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Abstract

We study the existence, uniqueness and decay properties of solutions to the
initial-boundary value problem for a degenerate nonlinear integro-differential
equation of hyperbolic type with a strong dissipation. We derive decay esti-
mates from above and from below of the solutions.
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1. Introduction

In this paper we are concerned with the initial-boundary value problem for a degener-
ate nonlinear integro-differential equation of hyperbolic type with a strong dissipation,
that is

(1.1) u” + M(/ |AY2u)2dz) Au + NAY' + pg(z, t,u,v’) =0,
Q

where €2 is a bounded domain in IRV, the function M(r) > 0 belongs to C1([0,0)), A
and p are constants, A = —A = — Eﬁ__l 9?/0z% is the Laplace operator, and ' = 8/t

The existence and uniqueness of local solutions for (1.1) with A = p = 0 or for the
more generalized equations associated with (1.1) have been studied by several authors
(cf. Dickey {3], Menzala [8], Ebihara et al.[5], Mediros & Miranda [7], Rivera [15],
Yamada [18}, Arosio & Garavaldi [1], Crippa [2] and the references cited therein). How-
ever, when the initial data is taken in the usual Sobolev’s spaces, the existence of global
solutions is not proved. ’
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When equations have some dissipative terms u’, Au’, A%u etc., we can prove the ex-
istence of global solutions ,and moreover we can derwe some decay properties of the
solutions under suitable assumptions.

When A > 0 and x4 = 0 in (1.1), the decay estimates from above of the solutions
have been derived by Nishihara [11], Matos & Pereira [6], Rivera [15]. While, the decay
estimates from below of the solutions have been derived by Nishihara [12], Nishihara
& Onmo [13], Mizumachi [9]. Moreover, Ono & Nishihara [14] have studied the decay
properties of the solutions for (1.1) with A > 0,z > 0, and g = |u|*u for a > 0.

When A > 0,4 > 0, and g = |[v/[Pu’ for B > 0, we study the existence, uniqueness and
decay properties of solutions for (1.1) in this paper. In what follows we take A =y =1
without loss of generality.

Let H = L*(Q) and V = H}(Q). The scalar product and the norm on H are denoted
by (-,-) and || - || respectively. In section 2 we will show the existence and uniqueness
of the global solutions (even for large data), and moreover, we will derive the decay
estimates from above .of the solutions, e.g.

1AY2u@)> <CQ+t)"Y7 for t>0.

In section 3 we will derive the decay estimates from below of the solutions, e.g.
| AV 2u(t)||2 > C(1L+1)~Y7 for ¢>T..

under suitable condition (see (3.3)).

2. Existence, Uniqueness and Decay Properties

In this section we shall study the existence, uniqueness, and decay estimates from
above of the global solutions to the initial-boundary value problem for the following
equation :

(2.1) v’ + M(||AY?u||*)Au+ Au' + g(u') =0 in Q x [0,00),

U(.’B,O) = ’U.O(ZE) ) U’(QJ,O) = U (.’17) 3 and ulan =0 5

where Q is a bounded domain in IR with smooth boundary 89, A is the Laplace
operator with domain D(A4) = H2(Q) N H1(Q), M(r) € C*([0, 00)) with M(r) = 77 for
r>0,v >0, and g(v') = |v'|Pu’ for 5> 0.

Our first result is given by

Theorem 1. Let the initial data (ug,u1) belong to D(A) x V and
uy = —M(||AY?up||?) Aug — Auy — g(uy) belong to H. Suppose that

(2.2) 0<B<2/(N-2) (0<B<o0ifN=12).
~ Then there exists a unique solution u(t) satisfying
(2.3a) u(t) € C([0, 00); D(A)) N L*(0,00; D(A))
(2.3b) u'(t) € C([0,00); V) N L(0,00; V') N L2(0, 00; D(A))

(2.3¢) u"(t) € L*(0,00; H).
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Moreover, we see

(2.4a) lu@))?, A 2u@)|?* < C(1+t) 1/
(2.4b) w2, A2 ($)]|* < C(1 +1)~ G/
(2.4¢) u” (@) < C(1 4 t)~ @1/

for some constants C.

PrROOF. To begin with we shall prove the uniqueness of the solutions in Step 1. '
Next we shall derive a priori estimates and the decay estimates of the solutions in Step
2. Finally, in Step 3, we shall show the global existence of the solutions.

Step 1. We shall prove the uniqueness of the solutions of (2.1). Let u(t) and v(t)
be two solutions of (2.1) satisfying (2.3a)-(2.3c) and let w(t) = u(t) — v(¢t). Then w(t)
satisfies

(2.5) w' + M(J| A 2u|*) Aw + Aw' + g(u') - g(v')
= —{M(|A"u||*) - M(|A*v]*)} Av

and w(0) = w'(0) = 0. Taking the scalar product of (2.5) with 2w’ and integrating it
over [0,t], we have

t
W O + MA@ A )] +2 [ 1420 ) ds
0
t
<C [ A A ) A () s
0
t
40 A u(s) 9 4 A 01 A ) A4 )42 5 s,
0

where we have used that (g(u') — g(v'), v —v') > 0 and
IM (A2 ul|?) = M([AYV?0])] < C{IAY 2ul ™" + | AY 20| P71} AV 2w

By the Young inequality, we see from (2.3) that

t t
(2.6) T’ @11 +/ 14*2w'(s)]%ds < C/ 1AM 2w (s)|*ds
0 0

Taking the scalar product of (2.5) with w, we have

d 1
Z G140 + (' w)} + M4 2u)?)| A 20

= [lw'|I* = {M (|4 2u||?) = M(|AY>0)?)} (AP0, AY?w) = (g(u) — g(v'), w).
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Here, we see that for 0 < <4/(N-2)(0<p <ooif N=1,2)
(g(u') — g(), w)] < CLIAY2|P + LAY [P | AY 20| 42w

Integrating it over [0,¢], we see that for 0 < vy < 1
1
@7 lAPw@) + ') w(t)
t t 1 t
< [ @Pds+0 [ 14w s+ = [ 14 (o) s
0 0 0

using the Young inequality.
Summing up (2.6) and yx(2.7) (0 < v < 1), we obtain

' (DI + SIA 2w + (' (0), w(2))
<r [ WPds+oa+) [ 147
Thus, by the Poincaré inequality and the Young inequality, we arrive at
lw' @7 + 14 2w(®)]* < C/ot{llw'(é’)ll2 + || 4w (s)|*} ds
taking a suitable small 7, and’ hence, we conclude w = 0.

Step 2. TFirst, we shall derive the decay estimate of the first energy E(t), where we
set

1
= o (+)1]2 1/2 2(y+1)
E(t) = v + 14 @

and the first initial energy
: ‘ 1
E = 2 4+ A1/2 2(v+1) )
(0) = Jual? + — 14"
Taking the scalar product of (2.1) with 2u/, we have
d
(28) B (1) + 2[4 (B)]] + 20 (B)lI5T5 =0
Integrating it over [0,t], we obtain
t
(2.9) E(t) +2 / |42 (4)|2ds < E(0).
0

While, integrating (2.8) over [t,¢ + 1], we have

t+1 .
(2.10) 2/t {142 (s)|I* + [l'(s)l|5 53 }ds = E(t) — E(t+1) (= D(t)?).

.




Degenerate Nonlinear Wave Equations 47

Then there exist t1 € [t,t + 1/4],t2 € [t +3/4,t + 1] such that

(2.11) |AY 20 ()12 + ||u' () |1515 < 4D(t)* for i=1,2.
Taking the scalar product of (2.1) with 2u and integrating it over [t1,t2], we have from
(2.10), (2.11) that

t

thﬁﬂwﬂwﬁ“MsS}:Wﬂummumry/Qm%ﬂW%

=1 t

to 23 ‘
+/IMWMMWW%%MM+/IWM%3MWMMMS
t t

1

(212)  <C[DE+DW) sw |47 u(s)} (= AW))

using the Poincaré inequality and Sobolev’s lemma for 0 < f <4/(N-2) (0 << 0
if N =1,2). Thus we obtain from (2.8), (2.10), (2.12) that

Ety) < — /tQE(s)dsgc*A(t)z,

Tty —t1 Jy

and hence,

t+1
sup E(s)"*7/0F) < B(ty) +2/ {14720/ (s)|* + |l ()11 3} ds
t<s<t+1 t

< CA(t)? <C{D(t)*+ D(t) sup E(3)1/2(7+1)}_
t<s<t+1

Using the Young inequality, we arrive at

sup E(s)!T/0+V < CD(t)* = C{E(t) - E(t + 1)}.
t<s<t+1 .

Applying the following lemma, we can get the decay estimate of the first energy E(t)
such that

(213)  E@) = |v@®))? + ,YIT”Al/Zu(t)H?(W“) <CA+t)" MY for ¢t>0.

Lemma. (Nakao [10]) Let ¢(t) be a bounded and nonnegative function on [0, 00)
satisfying

sup  ¢(s)'F" < ko{o(t) — ot + 1)}
t<s<t+1

forr >0 and kg > 0. Then

p(t) < CA+t)"Y" for t>0.
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with some constant C = C(r, ko, $(0)).

Next, we shall derive the decay estimates of [Ju”(t)||? and || A/%u/(t)||2.
Taking the scalar product of 9;(2.1) with 2u”, we have

%”unnz + 2”A1/2u//”2 + 2/§lg/(u/)‘u//|2d$
(2.14) = —2M(]|A1/2u||2)(Au’,u”) — 2M'(]|A1/2u||2)(Au’,u)(Au,u”)
=L +1

Here, we see

L+ I < 2M(J|AY 2l ®) || A2 [[| AV 2u"|
+ 2| M (JAY 2 u)P) AV 2 AT P u P AP

By the Young inequality, we have
d
S+ AV |? < CLA P
Integrating it over [0,t], we obtain from (2.9) that
t t
@15) WO+ [ 1AV ) Pds < P+ C [ 4 ) < 0
0 ' 0

Then, taking the scalar product of (2.1) with u’ again, we see

A2/ |12 + 1535 = ~(u”,u') — M(|AY ?u)|?) (A 2, AY )
or
(2.16) LAY 20/ |2 + ||/ |1555 < C{llw"|| + |A 2w 1} < C.

While, using the equation (2.1), we see
(A, u")| < C{IAY?a"|P + | AY 2| P+ AV 20"} + /ﬂ ' |PH | da
< C{IAY2" |2 + (A 2ul P74 4 | A2/ PH) | AY 20"}
and
(4w, u)] < C{IAPulll| AV 20" + (|4 20l P77 4 A2 )| A Pul )
Thus we obtain

L+ I < C A 2ul Y[ AYV2" P 4 C{IAY 2ul T4 (| AY 2u) 7 | AV 20/ |PH ) AY 20
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Since we see from (2.13) that C||A/2u||?¥||AY?4"||?> < 1||AY?u"||? for the large time
t > T1, it follows from (2.14) that

d
(2.17) =l @ + 14" ()]

< C{I A 2u()*7+ + |A2u(t) PV A2 ()P )2
<C(1+t)™ for t>Ty

with w = min{4 + 1/7, 2} = 2, where we have used (2.13), (2.16). Noting (2.15), we see
lw’ )| < CA+t)" for t>0
using Sobolev’s lemma. Then it follows from (2.16) that
A2 @))2 < c(1+)"f for ¢t>0

with § = min{w,2 + 1/v} = 2. Using this decay estimate, we can improve the decay
estimate of || (t)||%, that is

lw”" () <CA+t)™ for t>0
with w; = min{4 +1/7,2+ (1 + f)w/2} = min{4 + 1/7,3 + 8}. Then we easy see
(2.18) |AY2/ @)|2 < C(1+t)~" for ¢>0

with 6; = min{wq,2 +1/9} = 24 1/. Moreover we can improve the decay estimate of
lu"(t)||? again, that is

(2.19) "> <C(A+t)™2 for t>0

 with wp = min{4 +1/7,2+ (1 + B)61} =4+ 1/y. Thus it follows from (2.13), (2.18),
(2.19) that

[, 14 2u)|P < C(1 + )~/
[ O, 1412 @) < C(1+1)~C+/)
I (0)] < C(1+ )=+

which is the desired decay estimates (2.4a)-(2.4c).

Next, we shall show that u is bounded in L>°(0, 00; D(A)). Taking the scalar product
of (2.1) with 2Au, we have

d
T llAul® + 20 (| AY2u)?) | Au?

d
< =2 (u', Au) + 2| AP + I35, ) 1 Aul)
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Integrating it over [0,t], we see

lAu()|? +2 / M| A 2u(s)[P)]| du(s)[Pds
< | Auo® + 2/(us, Auo)| + 2l (&)l Au(t)]

t t
1 / A2 (s)2ds + / A2 (5)[P+ ) Au(s) | ds
0 0

using Sobolev’s lemma with 0 < 5 < 2/(N -2) (0 < 8 < o0 if N =1,2), and hence, we
see from (2.9)

t
lAu@)|? < C +C sup [|Au(s)] / AV (5))P+ ds
0<s<t 0

or
’ o o]
sup ||Au(t)||* £ C + C{/ (1 41)=BHDO+/2Mg2 < o
¢ 0

where we have used the decay estimate ||A/2u/()||? < C(1 4 t)~@+1/7) (see (2.18)).
Thus it follows

(2.20) [ Au®)l* + /OtM(IIA”ZU(S)HZ)IIAU(8)||2d8 <C for t2>0.

Next, we shall show that u’ is bounded in L%(0, 00; D(A)). Taking the scalar product
of (2.1) with 24w/, we have

d
1AM 2|12 + 2l Aw'|)* + 2/529’(vf’)lA1/2U’|2d93 < 2M (| AY 2 ul*) | Aull| A’

or
d
AP+ AP < CM(IAY2ul®)|| Aull® < CM (|| AY2u)®)]| Aulf® .

Integrating it over [0, ], we see from (2.20) that

t
(2.21) | AL/2 (1)|2 +/ | Au/(s)|Pds < C for ¢>0.
0

Step 3. We shall show the existence of the solutions for (2.1). The principle of the
proof is classical (cf. [4],[17]). We consider the orthonormal basis of H consisting of the
eigenvectors of A,

Awj =Nw;, 0<A <A< ,jlirgcAj=oo,
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and we implement a Faedo-Galerkin method with these functions. For each m we look
for an approximate solution u, of the form u.,(t) = Z;":l gjm(t)w; satisfying

(2.22) (U (8) + M (A urn () *) At (8) + A (8) + g (ugn (1)), w5) = 0

for j =1,2,--- ,m,
Um(O) = UQm » UIm(O) = Ulm s

where 4, (resp. uim) is the projection in D(A) (resp. V) of ug (resp. up) onto the
space spanned by wy,- -+ ,w,,. The existence and uniqueness of u,, on some interval
[0,T,,) is elementary and then T, = oo, because of the a priori estimates that we
obtain for u,,. Indeed, we can get the estimates (2.9), (2.15), (2.16), (2.20), (2.21) with
u replaced by uy,. For example, multiplying (2.22) by g7, and summing these relations
for j =1,2,--- ,m, and integrating over [0,¢], we obtain (2.9) with u replaced by up,.

Thus we conclude that, for 7' > 0 arbitrary, u,, is bounded independent of m in
L>(0,T; D(A)), ul,is bounded independent of m in L>(0,T; V)N L(0,T; D(A))N
LP+2(0,T; LP+2(Q)), v/ is bounded independent of m in L*°(0,T; H) N L%(0,T;V).
Then we can extract a subsequence, still denoted m, such that

Um — u in L(0,T;D(A)) weaks

u,, —u' in L%(0,T;V)N L*0,T; D(A)) weak*

ult, —» " in L®(0,T; H)N L*(0,T; V) weakx

M (|| AU ||*) Atiy, — x  in L®(0,T; H) weaksx

gluly,) = [ul,|Pul, — 4 in LPFD/BHD((0,T) x Q) weakly .

It follows from a classical compactness argument (cf. [4]) that g(u/,) converges to g(u’')
in some weak sense. We shall show x = M(||AY/?u|?)Au (cf. [11],[16]). For any
¢ € Co(0,00; H), we see

T
/ (M| A 2 um|?) = M| AY?0*)) (Atm, ¢) di
0
T
< C/ |AY 20, — AV 20| dt - 0 as m —
0
using the mean value theorem. Thus we have
T
| 6o MOl A, 9)
0
T T
_ / (X = M|t |2) Attyn, ) dt +/ M(JAY 4 |2) (At — Au, §) dt
0 0

T
+/ (M(J|A um||?) = M(|A2ul|*))(Atm, ¢)dt -0 as m — o0,
0 .
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and hence, we conclude y = M (|[A!/?u||?) Au. Thus  is a solution of (2.1) satisfying
(2.32)-(2.3c). '

Moreover, by the following standard lemma, we see that v € C°([0,T); D(4)) and
u' € C%[0,T]; V).

Lemma. ([4],[17]) Let X be a Banach space. If f € L?(0,T; X) and f' €
L%(0,T; X), then f, possibly after redefinition on a set of measure zero, is continuous
from [0,T] to X.

The proof of Theorem 1 is now completed. O
2. Another Decay Property

In this section, we study another decay property of the solution of (2.1), which is the
decay estimate from below.

Theorem 2. In addition to the assumption of Theorem 1, suppose that the initial

energy E(0) = |lur® + 5/l A ?uo|?0H (< 1) ds sufficiently small (see (3.7)), and

the initial data (ug,u1) satisfy
31y F(0) = A uq|® + 2(u1,u) > 0.

Then it holds that for the large time T, > 0, the solution u(t) of Theorem 1 has the
following decay estimate :
(i) When v/(1427) < f < min{y/(1+7),2/N},

(3.2) | 1AY2u()|2 > C(1+1)"O-P/E  for ¢t >T,.
(ii) When v/(147) <B <1 andf <2/N,

(3.3) |AY2u(t)|2 > C(1+ )" for t>T..

PROOF. Multiplying (2.1) by 2u(t) and integrating over £, we have

(3.4) %F(t) +26G(t) =0,

where we set

F(t) = | AY2u(t)]® + 2(u/(t), ult))
G(t) = || AV 2u(@) PO — Jlu/ ()2 + (9(u'(t)), u(t)).

Here for 0 < 8 < 1, we see

1 - 1
(g(w) )l < 3l l* + lull325) < Sl + Ol AM 2] /02
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using the Young inequality and Sobolev’s lemma with § < 2/N. Thus we have that for
0<pf<1land B <2/N,

G(t) < |4 2u(@)[P0HD + €| A Pu(t) P/ F) %IIU’(t)H2
1
Cul A Pu(@)|/O=2 = S @ i B<y/(1+7)

CAA PP+ - WO 522/ +)

with some constant C, > 0, where we have used ||A'/2u(t)||> < C for t > 0. Since

F(0) > 0 by the assumption (3.1), it follows that F(t) > 0 for some ¢t > 0. We put

Ty = sup{t € [0,00); F(s) > 0 for 0 < s < t}, then it holds that Ty > 0 and F(t) > 0

for t < Tp. '
(i) When 8 < /(1 + ), we shall derive

CF)Y=B) _ Gy >0 for t<T,
with some constant C' > 0. Since for any 0 < k< 3/(1-f) and 0 < e 1
LAY 2] 2] (' u) [ OO < e AV O 4 C || AN 2|2 || |2/ A=E)=R | 2
< el A1/ H1A8) 4 €, B(0)A-B) R Dy |
using E(t) < E(0) (< 1), we can get
F()™ 2 AV 2u(a) 0+ — ()4 2u(e) 20D

- E(0)PQ=B) =kx/(y+ )11,/ (1)112
02, E(O) i ()17}

(3.6) > [ AY2u(@)|P0HD — CLE(0)P/ Ay (1)

with some constant C; > 0. Thus it follows from (3.5) and (3.6) that
(3.7 20.F)YP —G(t) > (1 - 2C.CLE(0)P/A-P M1/ 1)|12 > 0,

where we have used the assumption E(0) < 1. Then we obtain from (3.4) that

d%F(t) +4C, Ft)YO-P) >0,

and hence, we see from F'(0) > 0 that
F(t) > {F(0)™P/0=A) 4 4C,4}=-A)/B > ¢
which conclude Ty = co. then, we see
|4 2u(@)|? > C(1+8)~0=A8 — Cl ()| 4V 2u(t)|
>C(1+ t)—(l—,@)/ﬁ -C(1+ t)—(1+7)/7 :

which implies the desired estimate (3.2) if 8 > v/(1 + 27).

(ii) When /(1 + ) < §, as the similar way above, we can derive

' CF)*' —G(t) >0 for t>0

with some constant C' > 0. Thus we obtain the desired decay estimate (3.3).

The proof of Theorem 2 is now completed. [

| =
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