 5 L is normally generated if $\Gamma(A,\underline{L})^{\otimes n} \to \Gamma(A,\underline{L}^{\otimes n})$

is surjective for any positive integer n.

In this section, we prove Theorem C. First we prepare several lemmas and definitions.

Lemma 2 Let L be a symmetric (i.e. $(-1)_A^*L \cong L$) ample line bundle on A. We put $\xi: A \times A \to A \times A$ by $\xi(x,y) = (x+y,x-y)$. Then $\xi^*(p_1^*L \otimes p_2^*L) \cong p_1^*L^{\otimes 2} \otimes p_2^*L^{\otimes 2}$.

Proof. See Mumford [6] p.320 Proposition 1.

Q.E.D.

Lemma 3 Assume that M is an ample line bundle on A, then $\Gamma(A,\underline{L}^{\otimes m})\otimes\Gamma(A,\underline{L}^{\otimes n})\to\Gamma(A,\underline{L}^{\otimes m+n})$ is surjective if $n\geq 2$ and $m\geq 3$.

Proof. See Koizumi [4] p.882 Theorem 4.6., Sekiguchi [11] p.321 Theorem 2.3. and Sekiguchi [12] p.723 Theorem 2.4.

Q.E.D.

The following definitions are found in Mumford [5] pp.104-108.

Definition 6 Let $x \in A$. We put $\mathbb{H}_x = Hom_{cont}(\mathcal{O}_{x,A}, k)$ and $\mathbb{H} = \bigoplus_{x \in A} \mathbb{H}_x$ where

Hom_{cont} means the linear map

$$L: \mathcal{O}_{A,x} \to K \text{ with } L(\mathfrak{m}_x^s) = \{0\}$$

for some integer $s \in \mathbb{N}$ where \mathfrak{m}_x is a unique maximal ideal of $\mathcal{O}_{A,x}$.

If $L \in \mathbb{H}$, then $L \in \Gamma(Z, \mathcal{O}_Z)^*$ for some Z where Z is a zero-dimensional subscheme of A. We call L is supported by Z if $L \in \Gamma(Z, \mathcal{O}_Z)^*$. Let $m: A \times A \to A$ be a multiplication morphism on A and $m^*: \mathcal{O}_A \otimes \mathcal{O}_A \to \mathcal{O}_A$ be its dual. Let $L \in \mathbb{H}$ and we assume that L is supported by $x \in A$ for some closed point A.

Definition 7 A differential operator $D_L : \mathcal{O}_A \to \mathcal{O}_A$ which consists of maps $D_L : \Gamma(U, \mathcal{O}_A) \to \Gamma(T_*^*U, \mathcal{O}_A)$ is defined by the composition:

$$D_L = (\mathrm{id} \otimes L) m^* : \mathcal{O}_A \to \mathcal{O}_A \otimes \mathcal{O}_A \to \mathcal{O}_A \times \mathcal{O}_{A,x} \to \mathcal{O}_A.$$

Let $\Lambda_n = k[\epsilon]/(\epsilon^n)$. Let $t_n^{(i)} : \operatorname{Spec}(\Lambda_n) \to A$ be a morphism defined by $(t_n^{(i)})^*(t_s) = 0$ if $s \neq i$ and $(t_n^{(i)})^*(t_s) = \epsilon$ if s = i and support of $t_n^{(i)} = 0 \in \underline{A}(\operatorname{Spec}(k))$. We assume that $t_n^{(i)} \in \underline{K(\underline{L})}(\operatorname{Spec}(\Lambda_n)). \text{ Then we have a map}$ $U_{t_n^{(i)}} : \Gamma(A \times \operatorname{Spec}(\Lambda_n), \underline{L} \otimes \Lambda_n) \to \Gamma(A \times \operatorname{Spec}(\Lambda_n), \underline{L} \otimes \Lambda_n).$

We put $V_n^{(i)} = U_{t_n^{(i)}}$. Let $s \in \Gamma(A, \underline{L})$. We set $V_n^{(i)}(s) = \sum_{l=0}^n (D_{l,n}^{(i)}s)\epsilon^l$. Then $D_{l,n}^{(i)}$ is a differential operator.

Lemma 4 If $t_n^{(i)}, t_m^{(i)} \in K(L)$, then $D_{l,n} = D_{l,m}$.

Proof. We may assume that m = n - 1. A canonical inclusion

$$\iota: \operatorname{Spec}(\Lambda_{n-1}) \to \operatorname{Spec}(\Lambda_n)$$

induces that

$$\iota^* : K(L)(\operatorname{Spec}(\Lambda_n)) \to K(L)(\operatorname{Spec}(\Lambda_{n-1}))$$

and $\iota^*(t_{n-1}^{(i)}) = t_{n-1}^{(i)}$. Hence we have the following commutative diagram:

$$\begin{array}{cccc} T_{t_n^{(i)}}^*(L \otimes \Lambda_n) & \xrightarrow{\sim} & L \otimes \Lambda_n \\ \downarrow & & \downarrow \\ T_{t_{n-1}^{(i)}}^*(L \otimes \Lambda_{n-1}) & \xrightarrow{\sim} & L \otimes \Lambda_{n-1}. \end{array}$$

Therefore we get the following diagram:

$$\begin{array}{ccc} \varGamma(A\times\operatorname{Spec}(\Lambda_n),\underline{L}\otimes\Lambda_n) & \to & \varGamma(A\times\operatorname{Spec}(\Lambda_n),\underline{L}\otimes\Lambda_n) \\ \downarrow & & \downarrow \\ \varGamma(A\times\operatorname{Spec}(\Lambda_{n-1}),\underline{L}\otimes\Lambda_{n-1}) & \to & \varGamma(A\times\operatorname{Spec}(\Lambda_{n-1}),\underline{L}\otimes\Lambda_{n-1}). \end{array}$$

Hence we have Lemma.

Q.E.D.

By Lemma 4, $D_{l,n}^{(i)}$ is independent of the choice of n. We put $D_{l}^{(i)} = D_{l,n}^{(i)}$

Proposition 1 Let $s \in \Gamma(A,\underline{L})$. There are integers N, i_1, \dots, i_j and $t_j^{(i_1)}, \dots t_j^{(i_j)} \in$ $\underline{K(L)}(\operatorname{Spec}(\Lambda_j))$ for every $j=0,\cdots,N$ such that $\Gamma(A,\underline{L})$ is spanned by $D_j^{(l)}U_xs=U_xD_j^{(l)}s$ where $x \in K(L)(\operatorname{Spec}(k))$.

Proof. By Theorem 3, Proposition is clear.

Q.E.D.

Let $V=2_A^*\Gamma(A,\underline{L})\subset\Gamma(A,2_A^*\underline{L})$ where $2_A:A\to A$ is given by $2_A(x)=2x$. Let $V_x = U_x(V)$ where $x \in \tau(K(2_A^*L))$ is a closed point and τ is a cross section given in Lemma 1 and let $V_{x,D_j^{(l)}} = V_{x,j}^{(l)} = D_j^{(l)}(V_x)$.

Lemma 5 There are closed points $x_1 \cdots, x_t \in \tau(K(2_A^*L))$ such that $\Gamma(A, 2_A^*\underline{L}) = \sum_{i=1}^t \sum_{i,l} V_{x_i,j}^{(l)}$.

Proof. Lemma is given by Proposition 1.

Q.E.D.

Theorem 7 We have the following commutative diagram:

$$\begin{array}{cccc} \Gamma(A\times A,p_1^*(2_A^*\underline{L})\otimes p_2^*(2_A^*\underline{L}) & \xrightarrow{\xi^*} & \Gamma(A\times A,p_1^*(2_A^*\underline{L}^{\otimes 2}))\otimes p_2^*(2_A^*\underline{L}^{\otimes 2}) \\ & 2_{A\times A}^*\uparrow & & \uparrow 2_{A\times A}^* \\ & V_{x,D_i^{(l)}}\otimes V_{x,D_i^{(l)}} & \xrightarrow{\xi^*} & \Gamma(A,\underline{L}^{\otimes 2}))\otimes \Gamma(A,\underline{L}^{\otimes 2}) \end{array}$$

Proof. Let $t \in \mathcal{G}(2^*_A L)(\operatorname{Spec}(R))$. By Theorem 5, we have the following commutative diagram:

$$\Gamma(A, 2_A^* \underline{L}) \otimes \Gamma(A, 2_A^* \underline{L}) \otimes R \rightarrow \Gamma(A \times A, p_1^* (2_A^* \underline{L}^{\otimes 2}) \otimes p_2^* (2_A^* \underline{L}^{\otimes 2})) \otimes R$$

$$U_t \otimes U_t \downarrow \qquad \qquad \downarrow U_{(t,t)}$$

$$\Gamma(A, 2_A^* \underline{L}) \otimes \Gamma(A, 2_A^* \underline{L}) \otimes R \rightarrow \Gamma(A \times A, p_1^* (2_A^* \underline{L}^{\otimes 2}) \otimes p_2^* (2_A^* \underline{L}^{\otimes 2})) \otimes R.$$

Moreover we have the following commutative diagram by Theorem 4:

$$\begin{array}{cccc} \Gamma(A\times A,p_1^*(2_A^*\underline{L})\otimes p_2^*(2_A^*\underline{L}))\otimes R & \stackrel{\xi^*}{\to} & \Gamma(A\times A,p_1^*(2_A^*\underline{L}^{\otimes 2})\otimes p_2^*(2_A^*\underline{L}^{\otimes 2}))\otimes R \\ & U_{\overline{\xi}(z)}\downarrow & & \downarrow U_z \\ \Gamma(A\times A,p_1^*(2_A^*\underline{L})\otimes p_2^*(2_A^*\underline{L}))\otimes R & \stackrel{\xi^*}{\to} & \Gamma(A\times A,p_1^*(2_A^*\underline{L}^{\otimes 2})\otimes p_2^*(2_A^*\underline{L}^{\otimes 2}))\otimes R \end{array}$$

$$\Gamma(A \times A, p_1^*(2_A^*\underline{L}) \otimes p_2^*(2_A^*\underline{L})) \otimes R \xrightarrow{\xi^*} \Gamma(A \times A, p_1^*(2_A^*\underline{L}^{\otimes 2}) \otimes p_2^*(2_A^*\underline{L}^{\otimes 2})) \otimes R$$

where $z \in \mathcal{G}(p_1^*(2_A^*L) \otimes p_2^*(2_A^*L)^*(\operatorname{Spec}(R))$. As $A[2] \times A[2]$ is a level subgroup of $\mathcal{G}(p_1^*(2_A^*L)^{\otimes 2}) \otimes P_2^*(2_A^*L)^*$ $p_2^*(2_A^*L^{\otimes 2})$ and $\mathcal{G}(p_1^*(2_A^*L)\otimes p_2^*(2_A^*L)$. We take $z\in A[2]\times A[2](\operatorname{Spec}(R))$. Then we have the following commutative diagram:

$$\begin{array}{ccc} \Gamma(A\times A,p_1^*(2_A^*\underline{L})\otimes p_2^*(2_A^*\underline{L}))\otimes R & \xrightarrow{\xi^*} & \Gamma(A\times A,p_1^*(2_A^*\underline{L}^{\otimes 2})\otimes p_2^*(2_A^*\underline{L}^{\otimes 2}))\otimes R \\ & U_{(t,t)}\downarrow & & \downarrow U_z \end{array}$$

$$\Gamma(A \times A, p_1^*(2_A^*\underline{L}) \otimes p_2^*(2_A^*\underline{L})) \otimes R \xrightarrow{\xi^*} \Gamma(A \times A, p_1^*(2_A^*\underline{L}^{\otimes 2}) \otimes p_2^*(2_A^*\underline{L}^{\otimes 2})) \otimes R$$

where $\xi(z) = (t, t)$ because 2z = 0. By the definition of V, we have that $V \otimes V = \Gamma(A \times A, p_1^*(2_A^*\underline{L}) \otimes p_2^*(2_A^*\underline{L}))^{A[2] \times A[2]}.$

Hence we have the following commutative diagram:

$$\begin{array}{ccc} V \otimes V \otimes R & \to & \Gamma(A \times A, p_1^*(2_A^*\underline{L}) \otimes p_2^*(2_A^*\underline{L})) \otimes R \\ \text{id} \downarrow & & \downarrow U_{(t,t)} \\ V \otimes V \otimes R & \to & \Gamma(A \times A, p_1^*(2_A^*\underline{L}) \otimes p_2^*(2_A^*\underline{L})) \otimes R. \end{array}$$

 $\text{As } \varGamma(A\times A,p_1^*(2_A^*\underline{L})\otimes p_2^*(2_A^*\underline{L}))^{\text{diagonal image of }A[2]\text{ in }A[2]\times A[2]}=\varGamma(A\times A,p_1^*(\underline{L}^{\otimes 2})\otimes p_2^*(\underline{L}^{\otimes 2}))$ and a diagonal image of A[2] in $A[2] \times A[2]$ is a level subgroup of $\mathcal{G}(p_1^*(2_A^*L) \otimes p_2^*(2_A^*L))$, we have $U_{(t,t)}U_{(s,s)}=U_{(s,s)}U_{(t,t)}$ for any $s,t\in A[2](\operatorname{Spec}(R))$ and the following commutative diagram:

$$\begin{array}{ccc} U_{(s,s)}V \otimes V \otimes R & \to & \Gamma(A \times A, p_1^*(\underline{L}^{\otimes 2}) \otimes p_2^*(\underline{L}^{\otimes 2})) \otimes R \\ \text{id} \downarrow & & \downarrow U_{(t,t)} \\ U_{(s,s)}V \otimes V \otimes R & \to & \Gamma(A \times A, p_1^*(\underline{L}^{\otimes 2}) \otimes p_2^*(\underline{L}^{\otimes 2})) \otimes R \end{array}$$

for any $s, t \in A[2](\operatorname{Spec}(R))$. Hence we have Theorem.

Corollary 1 We have the following commutative diagram:

$$\begin{array}{cccc} \Gamma(A\times A,p_1^*(2_A^*\underline{L})\otimes p_2^*(2_A^*\underline{L})) & \stackrel{\sim}{\to} & \Gamma(A\times A,p_1^*(\underline{L}^{\otimes 4})\otimes p_2^*(\underline{L}^{\otimes 4})) \\ 2_{A\times A}^*\uparrow & & \uparrow \xi^* \\ V_{x,D_j^{(l)}}\otimes V_{x,D_j^{(l)}} & \stackrel{\xi^*}{\to} & \Gamma(A,\underline{L}^{\otimes 2})\otimes \Gamma(A,\underline{L}^{\otimes 2}) \end{array}$$

Proof. As $\Gamma(A \times A, p_1^*(2_A^*\underline{L}^{\otimes 2}) \otimes p_2^*(2_A^*\underline{L}^{\otimes 2}))^{\text{diagonal image of } A[2] \text{ in } A[2] \times A[2]} = \Gamma(A \times A, p_1^*(\underline{L}^{\otimes 4}) \otimes p_2^*(\underline{L}^{\otimes 4}))$, the diagonal image of A[2] in $A[2] \times A[2]$ is a level subgroup of $\mathcal{G}(p_1^*(2_A^*\underline{L}^{\otimes 2}) \otimes p_2^*(2_A^*\underline{L}^{\otimes 2}))$ and $\xi \xi = 2_{A \times A}$, We have Corollary.

Q.E.D.

Proof of Theorem C.

By Theorem 7, we have the following commutative diagram:

$$\begin{array}{cccc} \Gamma(A\times A,p_1^*(2_A^*\underline{L})\otimes p_2^*(2_A^*\underline{L})) & \stackrel{\sim}{\to} & \Gamma(A\times A,p_1^*(\underline{L}^{\otimes 4})\otimes p_2^*(\underline{L}^{\otimes 4})) \\ 2_{A\times A}^*\uparrow & & \uparrow 2_{A\times A}^* \\ V_{x,D_j^{(l)}}\otimes V_{x,D_j^{(l)}} & \stackrel{\xi^*}{\to} & \Gamma(A,\underline{L}^{\otimes 2})\otimes \Gamma(A,\underline{L}^{\otimes 2}). \end{array}$$

Let $W_{x,D_j^{(t)}}\subset \Gamma(A,2_A^*\underline{L})$ be a subspace generated by $e^*(s)2_A^*(s')$ where $s,s'\in V_{x,D_j^{(t)}}$ and $e^*:V_{x,D_j^{(t)}}\to k$ be an evaluation map defined by $0\in A$. As a cup product map $\mu:\Gamma(A,\underline{L}^{\otimes 2})\otimes\Gamma(A,\underline{L}^{\otimes 2})\to\Gamma(A,\underline{L}^{\otimes 4})$ is given by

 $\Gamma(A,\underline{L}^{\otimes 2})\otimes\Gamma(A,\underline{L}^{\otimes 2})\overset{\xi^{\star}}{\to}\Gamma(A,\underline{L}^{\otimes 4})\otimes\Gamma(A,\underline{L}^{\otimes 4})\overset{e^{\star}\otimes\mathrm{id}}{\to}\Gamma(A,\underline{L}^{\otimes 4})$ so we have that the image of $\Gamma(A,\underline{L}^{\otimes 2})\otimes\Gamma(A,\underline{L}^{\otimes 2})\to\Gamma(A,\underline{L}^{\otimes 2})\cong\Gamma(A,2_{A}^{\star}\underline{L})$ is equal to $\sum_{i=1}^{t}\sum_{j,l}W_{x_{i,j}}^{(l)}$ and $\Gamma(A,2_{A}^{\star}\underline{L})=\sum_{i=1}^{t}\sum_{j,l}V_{x_{i,j}}^{(l)}$ by Lemma 5. Therefore μ is surjective if and only if $V_{x_{i,j}}^{(l)}=W_{x_{i,j}}^{(l)}$ for any $x_{i,j},l$. By Lemma 3, μ is surjective if and only $L^{\otimes 2}$ is normally generated. Hence $L^{\otimes 2}$ is normally generated if and only if $V_{x_{i,j}}^{(l)}=W_{x_{i,j}}^{(l)}$ for any $x_{i,j},l$. If there is an $s\in V_{x_{i,j}}^{(l)}$ such that $e^{\star}(s)\neq 0$, then $V_{x_{i,j}}^{(l)}=W_{x_{i,j}}^{(l)}$ and if any $s\in V_{x_{i,j}}^{(l)}$ satisfies $e^{\star}(s)=0$, then $W_{x_{i,j}}^{(l)}=\{0\}$. Therefore $V_{x_{i,j}}^{(l)}=W_{x_{i,j}}^{(l)}$ for any $W_{x_{i,j}}^{(l)}$ if and only if $\phi_{\mathcal{L}}(\mathrm{Bs}|\mathcal{L}|)\cap\hat{A}[2]=\emptyset$. Hence Theorem is proved.

Q.E.D.

Corollary 2 Let L be an ample line bundle on an abelian variety A. If L is base point free, then $L^{\otimes 2}$ is normally generated.

References

- [1] W.Barth, K.Hulek, H.Lange: Abelian Varieties, Walter de Gruyter, 1995.
- [2] G.Kempf: Complex Abelian Varieties and Theta Functions, Springer-Verlag, 1991.
- [3] H.Lange, Ch.Birkenhake: Complex Abelian Varieties, Springer-Verlag, 1992.
- [4] S.Koizumi: Theta relations and projective normality of abelian varieties, *Amer. J. Math.* 98 (1976), 868-889.
- [5] D.Mumford: Abelina Varieties, Oxford Univ. Press, 1970.
- [6] D.Mumford: On the equations defining abelian varieties I, Invent. Math., 1 (1966) 287-354.
- [7] A.Ohbuchi: Some remarks on ample line bundles on abelian varieties, *Manuscripta Math.*, 57 (1987) 313-325.
- [8] A.Ohbuchi: A note on the normal generation of ample line bundles on abelian varieties, *Proceedings of Japan Academy*, 54 (1988) 341-342.
- [9] A.Ohbuchi: A note on the projective normality of special line bundles on abelian varieties, *Tsukuba Journal.*, 12 (1988) 341-352.
- [10] A.Ohbuchi: Some criteria for reducible abelian varieties, *Tsukuba Journal.*, **12** (1988) 507-519.
- [11] T.Sekiguchi: On projective normality of abelian varieties I, J. Math. Soc. Japan, 28 (1976) 307-322.
- [12] T.Sekiguchi: On projective normality of abelian varieties II, J. Math. Soc. Japan, 29 (1977) 709-727.
- [13] T.Sekiguchi: On the cubics defining abelian varieties, J. Math. Soc. Japan, 30 (1978) 703-721.