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Abstract

In this paper, we define the concept of Fourier microfunctions and investigate their
structures. Thereby we obtain the decomposition of singularity of Fourier hyperfunctions.
Then we can deduce the qualitative and quantitative property of Fourier hyperfunctions
by examining only their singularity spectrums. We also investigate the vector-valued
version.
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Introduction

This paper is the first part of the series of papers on the theory of Fourier
microfunctions of several types, which is devided into three parts.

In this paper, we define the concept of Fourier microfunctions and
vector-valued Fourier microfunctions, and study their fundamental properties.
We can investigate these in a similar way to S.K.K. [19].

Let R"=D" be the directional compactification of the n-dimensional Euclidean
space R" in the sense of Kawai [11] and put C" = R" x iR", (i = \/—71). Put
M=R"and X =C". Let O be the sheaf of slowly increasing and holomorphic
functions over X. Then the sheaf # of Fourier hyperfunctions over M is defined
by the relation

% = #7(0) = Dist* (M, 0),

and sections of % on an open set 2 in M are called Fourier hyperfunctions on
Q. Then, putting & = 0|,,, a sheaf homomorphism &/ — # is defined and
becomes and injection. Thereby, the concept of Fourier hyperfunctions can be
considered as a generalization of the concept of slowly increasing and real-analytic
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functions. One purpose of this paper is to analyze the structure of the quotient
sheaf #/o/. We can analyze this structure by a similar way to the theory of

-Sato microfunctions. For Sato microfunctions, we refer the reader to Kaneko

[71, [9], Kashiwara-Kawai-Kimura [10], Morimoto [12], [13], Sato [15], [16],
[17], [18], and Sato-Kawai-Kashiwara [19]. The first target is to show that
we can define the sheaf @ of Fourier microfunctions over S*M, which is the
cosphere bundle over M, and we can have the fundamental exact sequence

0 >y of > B >7t*(g » 0,

where n: S*M — M is the projection and n*(g denotes the direct image of €
with respect to 7. ‘

Further we investigate more precise structures of Fourier microfunctions. As
to Fourier microfunctions, there exist another approaches by Kaneko [8], [9]
and the flabbiness of the sheaf-@-has been-proved in Kaneko [9]: But we-have
not yet proved the flabbiness of the sheaf € by our method.

The results of Fourier microfunctions were reported at Seminar on Real
Analysis, 1989 (Hitotsubashi University, Tokyo) and at the short communication
of ICM90 in Kyoto.

Next, we consider a similar construction of the theory of vector-valued
Fourier microfunctions.

At last we note that Fourier microfunctions and vector-valued Fourier
microfunctions on an open set in S*R" are nothing else but Sato microfunctions
and vector-valued Sato microfunctions, respectively, where S*R" is the cosphere
bundle over R".

In section 1, we mention a general framework necessary to the study
of the theory of Fourier microfunctions of several types in this series of papers.

In section 2, we construct the theory of Fourier microfunctions.

In section 3, we construct the theory of vector-valued Fourier microfunctions.

1. General theory

1.1. Real-monoidal transformation and real-comonoidal transformation. In
this subsection we recall some general results . concerning real-monoidal
transformation and real-comonoidal transformation following S.K.K. [19].

‘Let N and M be real-analytic manifolds and f: M - N be a real-analytic
map. We denote by T N(resp. TM) the tangent vector bundle over N(resp. M)
and by T*N(resp. T*M) the cotangent vector bundle over N(resp. M). We
can define the following canonical-homomorphism:

(L. 00— TM —TN X M —> TN -0 (when f is an embedding),

T*M —— T*N X M —— TN «—0,
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where Ty N(resp. TfN) is the normal (resp. conormal) fiber space. We denote
by SM(resp. S*M, SN, S*N, Sy N, S&N) the spherical bundle (TM — M)/R"
(resp. (T*M — M)/R™,---), where R* is the multiplicative group of strictly
positive, real numbers which operate on the fibers. SHN is not necessarily a
fiber bundle.

Then, we have an inclusion

SEN < S*N x M

and we have a projection

(1.2) p:S*N x M — SN — S*M.

Suppose moreover that :: M - N is an embedding. Then we can provide the

* disjoint union ™MN = (N — M) U S,;N with a structure .of realanalytic manifold . = .

with boundary S, N. Since this is constructed in the same way as monoidal
transforms of complex manifolds, we call MN the real-monoidal transform of N
with center M. Let 7: N » N be the canonical projection. Then, (M) is
isomorphic to the normal spherical bundle SyN, and seen to be the boundary
of MN. Moreover, t gives an isomorphism N — §;,N - N — M. For a tangent
vector £eTyN,— {0}, we denote by x+ &0 the corresponding point of
SyN < MN. Similarly, for a cotangent vector ne TyN, — {0}, we denote by
(x, noo) the corresponding point of S¥N.

DN is a subset of the fiber product S, N X S¥N defined by {(x+ &0, (x, no0))

eSyN X SEN; (& > =0}. We define the topology on the set MN* = (N — M)

LI Dy N as follows: N — M < MN* is an open set and the topology of N — M
induced from MN* is the usual one, and for a point e€DyN < ¥N*, a
neighborhood of X is a subset U such that UnDyN is a neighborhood of X
with respect to the usual topology of DyN and that the image of U under the
projection 7: MN+ L, MN is a neighborhood of n(%¥). We note that the topology
of MN* is not Hausdorff.

Let MN* be a disjoint union of (N — M) and SiN, and ©: MN* - MN*,
and 7n:MN* > N be the canonical projections. N* is equipped with the
quotient topology of ¥N* under .

In this way we obtain a diagram of maps of topological spaces:

Mﬁ+<__DDMN
i n /e X O\
(1.3) MN 5 SyN  MN* S SHN
t\ ‘E><TL' /n
—> .

N M
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Note that
1) All horizontal inclusions are closed embedding;
2) MN* can be considered as a closed subspace of MN X MN*

3) The maps N > N and MN* - MN* are proper and separated.

The following two general lemmas are used frequently in this paper.

Lemma 1.1. Let Y be a d-codimensional submanifold of a topological manifold
X of dimension n. Then, for every sheaf (or complex of sheaves) & on X, we
can define the following homomorphism

F |y — RIyW(F)[d],

where R and I'y denote respectively the derived functor in the derived category
and the functor of taking the subsheaf with support in Y of Hatshorne [1].

Lemma 1.2. Let X and Y be two topological spaces, and f: X — Y a separated
and proper map, and ¥ a sheaf over X. Then, for every point y of Y, the
homomorphism

ka*(g’.)y “‘—’Hk(f_l()’), y!f“(y))
is isomorphic for every integer k.

In the sequel, the notion of the derived category is of constant use. We
refer to Hartshorne [1] as to the derived category. We do not distinguish the
sheaf, the complex of sheaves and the corresponding object of the derived
category.

Proposition 1.3. Let & be a complex of sheaves on N (or more precisely
an object of the derived category of sheaves on N). Then we have an isomorphism

Rt ™ 'Rl y(17'F) = Rl s y(n™ ' F).

Proposition 1.4. Let # be a sheaf on N. Then, for every point xeSHN,
we have

Hh y(n™ ' F), = lim ind, HS(N, F),

where Z runs through a family of locally closed sets of N such that
1) ZnM is a neighborhood of n(x) in M,
2) x is not contained in the closure of Z — M < MN*.

Proposition 1.5. Let & be a sheaf on N. Then, for every proper, open and
convex subset U in SY¥N (i.e. for every point xeM, n~*(x)nU is convex and
#n~1(x)), we have

H(U, Rl gy, y(x ™' #) = lim ind, H4(N, %),
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where Z runs over a family of locally closed subsets in N such that
1) Z contains n(U),
2) the closure of Z — M in MN* is disjoint from U.

Proposition 1.6. Suppose that & is a sheaf on N. Then we have a triangle

Z |u

. \+1

RI',(F)[d] —ARn*RFS;‘N(n_lﬁ) [d],
where d is the codimension of M in N.

1.2. Sheaves on sphere bundles and on cosphere bundles. In this subsection
we recall some general results concerning sheaves on sphere bundles and on
cosphere bundles following S.K.K. [19].

We consider the following situation.

Let X be a topological space, V a (real) vector bundle of dimension n, and
V* a dual bundle of V. We denote by S and S* the sphere bundle corresponding
to V and V* respectively, that is, S = (V— X)/R*, $* =(V* — X)/R".

We set D = {(&, 7)eS X S*; (& n) = 0}, where (&, i) is the equivalent class
S X S*; (&, n>=0}. We have the following diagrams:

D 1
n / \ T T’ / \r’
S S* S S*

N, S N\ S
X X

(1.4)

Proposition 1.7. The derived category of abelian sheaves F on S and % on
S* are equivalent under the following correspondences:

% =Rt 'F[n—1],
F = Rn/7"'%.

Remark. Let X and Y be two topological spaces, f: X - Y a continuous
map, and % a sheaf on X. We set

Iy (X, #F)={sel(X, #);supp(s)— Y is proper}.
fi(F) is defined to be the sheaf
YU —’F(fw)—pr(f—l(U), g"lf—i(U))'
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R¥fi((#) is its k-th derived functor.
The following lemma is frequently used in this paper.

Lemma 18. Let f: X > Y be a continuous map of topological spaces
satisfying l
1) f is separated, and
2) f is locally proper, that is, for every point xe€X, there exist a (not
necessarily open) neighborhood U of x and a neighborhood V of f(x) such
that Unf~Y(V)—> V is proper.

Let g: Y' > Y be a continuous map of topological spaces. Set X' =X X Y',
f"v=_f' >;‘_Y’: X' ->Y and. g =g X X: X' > X. Then, for every sheaf ¥ on X,
the homomorphism
g 'Rfi(F) — R¥'(g 7' F)
is an isomorphism.
For the proof of Proposition 1.7, we need the following lemma.
Lemma 19. Let F be a complex of abelian sheaves on S X S, n':D X I-
S X S the canonical projection defined by the projections n: D — S and n': I - S.
Then we have
Rn/n' 'F ~ f/’lsés[l —n].
We denote by a the involutive automorphism of S (or S*) deduced from
Vat—- —EeV.
Proposition 1.10. Let & be a sheaf on S. Set
4% =Rt,n 'F[1—n],
& =Rt #[n—1]=Rn9.

We have then the canonical triangle

/N

‘C«léa—)an*T_lg’ e e

where F° is the inverse image of ¥ by a.
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2. Fourier microfunctions

2.1. Fourier hyperfunctions. In the sequel of this paper we apply the general
theory of section 1 to certain special situations and construct the theory of
Fourier microfunctions.

In this subsection we recall the notion of Fourier hyperfunctions following
Kawai [11], Kaneko [7] and Ito [2].

Let R" be an n-dimensional Euclidean space and R, be its dual space. Let
D" = R" LI §" ! be the radial compactification of R" in the sense of Kawai [11],
Definition 1.1.1, p.468. We denote this D" by R" and put M = R" and
X=C"=M x iR" endowed with the natural topology. Here we denote
i=/—1.

- «~Let O ‘be 'the sheaf of slowly increasing and- holomorphic functions on X
following Kawai [11], Definition 1.1.2, p. 468, and put &/ = @|,,. Then 7 is
the sheaf of slowly increasing and real-analytic functions on M. Then we have
o =170, where 1: M — X is the canonical injection. '

As in Kawai [11], we define the sheaf of Fourier hyperfunctions on M.

Definition 2.1. The sheaf # is, by definition,
% = Ay(0) = Dist" (M, 0),

where the notation in the right hand side of the above equality is due to Sato
[14], p. 405. V

A section of 4 is called a Fourier hyperfunction.

As stated in Kawai [11], Kaneko [7] and Ito [2], we have #%(0) =0 for
k#n and # constitutes a flabby sheaf on M.

Now we apply Lemma 1.1 to this case where &%, X and Y correspond to
0, X and M respectively. Then we obtain the sheaf homomorphism

oA — B,
which will be proved to be injective later. This injection allows us to consider
Fourier hyperfunctions as a generalization of slowly increasing and real-analytic

functions. The purpose of this section is to analyse the structure of the quotient
sheaf %/ by a similar way to S.K.K. [19].

2.2. Definition of Fourier microfunctions. Suppose that M = R" and
X = C". Then we have the following isomorphisms .

T(XNCY g~ TR"@®iTR", TR"=R" x R",
T*XNC"|g-= T*R"® iT*R", T*R" >~ R" x R,

by the complex structure of XNnC"=C". Here R, is the dual space of
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R". Hence we have the isomorphisms
Ten(XNC) = TR", Sgo(XNC") =~ SR" =~ R" x S" 1,
Tg(XnCY) = T*R", SE-(XNCY)=S*R"=R"x S,_,

by the identification ié«— ¢. Since X is the radial compactification of X nC”
along the real subspace, we can take the radial compactification of T(X N C")|gn
and T*(X nC")|g~ along the base space. Hence we obtain the isomorphisms

TX|y=TM®iTM, TM =M x R",
T*X |y 2 T*M@IiT*M, T*M =M X R,.
Hence we have the isomorphisms
TyX >TM, Sy X ~SM =M x S"1,
TyX =T*M, S X =S*M=MxS§,_;.
Taking account of this fact, we denote S, X and SEX by iSM and iS*M,

respectively. The point of iSM (resp. iS*M) is frequently denoted by x + i&0
(resp. (x, i {1y, dx> 00) = (x, inoo)), where £eS"~ ! (resp. nes,_,).

We use the general discussions of subsection 1.1 to this special case. We
denote

DM = {(x + €0, (x, inoo))eiSM X iS*M; (i&, iny = — (&, > z 0},

IM = {(x + i&0, (x, inoo))eiSM o iS*M; (&, in) = — (&, n) > 0}.
[
We have the following diagram:
MX* > DM

_ 1:/ t}<‘n~\r
MX > iSM MX* o iS*M
r\ t‘><‘1: /n

Theorem 2.2 We have #%y (1 '@) =0 for k # 1, where 1: MX — X is the
canonical projection.

Proof. Let x = x, +i£0 be a point of iSM. Then we have
Ky (t710), = lim indg., H* Y(0 — iSM, @),  for k> 1,

and we have the exact sequence
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0 — H#2y (r10), — O, 2> lim indg-;, H*(U — iSM, 0),

where U runs over the neighborhoods of x. Since U — iSM # @, « is injective
by the property of unique continuation of holomorphic functions. Therefore we
have #3y(t™10),=0. On the other hand, there is a fundamental system of

L

neighborhoods {U} of x such that U — iSM is an @-pseudoconvex open set. It
follows from the Oka-Cartan-Kawai Theorem B that we have

Hy™10), =0  for k> 1. (Q.E.D.)

The following theorem is the most essential one in the theory of Fourier
microfunctions. This is deeply connected with the “Edge of the Wedge”
Theorem.

Theorem 2.3. We have #ku,(n~10)=0 for k #n, where n: MX* - X is
the canonical projection.

Proof. Let x = (x,, inoo)eiS*M. Then, by Proposition 1.4, we have
Honr(n~10), = lim ind, HE (X, 0),
where Z runs over the family of
Z={z=x+iyeU;{y,n) <0 (1<j<n)}

where U is a neighborhood of n(x) =x, in X and #,---,n,€S,-, are chosen
so that the convex hull of n,(= %), ,,-:-,1, contains a certain neighborhood of
the origin. Moreover, we have

lim ind, H% (X, @) = lim indg % (0),,
where G runs all over the family of
G={z=x+iyeX;<{y,n» =0 (1=j<n)},

for n,,---,n, varying in a neighborhood of —#n. By the “Edge of the Wedge”
Theorem (see the following theorem 2.4), we have

HEO),, =0  for k+#n.
Therefore, we have
Hhy(n 10)=0  for k#n. (Q.E.D)

Theorem 2.4 (the “Edge of the Wedge” Theorem). Put G = {z=x + iyeX;
y;20 (1 <j=<n)}. Then we have, for each xeM,
HEO),=0  for k+#n.

In the proof of Theorem 2.3, we have only use the linear transformation of
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G in Theorem 2.4.

The proof of Theorem 2.4 goes in a similar way to Kashiwara-Kawai-Kimura
[10], Theorem 2.2.2, p. 60.

In order to prove Theorem 2.4, we prepare the following Lemma.

Lemma 25. Let K, K, (K, < K,) be two compact subsets of X. . Assume
the following (i) and (ii):
(1) K, and K, satisfy the conditions of Martineau-Harvey Theorem (Ito [2],
(I), Theorem 1.5.1, p. 70).
(1) For sufficiently small a >0, |Im z| < a(ze K;nC" holds.
Then we have

H?Q\Kz(l/) 5) = 09 (k ?é n)'
Here V is an open neéighborhood of K.

Proof. We note that we have the long exact sequence of relative cohomology
groups

0 — H, (Vi 0) — HR, (¥, 6) — HR,\x, (¥, 0)
— Hi,(V, ) —
— Hi,(V, 0) — Hy, (V, §) — Hi,\x,(V, §) — -
By Martineau-Harvey Theorem, we have
Hy (V,0)=HE, (v, 0)=0, (k #n).
Hence we have
Hi ok, (V, @) =0, (k#n—1, n).
Since we have the isdmorphisms
Hy, (V, 0)= Q(Ky),  Hg,(V;, 0) = 0(K,)
and the canonical mapping
0K,y — O(K,y)
is injective by the new theorem of Runge type, we have
Hy i, (V, 0) =0
This completes the proof. (Q.E.D)
Now we prove Theorem 2.4.

Proof of Theorem 2.4. By Kashiwara-Kawai-Kimura [10] Theorem 2.2.2;
p. 60, we have, for xeR",




Theory of Fourier Microfunctions of Several Types (I) .65

HEO), = HEen(0), =0,  (k #n).

For xe M\ R", we can prove the Theorem by using the Lemma 2.5.
In order to fix the argument, put x = (1, 0,---,0)c0. Then it is sufficient to
prove that, for a sufficiently small neighborhood 2 of x in X, we have

HE, 0@, 0)=0,  (k#n).
Assume 2n — 1 > a > 0. Further assume that a is sufficiently small. Put

¢=—a*(x; = 1/a + (G + -+ x5 +yI + -+ y0),

1 a? a?

If we put ..
K =Gn{z=x+iyeC;x, 20, y}<a (1 £j<n), o(z) 20},
K2 :Kln{ZECn, l/lg()}d,

where, for a subset F of X, we denote by F the closure of F in X, then K,
and K, are O-pseudoconvex compact sets and satisfy the assumptions of Lemma
2.5. Therefore we have

Hi g, (X, 0)=0,  (k#n).
Put
Q=int({z=x+iyeC; ¥y <0, x, 20, p(2) £0, y} <a, (1 £j=<n)}).
Then we have
K,\K,=GnQ.

Letting a — 0, then the family of all the corresponding £ becomes a fundamental
system of neighborhoods of x = (1, 0,---,0) 0. Therefore, by Lemma 2.5, we have

Hénn(g, @) = H;((l\xz(X, (5) =0, (k # n).

Letting a —» 0 and taking the inductive limit with respect to the corresponding
Q, we have, after all,

HEO), =0, (k#n). v (Q.E.D.)
Definition 2.6. Web define the sheaf € on iS*M by
(Z = “;fig*M (7'L'_ ! @)a’

where we denote by a the antipodal map iS*M — iS*M, and by #* the inverse
image under a of a sheaf # on iS*M. A section of % is called a Fourier
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microfunction.
Now we define the sheaves , 0f and <7 * by

‘g = ‘méM(T_l(‘ﬁ)s
(5‘3 =j*(@|X_M)>
jﬂ = (Eﬂliszw,

where j: X — X o MX, n: MX* > X and 7: X > X are canonical maps.
By Proposition 1.3 and Theorems 2.2 and 2.3, we have the following.

Proposition 2.7. We have

%, (k=n-1
0, (k#n—1)

Theorem 2.8. We have
R'n, € =R"""11,3=0 for k#0,

and we have the exact sequence

0 > of > B >n*(g > 0.

Proof. Rz, % = R**"~1¢, 3 is the trivial corollary of the preceding
proposition. The triangle obtained in Proposition 1.6 implies immediately
R"n*(g =0 for k # 0 and yields the exact sequence in the theorem. (Q.E.D))

This is the required decomposition of singularity of Fourier hyperfunctions.

Corollary 2.9. We have the exact sequence
0 —> o (M)—2> B(M) =2 € (iS* M) —> 0.

Definition 2.10. Let ue#(M). We call sp(u)e%(iS*M) a spectrum of
u. We denote by S.S. u the support supp sp (#) of sp (u) and call it a singularity
spectrum of u. m(S.S. u) is evidently the subset where u is not slowly increasing
nor real-analytic and is called the singular support of u.

Corollary 2.11. Let uc #(M). Then u is a slowly increasing and real-analytic -
function on M if and only if S.S.u=0.

Since o = A |gn, B = #|gn and € = %|;5og= hold in the notation of S.K.K.
[19], we have the following Corollary by restricting the exact sequence in
Theorem 2.8.

- Corollary 2.12. Let 7: iS*R" — R" be the canonical projection. Then we have
the exact sequence
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00— > B > 1,6 > 0.

2.3. Fundamental diagram on €. We apply the arguments in the subsection
1.2 to a special case. At first we apply Proposition 1.10 to the situation & = 2
X=M,S=iSM. Then ¥ =%, & =n,4. We obtain the following.

Proposition 2.13. We have
Rzt '€ =0  for k#0
and we have the exact sequence
0—3—1 1,8 —n,17 ¢ —0.

Now we apply the same proposition to the case where % = o/ *. Thus we
obtain a homomorphism

2.1) AP — 1 IR P,
P = Rj*(@lx—M)|iSMa
where j: X — M  MX is the canonical injection, which implies that
R, P = Rz )y (0 x—p)-
Hence we can define the canonical map
Rt d?— B

It yields, together with (2.1), a homomorphism /% -t~ '%. Summing up, we
have obtained the following.

Theorem 2.14. We have the following diagram of exact sequences of sheaves
on iSM:

0

l

0

l
0—1led — J*¥ — I —0

l

!

0—17' — 17'% —1 7,4 —0

(2.2)

—

l

M, 6 =—n,1 '€
l
0

oS —
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Proof. It has already been proved that the rows are exact. The right
column is exact by Proposition 2.13. Hence it follows that the middle column
1S exact. (Q.E.D)

Let us transform the diagram (2.2) of the sheaves on iSM to a diagram of
the sheaves on iS*M by the functor Rt/n’'~!, where t/,n’ are projections
IM - iS*M and IM — iSM, respectively.

For a sheaf % on M, we have

Rin 17 'F = Rt/7 'n ' F =2n ' F[1 —n].
By Proposition 1.7,
 RuynT'na '@ = Rin 'R 'E=E[1—n].
By operating Rt/m’~! on exact columns in (2.2), we obtain
Retim =13 =0 for k#n—1,
Rit/n 1ol P =0 for k#n—1.

We define the sheaves .o/ ¥ and 2" on iS*M by

R,

v o Rn_l‘L'!’n"_le,Q/ﬂ,

V=R"11/n' 719

SY}

Then, in this way, we obtain the following theorem.

Theorem 2.15. We have the diagram of exact sequences of sheaves on iS *M:

23) H

and the diagram (2.2) and the diagram (2.3) are. mutually transformed by the
functors Rt/n'~'[n— 1] and Rm,t™".

We give a direct application of Theorem 2.14, which gives a relation between
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the singularity spectrum and the domain of the defining function of a Fourier
hyperfunction.

A subset Z of iS*M is said to be convex if each fiber Z, = Znt ™ !(x) is
convex. It means, by definition, that every arc joining two points in Z, is
contained in Z,. An arc joining two antipodal points is understood to be
17 1(x). For every subset Z in iSM, we call the smallest convex subset containing
Z the convex hull of Z. The polar Z° is the subset of iS*M defined by
{(x, inco)eiS*M; (&, 1> = 0 for every x + if0e€Z}. By using these notions we
can state the following proposition.

Proposition 2.16. Let U be an open subset of iSM with convex fiber, and
V a convex hull of U. Then we have
(V) If-pel(U,; AP, then S.S. (Me)) c U°.- Conversely, if f(x)eI'(zU, B)
satisfies S.S. (f) < U°, then there exists a unique @el (U, P such that
f = Al@). Namely, we have the exact sequence

0 — o F(U) 25 B(1U) =2 G(iS*M — U°).
Q) IV, «&%— I, & *) is an isomorphism.
Proof. Consider the exact sequence
0— AP —1'B—n,1 ¢ —0.
From this, we have the following diagram

0— I'(V,dP) — I'(V,17'B) — I'(V, 1,17 %)

(2.4) l l J,

0—I'(U, &% —TU, 1'% — U, 1,1 %)

with exact rows. Since V— tV=tU and U — tU are open mappings with convex
fibers, we have

TVt '@ =r, 1'% =TI@U, B).

Since 7 'Votn 'V=iS*M — V°=iS*M — U° is an open mapping with
connected fiber, we have

IV, n, '@ =@ WV, '4) = Iz~ 'V, )
=I(iS*M — U°, 4).
On the other hand,
I(iS*M —U°®, 4) — I'(zx ‘U, 1 '4%) = 4 (U, n,t"'%")

is injective. Summing up, the middle arrow in the diagram (2.4) is an
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isomorphism and the right one is injective. Hence it follows that the left one
is isomorphic. Moreover,

0 —I'(U, &%) — I'(tU, B) —> I'(iS*M — U°, ¢)
is exact, which completes the proof. (Q.E.D)

Definition 2.17. We say ue%(Q) to be micro-analytic at (x, inoo) in iS*M
~if (x, ino0)¢S.S. u. This is equivalent to being represented as

u=Z;Mo), ¢;ed?(U), (x,ino)¢U;.

3. Vector-valued Fourier microfunctions

3.1. Vector-valued Fourier hyperfunctions. In this section we recall the
notion of vector-valued Fourier hyperfunctions following Ito-Nagamachi [4],
Junker [5], [6] and Ito [2].

We use the similar notation.to subsection 2.1. Let E be a Fréchet space
over the complex number field.

Let 0 be the sheaf of E-valued slowly increasing and holomorphic functions
on X following Ito [2], Definition 2.1.1, p. 75, and put £/ = £@|,,. Then Es/
is the sheaf of E-valued, slowly increasing and real-analytic functions on M. Then
we have o/ =1 1E{, where 1: M ¢, X is the canonical injection.

As in Junker [6] and Ito [2], we define the sheaf of E-valued Fourier
hyperfunctions on M.

Definition 3.1. The sheaf £ is, by definition,
E% = #71(E0) = Dist" (M, £0).

A section of 4 is called an E-valued Fourier hyperfunction.

As stated in Junker [6] and Ito [2], we have #%(50) =0 for k # n and
E% constitutes a flabby sheaf on M.

Now we apply Lemma 1.1 to this case where &, X and Y correspond to
EQ, X and M respectively. Then we obtain the sheaf homomorphism

EJ —>ER

which will be proved to be injective later. This injection allows us to consider
E-valued Fourier hyperfunctions as a generalzation of E-valued, slowly increasing
and real-analytic functions. The purpose of this chapter is to analyse the
structure of the quotient sheaf £%/E</ by a similar way to S.K.K. [19].

3.2. Definition of vector-valued Fourier microfunctions. We use the similar
notation to subsection 2.2. Let E be a Fréchet space over the complex number
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field. We denote by £0 the sheaf of E-valued, slowly increasing and holomorphic
functions defined on X. We have the following.

Theorem 3.2. We have #%, (1" E0) =0 for k # 1, where 1: X — X is the
canonical projection.

Proof. It goes in a similar way to Theorem 2.2. (Q.E.D)

The following theorem is the most essential one in the theory of E-valued
Fourier microfunctions. This is deeply connected with the “Edge of the Wedge”
Theorem.

Theorem 3.3. We have #k (n~E0) =0 for k # n, where n: MX* > X is
the canonical projection.

Proof. It goes in a similar way to Theorem 2.3. (Q.E.D)
In the above proof, the following theorem is essential.

Theorem 3.4 (the “Edge of the Wedge” Theorem). Put G = {z=x + iyeX;
y;20 (1 =£j=n)}. Then we have, for each xeM,

HEED), =0  for k#n.
Definition 3.5. We define the sheaf 24 in iS*M by
E(g = %E*M(n_lE(AO’)".

A section of £% is called an E-valued Fourier microfunction.
Now we define the sheaves £3, E(#, Eof P by

£g = %éM(T_IE@),
Eéﬁ =j*(E@|X—M)’
Eégﬂ = E(Eﬂ |iSMa
where j: X — M & X, n: MX* > X and t: X - X are canonical maps.
By proposition 1.3 and Theorems 3.2 and 3.3, we have the following.
Proposition 3.6. We have

R*t n.—lEg — {E(ga, (fOI' k=n-— 1)’
* 0, (for k #n—1).

Theorem 3.7. We have
Rin Bg¢ = R**"~ 10,53 =0  for k #0,

and we have the exact sequence
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0 —Ed —EF —n 54 —0.

Proof. It goes.in a similar way to Theorem 2.7. (Q.E.D))

This is the required decomposition of singularity of E-valued Fourier
hyperfunctions.

Corollary 3.8. We have the exact sequence
0 — o (M; E) %> B(M; E) =25 € (iS*M; E) —> 0.

Definition 3.9. Let ucZ(M; E). We call sp (u)e @ (iS*M; E) a spectrum of
u. We denote by S.S. u the support supp sp (u) of sp (u) and call it a singularity
spectrum of u. 7(S.S. u) is evidently the subset where u is not slowly mcreasmg
nor real-analytic and is called the s1ngular support of u.

Corollary 3.10. Ler ue%’(M ; E). Then u is an E-valued, slowly increasing
and real-analytic function on M if and only if S.S.u=0.

Put P/ =5/ |pn, EB =%%|gn and E€ =E@|p.. Then we have the
following Corollary by restricting the exact sequence in Theorem 3.7.

Corollary 3.11. Let n: iS*R" > R" be the canonical projection. Then we have
the exact sequence

00—ty —Ep ;n*E(g > 0.

Here a section of 2% is called a E-valued Sato microfunction. Thus this shows
the decomposition of singularity of E-valued Sato hyperfunctions.

3.3. Fundamental diagram on ®@. We apply the arguments in the
subsection 1.2 to a special case. At first we apply Proposition 1.10 to the
situation # =£3%, X = M, S =iSM. Then 4 = *¢, & = n,*@. We obtain 'the
following.

Proposition 3.12. We have
R, 1758 =0  for k+#0
and we have the exact sequence
0—£3 — 171154 —n 1715 —0.

Now we apply the same proposition to the case where &% = £/ #. Thus we
obtain a homomorphism
EX) EJP s R B,

Eef P = Rj, (0 |x - 30) lisu>

where j: X — M & MX is the canonical injection, which implies that
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Rn_lT*E‘Jﬂ =R""! (T oj)* (Eglx—M)-
Hence we can define the canonical map
R0 B B,

It yields, together with (3.1), a homomorphism ./ # >t~ 1. Summing up, we
have obtained the following.

Theorem 3.13. We hae the following diagram of exact sequences of sheaves
on iSM:

62 | | |

Proof. It has already been proved that the rows are exact. The right
column is exact by Proposition 3.12. Hence it follows that the middle ¢column

is exact. - (Q.E.D))

Let us transform the diagram (3.2) of the sheaves on iSM to a diagram of
the sheaves on iS*M by the functor Rt/n’~!, where 7', n’ are projections
IM — iS*M and IM — iSM, respectively.

For a sheaf # on M, we have

Rin 't 'F 2Rt/U 'n"'F 2" 'F[1 —n].
By Proposition 1.7,
Run ‘n,t '*¢ = Rt/n' " 'Ru, 1" '2¢ ~ *g[1 — n].
. By operating Rt/n'~! on exact columns in (3.2), we obtain
Ret/n’ " tEG =0 for k#n—1,
Ritim' ‘B P =0 for k#n—1.

We define the sheaves E<Z ¥ and £3Y on iS*M by
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E&‘i v o Rn—lr!;n/—lEeJﬁ,
E:@"v — Rn—l,r'fn/—lE@'.
Then, in this way, we obtain the following theorem.

Theorem 3.14. We have the diagram of exact sequences of sheaves on iS*M :

(33) |

E(g S Eg
| |
0 0

and the diagram (3.2) and the diagram (3.3) are mutually transformed by the
Sunctors Rt{n'~'[n— 1] and Rr, t7"'.

We give a direct application of Theorem 3.13, which gives a relation between
the singularity spectrum and the domain of the defining function of an E-valued
Fourier hyperfunction.

By using the similar notation to Proposition 2.16, we can state the following
proposition.

Proposition 3.15. Let U be an open subset of iSM with convex fiber, and
V a convex hull of U. Then we have

(1) If eI (U, *), then S.S.(A(@)) = U°. Conversely, if f(x)e'(zU, E%)
satisfies S.S.(f) < U°, then there exists a unique @el(U,EZ?) such that
f=A(p). Namely, we have the exact sequence

0 — A P(U; E)—=> B(tU; E) -2 € (iS*M — U°; E).
(2 I'(V,Ed?)—T'(U,EZP) is an isomorphism.
Proof. It goes in a similar way to Proposition 2.16. (Q.E.D)

Definition 3.16. We say uc#(Q; E) to be micro-analytic at (x, inoo) in
iS*M if (x, inoo)¢S.S. u. This is equivalent to being represented as

u=Z2;Mp), @;ed?(U;E), (x,ino)¢U;.
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