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Abstract
Let £ be an ample line bundle on an abelian variety A defined
over an algebraically closed field k. We already know that £ is
normally generated if L is base point free and char(k) # 2. In this
article, we prove that the above result is also true if char(k) = 2.
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0 Introduction

Let £ be an ample line bundle on an abelian variety A defined over an algebraically
closed field k. It is known that £®" is very ample and normally generated if n > 3, but
in general, it is not very ample, not normally generated if n = 2. In Ohbuchi {7], we have.

the following result.

Theorem A L®? is not very ample if and only if the polarized variety (A, L) is isomor-
phic to (A; X A2, O(Dy X Ay + Ay x Dy)) where Ay, Ap are abelian varieties, dimA; > 0,

dimI'(A;,O(D;)) =1 and dimA; > 0.
And in Ohbuchi [8], we have the following result.

Theorem B We assume that L is a symmetm'cla,mple line bundle and char(k) # 2. Then

L®? is normally generated if and only if ¢(Bs|L]) N A[2] = 0.

The main purpose of this paper is to prove Theorem B under the assumption of char(k) =

2. The main theorem is the following;
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Theorem C We assume that L is a symmetmc ample line bundle. Then £%? is normally
generated if and only if ¢.(Bs|L|) N A[2] =

NOTATIONS
Oa: The structure sheaf of a variety A
f*: The pull back defined by a morphism f
f+: The direct image defined by a morphism f
L: The invertible sheaf associated with a line bundle L
I'(A, F): The global sections of a sheaf F
H¥(C, F): The i-th cohomology group of a sheaf F
G: The functor defined by a group scheme G
i(L): The index of an non-degenerate line bundle L on an abelien variety A defined
by the unique integer 7 = i(L), 0 < ¢(L) < dim(A) such that H’(A, L) = {0} for
j#iand HY(A,L)#0
A: The dual abelian variety of an abelian variety A
Aln]: The n-torsion points of an abelian variety A
G(L): A theta group of a line bundle L on an abelian variety
¢r: The dualizing map on an abelian variety A defined by a line bundle L
K(L): The kernel of ¢,
Tj: Ax S — AxS: The translation morpmsm on an abelian variety A defined by an
f e A(S)
n4: A — A: The morphism on an abelian variety deﬁned by n4(z) = nz where n is an
mteger

1 General Theory of Theta Group

Let k be an a.lgebra.lcally closed field. The following definition is found in Mumford [5]
p.221.

Definition 1 A theta group is a system of group schemes and homomorphism
05GnSHGI K1

such that ‘

. (a) K is a commutative group scheme

(b) there is an open covering {Ui}ier and sections o; : U; — G(z €l ) of T t.e.
wo; = idy, '

(c)i is a closed immersion, makmg G, into the kernel of ™

(d)G C the center of G

Let A be an abelian variety defined over k and let L be a line bundle on A. The following
theorem is found in Mumford [5] p.225 Theorem 1 ).

Theorem 1 For any scheme S, let Aut(L/A)(S) be the group of automorphisms of Ls =
LxS on AxS. Then Aut(L/A) is a contravariant functor from (Sch) to (Gr) and there
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is a group scheme G(L) and an isomorphism of group functors
, Aut(L/S) = G(L).
And the natural homomorphism of groups T
1 19(5,05) *2 au(L/A)(S) I {f € A(S)i T} (Ls) 2 Ls} = 1
induces homomorphisms of groups .
12 Gm>0G(L) DKWL) —1
making G(L) into a theta group and G = the center of G(L).

Proof. See Mumford {5}, p.225 Theorem 1.
Q.E.D.

Lemma 1 There is a cross section 7 : K(L) — G(L) such that j = id and (i,7) :
Gy X K(L) — G(L) is an isomorphism as a scheme.

Proof. See Mumford [5], p.221.
, Q.E.D.

Definition 2 Let V be a finite dimensional vector space and let I be an integer. A repre-
sentation of G(L) on V of weight | is a group scheme homomorphism o : G(L) — GL(V)
such that o(\) = Midy for any A € G,,.(S).

Theorem 2 Let R = Spec(R) be an affine scheme defined over k. Then there is a
functorial isomorphism h(S) such that
h(S) : G(L)(S) — {(z,¥);z € K(L)(S),9 : Ls = T;Ls}.

Proof. By the definition, Aut(L/A) & {(z,%);z € K(L)(S),y : Ls = T;Ls}. So
Theorem is given by Theorem 1.
' Q.E.D.

Definition 3 Let S = Spec(R) be an affine scheme defined over k and let i = i(L) be the

indez of L. Let (2,) € G(L)(S). We put Uy : H(A x 5, Lg) 5 H'(A x 8, Tz(Ls)) "
HY(A x S, Lg).

By Definition 3, we have a representation of G(L) on H*(A, L) of weight 1.

Theorem 3 (Theta Structure Theorem) The representation in Definition 3 is the
only irreducible representation of G(L) on H*(A, L) of weight 1. And any representation
of G(L) of weight 1 is completely reducible.

Proof. See Sekiguchi [12] p.726 Theorem A.6.
Q.E.D.
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Theorem 4 Let f : A — B be an isogeny of abelian varieties A, B with kernel K, let L
be a non-degenerate line bundle on B and let M is a non-degenerate line bundle on A. We
assume that there is an isomorphism o : f*L = M. Let K* be the level subgroup corre-
sponding to o, let G(M)* be the centeralizer of K* in G(L) and let f : G(M)* — G(M) be
a canonical map. If R is a k-algebra and z € G(M)*(Spec(R)), then we have the following
commutative diagram:

HB,MeR 5 H(AL®R
Us 4 . LU
H(B,MeR L H(AL®®R

Proof. See Mumford [6] p.297 Theorem 2 and Sekiguchi [12] p.710 Proposition 0.1.
: Q.E.D.

Theorem 5 Let L be a non-degenerate line bundle with indez i on A and let M be a
non-degenerate line bundle with index j on B. Let R be a k-algebra and let z = (21,23) €
G(L)(Spec(R)) xG(M)(Spec(R)) and Z is a canonical image of z in G(p} L ® p3M)(Spec(R)).
Then we have the following commutative diagram:

HYA, L)@ H)(B,M)®R — H"(AxB,piL®p;M)® R
o UyeU,l o LUz
H'(A,L)® H(B,M)®R — H"/(AxB,pL®p;M)®R

where py and ps are projections‘(‘m A x B,

Proof. See Sekiguchi[12] p.710 Proposition 0.4.
Q.E.D.

Theorem 6 Let @ : A — B be an isogeny of abelian varieties A, B and let L be a line
bundle on A. Then there is a natural one-to-one correspondence between

a) isomorphism classe of line bundle M on B such that m*M = L

b) homomorphism ker(m) — G(L) lifting the inclusion ker(w) C A.

Proof. See Mumford [5] p.231 Theorem 2. L
: Q.E.D.

Definition 4 The subgroup scheme ker(w) C G(L) is called a level subgroup of G(L).
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2 Normal Generation of L®2

Let L be an ample line bundle on an abelian variety A defined over an algebraically closed
field k. We first recall the definition of normal generation of L. '

Definition 5 L is normally generated if
I'(A,L)®" — I'(A,L®")
is surjective for any positive integer n.

In this section, we prove Theorem C. First we prepare several lemmas and definitions.

Lemma 2 Let L be a symmetric (i.e. (—1)4L = L) ample line bundle on A. We put
£:AxA— AxAby&(z,y)=(z+y,z—y). Then & (piL @ p3L) = piL®* @ p3 L®2.

Proof. See Mumford (6] p.320 Proposition 1.
Q.E.D.

Lemma 3 Assume that M is an ample line bundle on A, then
I'(A,L®™) ® I'(A,L®") — I'(A,L®™™)
s surjective if n > 2 and m > 3.

Proof. See Koizumi [4] p.882 Theorem 4.6., Sekiguchi [11} p.321 Theorem 2.3. and
Sekiguchi [12] p.723 Theorem 2.4.
Q.E.D.

The following definitions are found in Mumford [5] pp.104-108.

Definition 6 Let z € A. We put H, = Homeont(Opa,k) and H = P H, where

z€A
Homopnt means the linear map

L:0ay — K with L(m2) = {0}
for some integer s € N where m,, is a unique mazimal ideal of Op ..

If L € H, then L € I'(Z,Oz)* for some Z where Z is a zero-dimensional subscheme of A.
We call L is supported by Z if L € I'(Z,Oz)*. Let m: A x A — A be a multiplication
morphism on A and m* : 04 ® U4 — Q4 be its dual. Let L € H and we assume that L
is supported by z € A for some closed point A.

Definition 7 A differential | operator Dy, : ©O4 — Oa which consists of maps Dy :
I'(U,04) — I'(T2U,Qp) is defined by the composition:
Dy = (id®L)m* 104> 04004 — Oy X OA,:: — Oy4.
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Let A, = kle]/(€"). Let t¥ : Spec(A,) — A be a morphism defined by (t®)*(t,) = 0 if
s # 1 and (t¥)*(t,) = € if s = i and support of ) = 0 € A(Spec(k)). We assume that
t® € K(L)(Spec(A,)). Then we have a map

‘ U(a):F(AXSpec(An),_L_®An)—»F(AxSpec(A ), L® Ap).

We put V. = Uyy. Let s € I'(A,L). We set V?(s) = T (D(’) )é'. Then D(’)

!
dlfferentla.l operator. .

Lemma 4 Ift¥,t®) € K(L), then Dy s, = Dym.

n'y'm

Proof. We may assume that m = n — 1. A canonical inclusion

¢ : Spec(Ap—1) — Spec(A,)

induces that '
¢* : K(L)(Spec(An)) — K(L)(Spec(An-1)

and (,*”(tgll) = tﬁ:ll. Hence we have the following commutative diagram:

WLOA) D LeA,

l !
bt (L®An-1) > LQAp.

Therefore we get the following diagram:

I'(A x Spec(A,),L®A,) —  I'(A X Spec(A,),L® A,)
! ! .
I'(A % Spec(An1), L® hu 1) — T'(A X Spec(n 1), L A 1).

Hence we have Lemma.
Q.E.D.

By Lemma 4, Dz(?; is independent of the choice of n. We put D,(’) D(')

Proposition 1 Let s € I'(A,L). There are integers N, iy,---,1; and tg.i‘),»--tg-ij) €
K(L)(Spec(A;)) for every j =0, -+, N such that I'(A, L) is spanned by Dy)U,s = UzDg)s
where z € K(L)(Spec(k)). :

Proof. By Theorem 3, Proposition is clear.
Q.E.D.

Let V. = 23I'(A,L) C I'(A,2,4L) where 24 : A — A is given by 24(z) = 2z. Let
Ve = Uz(V) where z € 7(K(2%L)) is a closed point and 7 is a cross section given.in
Lemma 1 and let V. o) = V(l) D(l)(V) '

Dj

Lemma 5 There are closed points - --,z, € T(K(24L)) such that I'(A,24L) = Z Z v

Ti,j*
i=1 .7)

Proof. Lemma is given by Proposition 1.

Q.E.D.
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Theorem 7 We have the following commutative diagram:

I(AX Ap(2aL) @ p3(24L) 5 (A x A,p}(2,L%%)) ® py(2:L%?)
Zixa 1 ‘ T 2
V, o @V, oo £ I(A L) ® (A, L%

z,

Proof. Let t € G(2,L)(Spec(R)). By Theorem 5, we have the following commutative
diagram:

LA L)@ NAZL)®R — I'(AxApi(2L%) @p5(24L%%) @ R
Ut ® Ut l _ l U(t,t)
I'(A,2;L) @ I(A,24L)® R — (A x A,pj(23L%*) ® p3(23L%%) ® R.

Moreover we have the following commutative diagram by Theorem 4:

D(Ax Api(2L) @py2aL) @ R 5 I(Ax A,pi(25L%) ® p5(2:L°%) ® R
UE(z) l -L U,
TM(AxAp@EL @pL) ® R 5 I'(Ax Api(25L%) @ p3(21L°%) ® R
where z € G(p}(24 L) ® p3(24L)" (Spec(R)). As A[2]x A[2] is a level subgroup of G(p}(2% L®?)®

p5(24L®%) and G(p}(24L) @ p3(24L). We take z € A[2] x A[2](Spec(R)). Then we have
the following commutative diagram:

MAXARELOp2L) @R 5 (A x A,pi(23L%) @ p3(24 L) © R
Ut | LU,
F(AXARL @pL)OR S I(AxAp(2L%) ©p3(2:L%) ® R
where £(2) = (t,t) because 22 = 0. By the definition of V, we have that
VeV =TI(AxApj(2yL) ® py(2, L)) F*AR.
Hence we have the following commutative diagram:

VOV®R — TI'(AxApi(24L) @ p5(24L) ® R
id | L Uy
VRVOR — I'(AxA,pi(2,L)®p3(2,4L)) ® R.

As I'(Ax A, p}(2;3 L) @p;(2; L)) tioeonal image of AlZl in ARXAR) — (A x A, pi(L®?) @ p3(L®?))
and a diagonal image of A[2] in A[2] x A[2] is a level subgroup of G(p}(24L) ®p3(24 L), we
have Us,yUgs,s) = Us,s)Uss,y) for any s,t € éﬂ (Spec(R)) and the following commutative
diagram:

Us)V®VOR — I'(AxApi(L%) @p;(L®?)@ R
id | L Uy
Us)V®VOR — TI'(AxApi(L®) @p3(L%)) @ R

for any s,t € A[2](Spec(R)). Hence we have Theorem.

Q.E.D.
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Corollary 1 We have the following commutative diagram:

(A X AR(2L) ®p3(2aL)) = [(A x A,p}(L®") ® py(L®*))
:1><A T . T 5*
V, o0 ®V, o & (AL eTI(A, L)

Proof. As I'(AxA, p} (23 L®?)®p}(24 L®?))disgonal image of A[2) in ARIxA[R] — M(Ax A, pt(LBY)®
p3(L®*)), the diagonal image of A[2] in A[2] x A[2] is a level subgroup of G(p%(23L%2) ®
p5(24L®%)) and £€ = 244, We have Corollary.

Q.E.D.

Proof of Theorem C.

By Theorem 7, we have the following commutative diagram:

I(Ax A pi(23L) ® p3(23L)) = I'(A x A,pi(L®*) @ p3(L®*))
zjixA T . _ T 2,‘{A><A
V, 50 ®V, po £ I'(A,L%) ® (A, L.

z,

Let Wz,D(" C I'(A,23L) be a subspace generated by e*(s)24(s’) where 5,5’ € V. 2D
and e* : V. 2D — k be an evaluation map deﬁned by 0 € A. As a cup product map
w: (A, L®2)®F(A L®%) — I'(A, L® ) is given by

I(A,L%%) © I(4,L%) S I'(4,1%) © I'(4,1%%) “S (4, 1%
50 we have that the image of F( L®2) ® I'(A, L®?) — I'(A, L®') = I'(A, 24 L) is equal

to z;ZWé?J and I'(A,2%L ;ZV;PJ by Lemma 5. Therefore p is surjective if
i=1 5l i=1 jl

and only if Vm(:)J W(l) for any z;,j,l. By Lemma 3, p is surjective if and only L®? is
normally generated. Hence L®? is normally generated if and only if V(l) W(l) for any
Z;, 7, 1. If there is an s € V() such that e*(s) # 0, then V(l) Wéf)J and if any s € V(l)
satisfies e‘(s)ﬂ= 0, then Wéfzj {0}. Therefore Vm(i)J = W(l) for any Wé) if and only if
é¢(Bs|L]) N A[2] = 0. Hence Theorem is proved.

Q.E.D.

Corollary 2 Let L be an ample line bundle on an abelian variety A. If L is base point
free, then L®? is normally generated.
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