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Abstract

The Miura transformations
us(z) = v(z)? £0'(2) = m?, m>0

are explicitly represented in terms of the scattering data of the 1-dimensional
Schrodinger operators .
H(us) = —0° + us(2)

with the rapidly decreasing potentials u4(z) and the 1-dimensional Dirac operator

d  —v(z) >

D) = ‘/__]( o(z) -0

with the step type potential v(z) such that limz—+c v(z) = £m.
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1. Introduction

The purpose of the present paper is to obtain the explicit representation of the non:
linear transformations v(z) — uy(z) defined by

(1) ug(z) = v(z)? o' (z) —m?
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in terms of the scattering data of the 1-dimensional Schrodinger operators
H(ug) = -0* 4+ us(z), 2€R
and the 1-dimensional Dirac operator
Jd —v(a
D(v) =+v-1 (=) , T€R,
v(z) -0

where § ='= d/dz. We assume that u(z) € Lj(R) and v(z) € D}(R;m) for some positive
real number m, where

L} (R) = {u(z) | real valued measurable and /oo (1 + [z |u(z)|dz < 0o}

and

D}(R;m) = {v(z) | real valued measurable, lil}:] v(z) =+m

T—IT 00

and [~ (1+]al')(lv(a)? = m*| + |v/(2)])da < oo}

for [ € N. The nonlinear transformations (1), which were first introduced by R. M. Miura
[9], are called the Miura transformations and convert such a step type solution as above
of the mKdV equation into rapidly decreasing solutions of the KdV equation, that is, if
v =1v(z,t) € C{(R)N D}(R;m) (Vt € R) solves the mKdV equation

vy — 6020, + Vgpe = 0, (z,t) € R?

then
gz = q+(z,t) = v(z+ 6m?t,1)? & v (z + 6m2t,t) — m?

solve the KdV equation
G+t — 6q:‘:q:l:z‘ + Qtooe = 07 (.’E,t) € R2>

where the subscripts @, ¢t denote the partial differentiations. Refer [4] for more recent
development related to this fact.
One easily verifies

(2) ' 'TD()*T — m*E = <
where E is the 2 x 2 unit matrix and

().

See also [11] for this identity. We represent the Miura transformation in terms of scattering
data on the basis of the operator identity (2).




Miura Transformation and S-Matrix 35

The contents of this paper are as follows. In the sections 2 and 3, the scattering data
of H(u) and D(v) are explained respectively. In the section 4, the Miura transformations
(1) are represented in terms of these scattering data.

The present author wishes to express his sincere thanks to Dr. Y. P. Mishev (Bulgaria)
for his advice.

2. Scattering data of H(u)

In this section, we summarize the definition of the scattering data of the 1-dimensional
Schrédinger operator H(u). Refer [1], [2], [3], [7] and [8] for detail.
Suppose u(z) € L}(R) and consider the eigenvalue problem

(3) H(u)f(z) = —f"(2) + u(2)f(2) = *f(2)

on the real line, where { = o + /—1n. If 3¢ > 0 then there exist the unique solutions
fe(z,u) of (3) bound by the conditions

(4) fe(z, G u) = exp(£vV/~1Cz) + o(1), 2 — £oo

respectively. We call the solutions fi(z,(;u) the Schrodinger-Jost solutions. The solu-
tions fy(z,(;u) are analytic in ¢, ¢ > 0. If ( = o is real then

Walfs(z,03u), filz,05u)] = ~2v/~10

follows, where Wg(f,g9] = fg' — f'g is the Wronskian and 7 is the complex conjugate of
z € C. Hence, if 0 € R\ {0} then fy(z,0;u) and fy(z,0;u) are linearly independent.
Therefore, one can uniquely express f_(z,0;u), o € R\ {0} as

f-(z,07u) = a(o;u) f+(z,0;u) + b(o; u) f (z, o5 u).

One has immediately

(5) a(o;u) = 2\/__ gl fs(z,o5u), [-(z,0;u)],
boi) = 5o Walf- (2 ). Tl i)
and

la(o3u)[* =1+ [b(o; u)|*.

By (5), the coefficient a(o;u) can be extended to the analytic function a({;u) in ¢ > 0.
Hence, there exist finite number of zeros of a({;u) in I > 0, which are purely imaginary

and simple. Suppose /=1y, -, v/=1n, (m > -+ > n, > 0) be the zeros of a((;u).
Then, fi(z,v/—17;;u) are real valued and linearly independent. Hence, there exists the

real number d; such that

fi(z \/_n]a )=d;f-(z \/—7737 u).




36 Mayumi OHMIYA

Since, by ( ), fe(z,v/—1nj;u) behave as exp(:Fn] ) as ¢ — oo respectively, the solutions
fe(z,vV=1n;j;u) belong to LQ(R_) le., —n? are the discrete eigenvalues of the selfadjoint
operator H(u). Put ,

b(Lo;u
relos) =202 o R (0)
and ]
ti(c;u):a(cu), (>0

We have

Ire(osu)l <1, o#0,

re(—o;u) =re(o;u)
and

ra(ou)= 0(§)7 o] = 0.

The coefficients 7+(o;u) and t1(0;u) are called the reflection coefficients and the trans-
mission coeflicients respectively. The 2 x 2 matrix

(o) ()
Slosu) = ( ri(oyu) t-(o;u)
is the S-matrix. By the GLM method (see e.g., [2], [3].and [7]), the operator H(u) can

be reconstructed from the reflection coefficient r, (o;u), the eigenvalues —n2 > -+ > —n?
and the norming constants ’

© = : SO S—
] /°° f+($,'\/*—177j5_u)2d;1: \/"_1‘1/(\/‘—1771?“),

j:1727"'7n7

where a'(v/—17;;u) = %a(\/—lm; u). We call the collection
Za(u) = {rye(o5u);=ni <o < =m;m,m 05 )
the scattering data.
3. Scattering data of D(v)

In this section we summarize the definition of the scattering data of the 1-dimensional
Dirac operator D(v) from [10]. See also [5] and [6] for more recent development.
Suppose v(z) € D;(R;m) for some posmve real number m. Consider the eigenvalue

problem

- ¢i(2) — v(z)¢a(z) |
™ D)) = ﬁ( )ér(z) — () )
)

on the real line, where ¢(z) = '(¢1(z), ¢2(z)) and A € C.

= A¢(z)

v(z
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Let ( = ((A) be the two-valued algebraic function defined by
<2 — )\2 _ m2

and R4 be the upper leaf of the 2-sheeted Riemann surface associated with the algebraic
function {(A) such that I((A) > 0 for A € R,. Put

I, = R\ [-m, m] = (—o0,—m) U (m, 00)

and
0(6) = (sgn 6) \/ 62 - m27 é € ]m7
where ¢
sgn & = E[—

If A € R, there exist the unique solutions ¢+ (z, A;v) of (7) bound by the conditions

bz, \;v) = qﬁi(m, A)+o(l), z— oo,

V=) =)
(8) $1(z, ) = m exp(v/=1¢(M)z)
1
(9) ¢2(x,)) = ( V=TI = ) )exp(—\/:TC(A)x)-

We call the solutions ¢i(z,A;v) = *(¢d11(z, A;v), d1a(x, A;v)) the Dirac-Jost solutions.
The Dirac-Jost solutions ¢4(z, A\;v) are analytic in A € R,.
Put

y' = "(7.7)
for y = ‘(y1,y.) € C*. We have
20(§)(a(§) = )
m2

for £ € I,n, where Wp[¢, 1] = ¢192—¢a1hy is the Wronskian for ¢ = t(¢1, $2), Y = t(¢ly¢2)-
Since ¢, (z,;v) and ¢y (z,€;v) are linearly independent solutions of (7) for ¢ € I, there

exist the coeflicients A(¢;v), B(€;v) such that

Wpld(z,&v), ¢y (2, 60)1] =

(10) ¢-(z,6v) = A6 v)d4 (2,6 0) + B(&0) ¢4 (2, & v).
i Wolg-(2,&v), 64 (z,&0)]
v A& == o)
) = MBI (@:650), 6. (2, ¢ 0)
) = 20(€)(& — o(€))
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and

|A(G 0)* = 1+ B(& )
By (11), A(¢;v) can be extended to the analytic function A(X;v), A € Ry. The coefficients

B .
Ralei) = 23280, e,
and )
Ti(Av) = A0;0) AeRy

are called the reflection coefficients and the transmission coefficients respectively. We have
lRi(é‘;v)l<17 éejm

and

)s 1€l = oo

1
R:t(é.i 'U) = O(m

If A(Aj;v) = 0 for A\, € R, then, By (10), ¢4+(z, A.;v) are square integrable by their
asymtotic property (8) and (9). Since D(v) is symmetric, Ax € RNR 4, ie., —m < A\, <m
follows. The integral representation

(12) A(Xv) = Z,T/\j\j(l + /Ooo F(z) exp(2v/=1¢(V)z)dz)

is valid for a real valued integrable function F(z). By (12), A(—);v) = —A(X;v) fol-
lows. Hence, the zeros of A();v) are simple and distributed symmetrically in the interval
(—m, m), especially A(0;v) = 0. Let the zeros of A(X;v) be 0,41, -, %Ky, where
0 < Ky < -+ < ky < m. On the other hand, one verifies that there exist the real
constants D;, y = 0,1,---, N such that

(13) ¢+($,:l:l‘€j;v) =Dj¢_(x,i/g]-;v), ] —_—0’1,...,]\/_

We define the norming constant I}, j = 0,1,---, N by

L V=1D, .
0 = T j=o,
/ by (z,0;0)2de 24'(030)
14y [=1 7
( ) 7 ) 2 '\/—1ij ’
- - 1<j<N
/ ¢+, 2555 0)|*da \/WA’H:M;U)

where || * || is the Euclidean norm. The above definition of I for 1 < j < N seems to
be curious. But it is convenient for the inverse problem. Hence we employ this definition
according with that of [10]. We call the collection

Zp(v) = {R+(&0);0 =Ko < k1 < --- < kn; Lo, 1, -, I}
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the scattering data of D(v).
4. Representation of Miura transformation
Let ¢(z) be a solution of (7) then
D(v)4(x) = N9 ()
follows. Hence, by the operator identity (2), we have

( H(u.) 0

T(z) = (N Té(z).
0 H(u+)> ¢(z) = ((A)*T¢(z)

This implies
H(ug)(¢1(2) £ ¢2(2)) = ((A)*(d1(2) £ d2(2)).

Hence one verifies

BT Flf ) - exp(—y L)) +ol1), @ oo

Therefore, by the uniqueness of Schrodinger-Jost solutions, we have

$41(z; A v) + 44a(2, A v)

(16) f-(z,((N);ug) = mqs_iiwﬁ’f\’/v__).l_i(:g:\;(f’j)’ v).
By (10), (15) and (16), one verifies |
F- (e o(5ua) = YT ) o]+ Bl o€
Hence \
(1) cius) = BEIM 000, dem,
and

b(o(€);us) = £B(&v), (€ ly

follow. Hence, we have

(o U = M
re(o@iux) = T
_ +¢ B(&;v)
o(€) + V—=1m A(&;v)
-+t R(6v), tcln

o(&) £/~=1Im

39
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Next we consider the zeros of a({()); us). Note (12) and put

050) = L a00) = 14 [7 Fle) exp(ev T (Mo ds,

Then, since A = 0,£ky, -+, +ky are simple zero of A();v), we have

3

A%(0;v) # 0
and
A%(£kj;v) =0, j=1,2,---,N.

By (17), we have
() % v

a(((A);ug) = A°(\;w).
Since {(0) = /—1m, one verifies that
(18) a(((£&;);ug) =0, j=1,2,--- N,
(19) a(C(0);uy) #0
and '
(20) a((0);u) = 0.
By (18), k] —m?, j =1,2,---, N turn out to be the discrete eigenvalues of H(uy). Thus

it suiﬁces to determme the norming constants of H(uy) for our purpose. By (15) and
(16), we have

(21) fe(z, V=1nus) = £D;f_(z,v/~1n;;us), 7=0,1,---, N,
where D;, j =1,2,---, N are defined by (13) and

Uj:\/mz“’ﬁ]z, j:172a"'-7jv'

One verifies p A )
_ Ak, v .
122 Ry V) -1.2.....N
dC (C?u:‘:)lg V=1n; n, Fm s J 13 ) IEAR)

where A'(k;;v) = & A(k;;v). By (6), we have

mF n; .
’71'(:‘:): m ]Fjv ]:172a"'7N7
where 7;(£) are the norming constants of the eigenfunctions f,(z, V=Injuy), 7 =
1,2,---, N, respectively.

Note that —m? is the discrete eigenvalue of H(u_) by (20), while —m? is not the
discrete eigenvalue of H(u;) by (19). Hence, next we calculate the norming constant

Yo(—) of fy(z,v/=Im;u_). By (17) and (21), one has
—Dyq
(22) Yo(—) = e T
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On the other hand, one has

d _A°0jv)  d N
ICQ(C’ u—)lg':\/—_lm = \/:Tm = ﬁA()‘a U)IA=0'

Hence, by (14) and (22), we have

-D
'7()(_) - _—“—0 = QFO

V=1A4/(0;v)
Thus we have the following.
Theorem. Suppose that the absolutely continuous function v(z) belongs to D}(R;m)
for some positive real number m. Let
Yp(w) ={R(&v);0=ko < k1 < -+ < tn; Lo, Iy, -, I'v}
be the scattering data of the 1-dimensional Dirac operator D(v), then the scattering data

of the. 1-dimensional Schrédinger operators H(uy) with the potentials uy(z) defined by
the Miura transformations (1) are given by

3 2 2 M —M m—1nN
X ={——————=R(&v);—n < - < —nr; ———1I1, -+, I
H(u+) {U(f)-l‘\/:i-m (é’ U) 771 77N m 1 N}
and
—£
2 )= ___________R . .
H(u ) {O‘(f)——\/-——lm (67”)7
_7]§<—77%<“'<_U?V;2F07mrla"'ym+nNFN}a
m m
where o(€) = /€2 —m? for £ € I, and n; = \/m? —k? for j =0,1,---, N, particularly,
—1ng = —m?. ] ]

Remark. The correspondences u,(z) — u_(z) and u_(z) — uy(z) are nothing but
the Darboux transformations, i.e.,

H(u‘l') +m2 =A_- A+7
Hu_)+m*=A, - A_,
where Ay = +0+v(z). Hence, as the application of Theorem, we can easily prove Crum’s

algorithm for removing and adding eigenvalues of the 1-dimensional Schrodinger operator
(see e.g. [2, pp. 167-173]). In particular, we have immediately

re(oyug) = 7___E]mm_(o; U_),
Spec H{us) = Spec H(u_) \ {~11}
and

' o —17; .
vi(+) = —"y(=), j=1,2,---,N,
J( ) o 77] ]( )

where Spec A denotes the set of the point spectrum of the operator A.
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