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Abstract

We consider a relative minimizer of the H-system where H is not necessarily
a constant. It is known now that for H in a neighborhood of some appropriate
constant Hy, there exists a relative minimizer X of the functional Eg. In this
paper, we show some properties of a relative minimizer X, especially that there
exists some neighborhood U of X outside of which every critical value is greater
than that of X.
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§1. Introduction

We consider the Dirichlet problem for the equation of prescribed mean curvature which
is not necessarily constant. ‘
Let Q be the unit disk in R?;
Q= {w = (u,v);u* +v* < 1}.
The Dirichlet problem for the equation of prescribed mean curvature H is expressed as
(1.1) AX = 2H(X)X,AX,  inQ,
(1.2) X = Xp, on Q.

0 d
Here, we denote X, = 5Z—LX and X, = 51—)X , and A is the exterior product in R

H: R® - R is a given function and Xp is a given function mainly of class C%(Q0; R®).
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Then we consider a functional Ey on {Xp} + H3(Q; R?), where Eg(X) = D(X) +
2Vy(X). Here

(1.3) D(X) = %/ﬂ VX 2 dw

is the Dirichlet integral and

(1.4) Var(X) = %/QQ(X)-XU/\Xv dw

is the Q-volume introduced by'Hildebrandt, where Q(X) is defined through H(X)

(1.5) Q(21,72,73) = (/o

When H = Hy € R, we have Eg,(X) = D(X) + 2HV(X), where

z1 z3
0

H(s,xg,arg)ds,/:2 H(g;l,vs,m)ds,/ H(wl,xQ,s)ds>.

1
. == t Ay X'v
(1.6) V(X) 3/QX X, A X, dw

is the algebraic volume of a surface X.

We summarize basic results here. Note that solutions to the Dirichlet problem (1.1),
(1.2) are characterized as critical points of Ex(X).

First, in the case of H = Hj € R, following two theorems are fundamental and now
well-known. For their proofs and for further references, see for example Struwe [7], [9],
or Brezis-Coron [1]. ‘

Theorem 1.1. Suppose H = Hy € R and let Xp € L® N HY(Q; R?) be given. Assume
that
FHo ||| Xp [lo<1

is satisfied. Then there is a solution X, € {Xp} + H}(Q; R?) to (1.1), (1.2). Moreover
X, is characterized as a strict relative minimizer of Ey, in this space.

Remark 1.2. The fact that a relative minimizer is also a strict relative minimizer is
originally due to Brezis-Coron [1]. We give this result in Proposition 2.3 following Struwe

(7).
When Hy # 0 and X is non-constant, there exists a second solution.

Theorem 1.3. Suppose H = Hy # 0 and let Xp € L™ n HY(Q; R®) be non-constant.
Assume moreover that Ex, admits a local minimum X, in the class {Xp} + Hg(%; RY).
Then there exists a solution X € {Xp} + H}(%; R®) of (1.1), (1.2) different from X,.
Moreover X satisfies

(L7) Euy(Xo) < Ery(X) = inf sup Ery(X) < Exy(Xo) + o,

peP Xep
~ where fo = 537y and P = {p € C%([0,1]; {Xp} +H); p(0) = Xy, En,(p(1)) < Eno(Xo)}-

For variable curvature function H, similar results were obtained. The following result
is due to Hildebrandt [2, Satz 2].
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Theorem 1.4. Suppose H is of class C* and let Xp € L™ N HY(Q; R?) be given with
| Xp llo< 1. Then if
h=esssup | H(X) |< 1,

IX|<1

there exists a solution X € {Xp} + H3(Q; R?) to (1.1), (1.2) such that
X =inf{Ex(X); X € {Xp} + Hi( R?), || X [l< 1}

Recently, a second solution was also obtained by Struwe [8] and Wang [10]. To state the
results, introduce a metric

(1.8)  [H - Ho = eS)fengP{(H | X DI H(X) — Ho | + | VH(X) )
+| Q(X) — HoX | + | dQ(X) — Hoid [},

and denote an a-neighborhood of Hy as Hy = {H;[H — Ho] < a}. Then the following
results hold.
First, Struwe [8, Theorem 1.3] proved the following.

Theorem 1.5. Suppose Xp € C?(Q; R?) is non-constant and for Hy € R\ {0} the
functional Ey, admits a relative minimizer in {Xp} + H3(Q; R®). Then there ezists a
number o > 0 such that for o dense set A of curvature functions H in H,, the Dirichlet
problem (1.1), (1.2) admits at least two distinct regular solutions in {Xp} + H{(Q; R®).

Then Wang [10, Theorem 1.6] extended the above result to the full a-neighborhood and
obtained the following.

Theorem 1.6. Suppose Xp € C*Q; R?) is non-constant and for Hy € R \ {0} the
functional Ey, admits a relative minimizer in {Xp} + H}(Q; R®). Then there ezists a
number a > 0 such that for a curvature function H in the full a-neighborhood H, of
Hy, the Dirichlet problem (1.1), (1.2) admits at least two distinct solutions in {Xp} +
H(Q; RP). '

Among the solutions obtained in the above theorems, one is a relative minimizer and the
other is of unstable type of Egx. Following Wang [10], we call the former S-solution and
the latter L-solution. He showed also that the S-solution is a “strict” relative minimizer
of Eg in the sense

(1.9) Ey(X) < Eg(X),

where X is the S-solution and X is the L-solution.

In this note, we want to study a relation between Ex(X) and Eg(X) for arbitrary
X € {Xp} + HL(Q; R®) (see Theorem 3.1), and to show an inequality (1.9) as a special
case.

§2. Preliminary Results

We list two lemmas which are necessary in the following proofs.
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Lemma 2.1. Let a and A be as in Theorem 1.5. Then there exists a constant ¢ > 0
independent of a such that if H € A,

(2.1) DX -X)>c
where X (resp. X ) is the S-solution (resp. L-solution) to (1.1), (1.2).
See Wang [10, Lemma 2.6].

Lemma 2.2. Let o, Xp, and Hy be as in Theorem 1.5. Then for any € > 0, there exists
a constant o > 0 with the property that for any curvature function H € H,, if X is the
S-solution to (1.1), (1.2), then

(2.2) I X - Xo o<

where X is a relative minimizer of Ep,.

See Wang [10, Lemma 3.2].

As we note already in Remark 1.2, Brezis-Coron [1] proved that a relative minimizer
is also a strict relative minimizer. For the sake of completeness, we give the proof of this
result following Struwe [7, Lemma IV.1.2].

Proposition 2.3. For Hy € R\ {0}, suppose that Eg, admits a relative minimizer X,
~in the space {Xp} + L™ N HY(Q; R?). Then X, is a strict relative minimizer of By, in
{Xp} + HLQ; R®), and there is a constant § > 0 such that

(2.3) /Q | Vo |2 dw+4H0/Q_XO'<pu/\ Y, dw > 6/9 | Vo |? dw, forall g€ H;.
PROOF. It is evident that
@4 DBa(Xo)e.9)= [ |Vl du+ay [ Xo-puhpudu.

Note that C§° € L® N H} and C{° is dense in H{, so the following inequality holds
trivially.
(2.5) § = inf{ D*Ep,(X,)(¢,¥); ¢ € Hy, D(p) =1} > 0.

Now we must show § > 0.

If § = 0, then a minimizing sequence for § is relatively compact in H}(2; R?) because
D?*V(X,) is compact (see for example Struwe [7, Theorem II1.2.3]). So we have @ €
H}(; R®) such that D(yp) =1 and

(26) 6= DQEHO(—XO)((pv (p) = 0.

Then ¢ satisfies
(27) A(P = 2H0(l(0u A ('pv + Pu A _Xou)v

and it follows that ¢ € L™ (see for example Struwe [7, Theorem III.5.1]).
Hence by minimality of X, for small | ¢ |, we have

(2'8) EHO()—(O) < EHO(XO + t(p) = EHO()—(O) + 2H0t3V(§0),
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so it follows V(¢) = 0. Then Eg, (X, +tp) = En,(X,) for any t € R, and this implies
X, + ty is a relative minimizer of Eg, for small | ¢ |.
Therefore we have

(2.9) A(Xy +ty) = 2Ho(X +tp), A (Xo+1tp),  forsmall ||,

and there results 0 = @, A @,.
Now we obtain
(2.10) § = D*Eny(Xo) (0, 0) =2,

but this contradicts (2.6), so we complete the proof of Proposition 2.3.

Because Ep is not differentiable on {Xp}+Hg(€; R?), we can not consider D?Ex(X).
But in some sense, the following result can be used in place of positive-definiteness of
D?Eg(X).

Proposition 2.4. Let Hy # 0 be a constant with the property that Eg, admits a relative
minimizer Xo € {Xp} + HL (4 R3). Then there emists a constant o > 0 such that if
H € H,, there is a constant § > 0 depending only on o and Xp for which the following
inequality holds.

2 . 2 1
(2.11) /{;|ch| dw+4Hg/QL( cpu/\(p,,dw26/9|V<p| dw, for all p € Hy.

Here X is the S-solution to (1.1), (1.2).

PRrROOF. Note first that S-solution of Fy exists for any H € H, (see the proof of Struwe
[8, Theorem 1.3]). By Proposition 2.3, we have a constant § > 0 such that for all
¢ € Hy,

(2.12) /QIVQOP dw+4H0/QXO-<pu/\<pvdw261/Q|V<p|2 dw.

Hence for any ¢ € H} we have

(2.13)/Q|V<,ol2 dw+4Ho/Q_X-<pu/\<pvdw
= [[1 Ve du+4Ho [ Xopunpodw+4Ho [ (X ~Xo) pu Ay du
2 6 [ IV dw+4Hs [ (X -Xo): puhpudu.

Therefore, Proposition 2.4 follows from Lemma 2.2. B

Remark 2.5. Proposition 2.4 is almost the same as the result of Wang [10, Lemma 3.1].
But, it seems natural to state in' the above form.
§3. Relative Minimizer

Now we can show a relation between Eg(X) for arbitrary X € {Xp} + H3(€; R®) and
Ey(X).
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Theorem 3.1. Let a be as in Proposition 2.4. Then for any X € {Xp} + Hi(Q; R?),
if H € H,, we have

1
(31) Ex(X) =EH(X)+—/ | Vo |? dw+2H0/;<.%/\go,,dw+2vH(<p)
2 Ja Q
1/2
2 2
+O(a)(</ﬂ|ch| dw) +/Q|V<p| dw),

where X is the S-solution to (1.1), (1.2), and ¢ = X — X € H}(Q; R%).
PROOF. Let o = X — X € H)(Q; R®). Then, by the fact that X satisfies (1.1), we have
(32) Ex(X) = Ba(X+9) |
= L[ IVE 40 P dwt: [QE+9) (X490, AX +), du
= Ep(X)~2 [ HX)p X, A Xodw+3 [ QX +9)- pu Ao du
P [1Vpl dw+ 2 [ QX +9) - QX)) XA X, du
+2 [ QX +9) (XuAgutouh X, dv.

Now we estimate terms in the right-hand side of the above equation. First, it is easy to
see the following.

(3.3) /Q(Q(X +0)— QX)) Xu A X, dw
=/QdQ(*X)<p'XuAde’LU+O(a) (/Q Vo P dw)m,

Next, by decomposing Q(X +¢) = Q(¢) + Q(X +¢) — Ho(X + ¢) + HoX + Hop — Q(¥),
and using the definition (1.8) of a metric, we have

(3.4) /QQ()_( +©) - ou A Py dw

= . ) 2 g

= [ Q@) qucpvdw+Ho/Q)_<" ou A oudu+0() [ | Vi P du,
Finally, by similar calculations and the integration by parts,
(35) [ QX +¢) (XuAwo+puAXy)dv

= [0+ (XA dQX)X, + QX)X N X.) dw +2Hy [ X-puhgudu
1/2
o) ([ 1vp[* d )
+0(a) ([ 199 dw

Note further that by an algebraic formula, we have
(36) [ ¢+ (XuAdQUX)X, +dQX)X, A X)) dw+ [ dQ(X)p- X A X, du
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So from (3.2)-(3.6) we have
Ey(X) = EH(X)+1/ | Vo |? dw+2H0/X-<p A @, dw
— 2 Ja o T v
1/2
+ 2Vu(p) + O(a) ((/9 | Vo | dw) +/Q | Vo | dw) ,
and we obtain Theorem 3.1. B

Proposition 3.2. Let a be as in Proposition 2.4 and H € H,. Then for any X which
is a solution to (1.1), (1.2), the following holds.

1 2 4
(3.7) Wilp) = -3 | 1Vl du-zH /Q X - 0y Ay duw

+O(a)<(A]|V<p 2 dw>1/2+/Q|V<p 12 dw),

where X is the S-solution to (1.1), (1.2) and ¢ = X — X € H}(Q; R®).
PROOF. Because X = X + ¢ and X satisfy (1.1), we have
(38) 0 = [ Vo VX +p)dw+2 [ HX+e)p (X +0), A (X +0),dv
= [1VeP dw+2 [ (HX +9)- HX)p X AX, du
+2/QH(_X+<,0)<0-()_(u/\%-i-%/\_).{u)dw
+QLH(K+w)¢-¢quvdw.

By similar calculations as those in the proof of Theorem 3.1, it is easy to see
1/2
(69 [ (HX +9) = HX)p: Xo A Xodw=0) ([ | Vol w) ",

and

(310) [ HX+¢)p- (XuApo+puAX,)du
1/2
_ . 2
—2H0/QX Yu A Py dw + O(a) (/ﬂchp| dw)

Moreover from H(X + @) = (H(X +¢) — Ho)(X + ¢) + (Ho — H(X + ¢))X + (Hop —
Q(p)) + Q(p), we have

(3.11) /{lH()_f-FsO)cp-qusoudw=/Q'Q(w)-cpu/\%dw

+0(a) ((/Q | Vo ? dw)1/2+/Q|V(p 2 dw).
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Now from (3.8)-(3.11), we obtain

(3.12) 0 = /Q|V<p|2 dw+4H0/Q)_(o<pu/\(pvdw+2/QQ(<p)-cpu/\<p,,dw

+ O(a) ((/ﬂ | Vo |2 dw)l/2+/Q | Vo |? dw),

and the proof is completed. &

From Theorem 3.1 and Proposition 3.2, we obtain the following Corollary.

" Corollary 3.3. If H € A and X is the L-solution to (1.1), (1.2), then for sufficiently
small o, we have Eg(X) > Ex(X), where X is the S-solution to (1.1), (1.2).

PROOF. Let ¢ = X — X. Then X = X satisfies (3.1) and (3.7), so we obtain

_— 1 9
(3.13) Ex(X) - Ea(X) > —(/9|ch.| »c}lw+4H0/Q_)§~99u/\<pvdw)

6
1/2
_ 2 2
ca(</9|V<p[ dw) +/$;|th| dw).

But, by Proposition 2.4, there exists § > 0 such that
— 1/2
EH(X)—EH(X)261]|Vw|2 dw—ca((/ﬂ|Vg0|2. dw) +/Q|V<p|2 dw).

Now from Lemma 2.1, we have D(X — X) > ¢ where c is independent of , so we obtain
Corollary 3.3. 1

§4. Some Additional Results

We show here some applications of the results obtained in the previous section.

When H = Hy € R, we can show the uniqueness of the relative minimizer. First we
need the following results corresponding to Theorem 3.1 and Proposition 3.2 in the case
of H=Hy € R.

Proposition 4.1. Let H = Hy € R be as in Theorem 1.5, then we have
o1
(41) Eg,(X) = Eg,(X) + 5/ﬂ | Vg |? dw + 2H0/Q)_(0 9 A @y dw + 2V (),

for any X € {Xp}+ HY( R?), where X, is the S-solution to (1.1), (1.2) and ¢ =
X — X, € HX(Q; R%).

The above result is, of course, Taylor expansion of Eg,(X).

Proposition 4.2. Let H = Hy € R be as in Theorem 1.5, then for any X which is a
solution to (1.1), (1.2), the following equality holds.

1 : 4
(4.2) 2V (p) = —5/;Z|ch |2 dw—gHg/Q)_(o-%/\npvdw,

where X, is the S-solution to (1.1), (1.2) and ¢ = X — X, € H}(; R®).
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By the above Propositions, we can show the following well-known uniqueness result (see
Struwe [7, Corollary IV.1.3]).

Corollary 4.3. If X; and X, are relative minimizers of Eg, on {Xp} + H}(Q; R®),
then X1 = XQ.

PROOF. Let ¢ = Xo — X; € H}(Q; R®). Then, by Proposition 4.1, 4.2, it is easy to see

(4.3) Egn,(X3) = Eg,(X1) + % (/ﬂ | o | dw + 4H0/9X1 ou A @y dw) .
So if ¢ # 0, by Proposition 2.3, we have

(4.4) Ex,(X2) > Eg,(X1).

By the same way, we have also

(4.5) Epy(X1) > Egy(X2).

This contradiction gives Xy — X7 = 0 and we obtain Corollary 4.3. @

In the case of variable curvature function H, we do not know the uniqueness of the
relative minimizer, but we can obtain information about the relative minimizer.

Proposition 4.4. Let X be the S-solution and X any solution to (1.1), (1.2). Moreover
we denote some neighborhood of X in H} as U which depends only on o. Then if X lies

outstde U, we have
(4.6) Eg(X) > Eg(X)

The proof is the same as that of Corollary 3.3.
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