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Abstract

This paper studies the relationship between the classical mechanics in a magnetic
field and its quantized system. The phase space for classical motion in a magnetic
field is derived through the Marsden-Weinstein reduction starting with a principal
U (1)—bundl>é . The quantized system associated to the classical system is defined as
the Bochner-Laplacian on a line bundle associated to the principal bundle. In this
context we obtain a generalization of Helton’s theorem which gives a characteriza-
tion of the periodicity of the classical trajectories by the spectrum of the associated
quantum Hamiltonian (the Bochner-Laplacian).

1991 Mathematics Subject Classification: Primary 58G25: Secondary 58F05

1. Introduction

The purpose of this paper is to consider from the viewpoint of “Spectral Geometry”
the relationship between a quantum mechanics and the associated classical mechanics in
a magnetic field. In “Spectral Geometry” the spectrum of the Laplacian on a Riemannian
manifold has been investigated from various viewpoint. Among others it has been clarified
by many authors ([2], [3], for instance) that the spectrum of the Laplacian is closely
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10 Ruishi KUWABARA

related to dynamical properties of the geodesic flow (the associated classical system to
the Laplacian). On the other hand, geometrical definitions of the classical phase space
for the motion in a gauge field were presented by Sternberg [13], Guillemin and Sternberg
[5], Weinstein [15], and so on. On the basis of the formulation in [5] R. Schrader and
M. Taylor [12] considered the eigenfunctions of a quantum Hamiltonian for a particle in
a gauge field. They clarified that eigenfunctions are “uniformly distributed” in a certain
region of the phase space if the classical flow is ergodic (see also [16]). In this paper we
pay attention to the opposite case where every orbit of the classical flow is closed, and
give a generalization of Helton’s theorem [6].

Section 2 is devoted to a geometrical formulation of the classical motion of a particle in
a gauge field through the reduction-procedure by Marsden and Weinstein [11] starting with
a principal bundle over the configuration space. A magnetic field is defined as a connection
(or its curvature) on a principal U(1)-bundle, which is related to the symplectic structure
in the Hamiltonian dynamical system. In §3 we introduce a line bundle with a connection
and the Bochner-Laplacian on it, which are regarded as quantum objects associated to
the classical mechanics in the magnetic field. Motivated by Schrader and Taylor [12]
we consider in §4 the U(1)-invariant pseudo-differential operators on the principal U(1)-
bundle, which are found to be natural and useful for the spectral analysis on the associated
line bundle. It should be noticed that a principal symbol in our sense has more information
of the pseudo-differential operator than the usually defined principal symbol. Finally in
85 we present and prove Helton’s theorem for a quantum Hamiltonian (the Bochner-
Laplacian) for a particle in a magnetic field.

2. Classical mechanics in a magnetic field

Consider a principal G-bundle 7 : P — M over a compact C'* manifold M, where G
is a connected compact Lie group acting freely on P on the right. The action of G on P is
naturally lifted to the cotangent bundle T*P, and, the lifted action preserves the natural
symplectic 2-form  on T*P. '

The Marsden-Weinstein reduction. The above symplectic action on (7™ P,2) defines

the momentum map J : T*P — g* (the dual of the Lie algebra g of G) as
(J(a),v) = (a,vp(p)) (a€T;P, pe P veg),

where vp is the vector filed on P induced from v by the action of G. Then, the following
is easily checked.

Lemma 2.1. (1) Each p € g* is a regular value of J.

(2) J is Ad*-equivariant, i.e., :

Jo Ry = Adg-.0J

holds for any g € G, where R, denotes the (right) action: p— p-g on P by g and Ad} is
the co-adjoint action on g* by g.
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For each p € g*, J7}(u) is a C*™ submanifold of TP because of (1) of the above
lemma. Let G, = {g € G; Ad-.u = u}. Then, G, is a closed subgroup of G, and JHu)
is left invariant under the action of G),. Moreover, it is easily seen that the action of G,
on J™!(u) is free and proper (because Gy is compact). Hence we get the C*° manifold
P, = JY(u)/Gy. J. Marsden and A. Weinstein [11] showed the existence of such a
symplectic structure €}, on P, that

ml =10,
where 7, : J~1(1) = P, is the natural projection, and i, : J™!(u) — T*P is the inclusion
map. Thus we get the symplectic manifold (P,,,) associated to € g*, which is called
the reduced phase space of (T*P,).

__ Connections on P. Suppose the principal G-bundle P is endowed with a connection
V, namely, for each p € P there smoothly attached a linear subspace H, (called the
horizontal space) of the tangent space T, P which satisfies

(2.1) . LP=H,aV,
and

(2.2) Hpg = Ry(Hp) (g9 €G),
where

Vp, = {vp(p); v € g} = kernel of (m,), : TpP = TrupyM
(which is called the vertical space) (cf. [8]). Set

Vit = {a € T; P; (a,v) = 0 for Vo € V,},
H;- ={a€ T;P; (a,v) =0 for Vv € Hp}.
Then, from (2.1) we have the decomposition
(2.3) TP =Hy &V,

For v € Try)M there uniquely exists & € H, such that 7,(d) = v, and we can define the
smooth surjective map @ : T*P — T*M given by

(®(a),v) = (a, D) (a € T, Pve TrpyM),

(which induce the onto linear map @, : Ty P — Ty, M).

Lemma 2.2. (1) Put a = 8+ (8 € Hy,v € V;!) for a € T, P according to (2.3).
Then, ®p(a) = ®p(7).

(2) ®, induces an isomorphism: V;- = Ty M.

(3) For each g € G, ®,4 = ®, 0 R holds on T, P.
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Proof. (1) and (2) is easy to check. (3) Take & € T3, Then, for Yv € Tr(p) M we have
by (2.2)

(®po0 R;(a),v> = <R;(a)’7~)p> = (a, Rg*(f’p» = <aaﬁp~g> = <(I)P~g(,a)’v>' o
Suppose a € J™'(u) N Ty P (1 € g*,p € P). Then,

(J(@),v) = (@, vp(p)) = (4, v)

for any v € g. Hence, we have

I w) = UP(V;f)p

where N , J ‘
(Vi)p = {a €T, P; (a,vp(p)) = (u,v) for Vo € g}. -
Since there exists unique i € H[,L such that (4, vp(p)) = (u,v) for any v € g, we have
Vi ={a=p+vreV t=p+Vt

(see Figure 1).

1 o o

\/;, =g /HP =9
/ «a ",//:L / (VpJ-)P
," /
0 A
Hy = T M /7“_\,10 /Vplg mo M
TpP T;P
Figure 1

Lemma 2.3. For each g € Gy, and each p € P, we have
(Vi pg = By ((Vi)p)-
Proof. Noticing for v € g that (Rg-1.vpP)(p) = (Adgv)p(p), we have for a € (V;'),

“(Rg-i(@),vp(p- 9)) =Aa, (Adgv) p) = (J(@); Adgv) = (i, Adgv) =(p,v)-
Thus, R-.(c) belongs to (Vit)pg O
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Let <I>§)“) denote the restriction of ®, to the subset (V”J‘)p C T;P. Then, <I>£“) is a
bijective map of (Vﬂl)p onto T,y M. Noticing Lemma 2.2,(3) and lemma 2.3, we obtain
from ® the smooth surjective map

U, : P, =J7Y(u)/Gy = T*M,

which is a fibre bundle with the fibre G/G,. Here the manifold G/G, is identified with
the co-adjoint orbit O, = {Adj_.p; g € G} in g*. Note that ¥, is a diffeomorphism if
G, =0G.

Classical dynamical systems in a magnetic field. From now on we consider the case
where G = U(1) = {€";0 < t < 2r}. Then, the Lie algebra u(1) of U(1) and its dual u(1)*
are both isomorphic to R. In this case ¥, is a bijection, and P, is diffeomorphic with
T*M. Let § be the connection form of the connection V on P, that is the u(1)-valued
. .one-form on P .assigning each vector X = Xy + vp(p) (Xp € Hp,vp(p) € V) in T,P to
v € u(1). The u(1)-valued two form © = df'on P is called the curvature form of V. Let
{Ua} be a open covering of M, and {sq} be a system of local sections of P associated to

{Ua}. Set ©4 = s30. Then, on U, N Ug(# ¢) we have
Op = Ady, ;04 = O,
where @qp is the transition function: Uy N Ug — U(1) satisfying so = sg - @ag. Thus

O = {O,} is a globally defined u(1)-valued two-form on M, which we call a magnetic
field. |

The following proposition describes the relationship between the magnetic field and
the symplectic structure 2, on the reduced phase space P, for p € u(1)*.

TP

M ™ T*M

Figure 2

Proposition 2.4. Let O, = (i, 0), which is a R-valued two-form on M, and let o
be the natural symplectic form on T*M. Then,

4 = V(o + mhO),
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where myr s the projection: T*M — M, that is, the symplectic manifold (P,,Q,) is
isomorphic with (T*M,Qo + 73,0,,). ‘
Proof. Let X be a vector in T(p0)T*P (p € P,a € T; P). Then, X is expressed as

X =Xp+X* with Xp € T,P, X* € T)P(= T.T; P),

and X belongs to T(pe)J (1) if and only if X* € V;'. Set @ = dw (w being the
canonical one form on T*P). Then, for two vector fields X = X(p,a), Y = Y(p,a) on a
neighborhood of (po, ag) in J~!(u) we have

AXY) = S(X{w,Y) ~Y{w,X) - (w,[X,Y])

- %(X(Ot, YP> - Y<a’XP> - <a7 [va YP]>)

Put a = i+ v (y € V;*) and Xp = Xg + Xy according to (2.1) (cf. Figure 1). Then,
(i, ()g) = (1,(-)v) = 0. X and Y are regarded as vector fields on P, if they are
invariant under U(1)-action, i.e., Xy, Xy, Yy and Yy are U(l)-invariant. Hence, we
find that (4, (-)v) is a constant function and [Xg,Yy] = [Xv,Yy] = [Xv,Yy] = 0. As a

consequence, {2(X,Y) is written as

(2:4) X+ XY, Vi) = (Vi 4 Y") o, Xog) — {3, (X, Vi) } = 5, [Xir, Vi),

Note that X+ X* is identified with (¥, 07,).(X), and we see that the first term in (2.4)
is nothing but (¥;Q)(my(X), 7} (Y)). The second term is written using the connection

form 0 as

50 01X, Vi),

which is equal to O, ((ma0 ¥ 0m,)(X), (Tar0¥,0m,).(Y)) (see [8, p.78]). O

Suppose M is endowed with a Riemannian metric m, which defines the inner products
(+,*)z on Ty M and (-,-); on T; M, respectively for each z € M. Let H be the function
on T"M defined by H({) = (£,€); (z = mm(£)), and set H, = ¥; H. The Hamiltonian
dynamical system on (FP,,{,) with the Hamiltonian function (the “kinetic energy”) H,,
describes the motion of a (classical) particle with the “charge” p (€ u(1)*) in the magnetic
field ©.

3. Quantum mechanics in a magnetic field

We identify the Lie algebra u(1) with R by expt = e € U(1), where exp is the
exponential map: u(1) — U(1). Define the subset

AN ={eul); Am)eZforVmeZCR=u(1)} C u(l)"
For each A € A* we define the irreducible unitary representation py of U(1) by
pa(e") = &M ¢ S c\o.
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Let 7y : Ex — M be the complex line bundle associated with the principal U(1)-bundle
7 : P — M by the representation py, that is, the quotient manifold of P x C with respect
to the equivalence relation:

(p,2) X (p-g,pa(g71)2) (g€ U(1),z€C).

Each fibre of F) is naturally endowed with a metric. .

The connection V on the principal U(1)-bundle induces the linear connection VO
on E) which is defined as the covariant derivative VN : A%(M, E\)(= C®(E))) —
AY(M,E)). Here AP(M,E)) (0 < p < dim M) denotes the space of E)-valued smooth
p-forms on M, that is, AP(M, E\) = AP(M) @ C*°(E)). We can extent the covariant
derivative VO to the space of Ej-valued smooth tensor fields on M as

VT ®s)=VT®s+T-VWs,

where T is a usual tensor field on M, s € C®(E)), and V is the Levi-Civita connection on
(M,m). Let us take a local trivialization of the bundle 7 : P — M: #~(V) = V x U(1),
V being an open set of M. Let Fy be the local section defined by

Fo(z) = (z,1) (z€V),
1 = €° being the idehtity of U(1), and let s be the local section of E) defined by

so(z) = [(Fo(z), 1)]x.

Let g and © be the connection form on P and the curvature form on M, respectively, of
V. Then the following is easy to check.

__ Lemma 3.1. (1) The connection form 0N of VN with respect to the section s, i.c.,
Vg = Wy, is given by

0N = pr F30 = i\, F36).
(2) The curvature form of VO s given by
0 =40, (= i(),0)).

(3) The connection V) is compatible with the Hermitian structure in E.

From the connection V® on E) and the Riemannian metric m on M we can natu-
rally define a differential operator L™ called the Bochner-Laplacian, which is a second
order, non-negative, formally self-adjoint elliptic operator acting on C®(E)) (see [9], for
example). The operator LW is locally expressed as

LVs = —Zk: mf"ﬁ?)ﬂ*)s'
I

= — | m* (Y, +iaM)(Vi +ia”) ] so
j,k
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for s = fsgon V(C M) with f € C®(V), where 6 =iy ag)‘)dwj. As the quantum object
corresponding to the Hamiltonian system (Py, )\, H)) we take the differential operator
L™ on Ej, which is called the Schrodinger operator with a magnetic vector potential.
Note that the classical system (Py,Qy, Hy) is quantized only for A € A*, and that L@ is
just the Laplace-Beltrami operator on (M, m).

4. Pseudo-differential operators on the line bundle

Let O be an open set of R", and put O = O x U(1) (U(1) = {e*0 <t < 2m}).
A (classical) pseudo-differential operator A = a(Z, D) of order m € R on O is a linear
operator of C$°(0) into C*(O) given by

Au(z, t) = / [ (Z €Tzt €, )u(g,f)) de

reZ

(z =(z,t) € O x U(1)), where u(,T) is the Fourier transform of u:

WEm) = @MY | € Uy, s)dyds,

and a(z,t,€,7) = a(z,€) is a smooth function on @ x R™*' admitting an asymptotic
expansion '

£,8)~ 3 a5,

with a,,—;(z, £) positively homogeneous. of degree m — j in £. Here am(Z,§) is called the
principal symbol of A, and denoted by a(A). We denote by vy DO™(O) the set of properly
supported pseudo-differential operators of order m on O. Then, ¥ DO’s form an algebra,
namely, for A = a(z,D) € yDOP(O) and B = b(z,D) € DO O) we can see that
AB = C belongs to y DOP*9(0) and C = ¢(z, D) with

0

@8~ T o (55-) a(z,8) (—t—;)ab(i,@-

Let 7 : P — M be the principal U(1)-bundle-considered in §3. Let V be a coordinate
neighborhood of M with ¢ : V — O a dif‘feomorphisrn onto an open subset O-of R",
and suppose we have a local triviality 771(V) & V x U(1) of P. Then, we have a
local coordinate ¢ : m™H(V) = O = O x U(1) of P. For u.€ CP(O), define up =
uo@ (on 771(V)),= 0 (on P\n~1(V)), which belongs to C*(P). A linear operator
A : C®(P) = C*(P) belongs to ¥ DO™(P) (the set of pseudo-differential operators of
order m on P) if for any local coordinate (7~1(U), ,O) the map, Ap, of C§° (0) into
C*(0) defined by u(z) — (Aup)(¢74(2)) (z € O) belongs to py DO™(O). By considering
the behavior of 0(Ap) under a change of coordinates, we see that the family {a(Ag)}
defines a smooth function on 7*P called the principal symbol of A (denoted by o(A)) (cf.
[7, p.81], [14, p4T]).
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For g € U(1), define T, : C*(P) — C=(P) by (Tyf)(p) = f(p-g) (p € P). A pseudo-
differential operator A on P is said to be U(1)-invariant if Ao Ty, = Ty o A holds for any
g€ U(1).

Lemma 4.1. Let a(%, ) be the principal symbol of a U(1)-invariant pseudo-differential
operator A. Then, B )

a((Z,€) - 9) = a(z,¢)
holds for any g € U(1), where (%,&) = (2,€) - g = (2 - g, R;_lf—) is the action of U(1) on
T*P. Thus, a(z,£) s a U(1)-invariant function on T*P.

Proof. The lemma follows from the fact that the operator B = Tg__lvoTg is a psuedo-

differential operator whose principal symbol b(z,¢) is given by b((%,¢) - g) = a(Z,§). O

Let my : Ex = M (A € A* = Z) be the associated line bundle of 7 : P — M as
_in §3. For each.p € P, define x, : C.— 7y (n(p)) C Ex by z = [(p,2)]r, and X, is
a surjective C-linear isometry. Let C5°(P) denote the set consisting of every C-valued
smooth function f on P such that '

f(p-g) =pa(9)f(p)

for every g € U(1), which is called an equivariant function with respect to py. For
s € C®(E)), define the smooth function § on P by 3(p) = x;"'(s(n(p)). Then, 3 belongs
to C°(P), and x\ : s — § gives a one-to-one correspondence. between C*°(E)) and
C°(P). We easily see the following.

Lemma 4.2. Let A be a U(1)-invariant pseudo-differential operator on P. Then, AS
belongs to C°(P) if § belongs to CS°(P). ‘

Given a U(1)-invariant pseudo-differential operator A on P. Then, by virtue of the
above lemma we can define the operator Ay : C®(Ey) — C®(Ey) by Ay = x3'oAoxa,
which we call a pseudo-differential operator on Ej.

Let Fy and sg be the local sections of P and E), respectively, defined in §3. For a local
section s = fso (f € C(V)) we have

3(z,t) = ei[tf(a:),

where (z,1) is local coordinates of V x U(1) = #~}(V) (U(1) = {e*}) and £ = (), 1) €
Z (1 € u(l) ® R). Let A be a U(1)-invariant pseudo-differential operator on P which is
locally expressed as

Au(a,t) = [ (X%e‘f'fe‘"a(x,s,rm(&,f)) &, ueCEE (V).

Here we easily see that a(-) does not depend on t.

Lemma 4.3. Let s = fsq be a local section of Ex with f € C§°(V). Then, we have

Ars(@) = ([, e ar(z,)f(€)de) sol2)
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with
G'A(xa 6) = (l(:l:, f,[)

Proof. We have
(A3)(z,t) = (27r)_(n+1) E /@ R ei(x'y)'éei(t_”)ra(w,f,’r)e“’f(y)dydsd{
re2 Y%

?
= (2#)‘"/0an ie-y)- (271' 2/02" a(z, &, 1) ’(t_’)"e”’ds) fy)dyd¢.
Here we have ‘ '
(271_)—1 E/ (.’1} Ea ) i(t—s)T zlsds

— (271')_ ezlt Z a(w, 5"7_) e—i(s—t)reil(s—t)d(s _ t)
. reZ [0,27] »

= eYa(z,€0).
Thus the lemma is proved. ad

By means of this lemma we have

Proposition 4.4. Suppose A € yDO™(P) is U(1)-invariant. Then, Ay is a pseudo-
differential operator in the usual sense (cf. [7, pp 91-92]) on the line bundle Ey, and its
order is equal or less than m.

The principal symbol a(z,£) of a U(1)-invariant pseudo-differential operator A is in-
variant under the action of U(1) on T*P. Hence, the restriction of a(z,£) on J71(X) (A €
A*) defines a function on Py = J~!(A)/U(1), and we call this function the principal symbol
of the operator Ay (denoted by o(Ax)).

Given a U(1)-invariant function h on 7*P. Let X}, be the Hamiltonian vector field
associated to h, i.e., 1x, 2 = —dh (ix,? being the interior product), and let ¢, be the flow
on T*P generated by X;. Then, we have the following (see [11], [1, p.304]).

Lemma 4.5. The flow ¢, leaves J~Y()\) invariant and commutes with the action of
U(1), so it induces a flow ) on Py. This flow is generated by the Hamiltonian vector
field Xp, on (Px, ) associated to the induced function hy from h (cf. Figure 3).

By virtue of the above lemma we can see properties of the symbol of Ay from those
of U(1)-invariant pseudo-differential A on P. So we have the following.

Proposition 4.6. Let A, B be two U(1)-invariant pseudo-differential operators on P.
Then,
(1) [Ax, B\] = [A, B]»,

(2) o([Ax, Ba)) = ${o(Ar),0(Bx)}», where {,-}\ is the Poisson bracket in (Py, Q).
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s(°)
orbits of U(1)

5. Helton’s theorem — Spectrum of the Bochner-Laplacnan and motion in
the magnetic field

In the principal U(1)-bundle 7 : P — M we suppose P is endowed with a connection v
and M is endowed with a Riemannian metric m as in §2. Let us take the invariant metric
on the group U(1), and we introduce a Riemannian metric m on P (called a Kaluza-Klein
metric) which satisfies (1) the map u(1) 3 v — vp € V,(C T,P) is an isometry for every
p € P, (2) the horizontal space H, and the vertical space V, are orthogonal to each other
for every p € P, and (3) H, and Tr(» M are isometric with each other by the map m|m, .

From the metric m on P we have the Hamiltonian dynamical system (7P, (2, H)
Since H is U(1)-invariant, we get the Hamiltonian function H,on P,(u € u(1)*). Thus, we
have the reduced Hamiltonian system (P, {2, ﬁ#). Let (Py,,Q,, H,) be the Hamiltonian
system introduced in §2. Then, we have ﬁ# = H, + |u|?® (see Figure 1). Therefore, we
have the following.

Lemma 5.1. Two Hamiltonian systems (P, Qu, Hy) and (P, Qy, H,) are isomorphic
as the dynamical systems, i.e., the flows of two systems are the same.

Let~ﬁ be the Laplace-Beltrami operator on P defined from the Riemannian metric m.
Since A is U(1)-invariant, we have the differential operator Ay on Ey (A € A¥)

Lemma 5.2. Let LYV be the Bochner—Laplacz’dn on Ey. Then,
Ay =LW 4|\

holds good.
Proof. See [10, p.127], which treats the case G to be a torus. O
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Now, we consider the spectrum of the Bochner-Laplacian L™, which consists of non-
negative eigenvalues

W<y <<y <etoo (1 20).

We state the main result, which is a generalization of Helton’s theorem to the Bochner-
Laplacian on the line bundle.

Theorem. Let ¥ be the set of cluster points of the set {v, — v4}. Then, the every
orbit of the flow of (Px, 2, Hy) 1s closed if ¥ # R.

The proof of the theorem is carried out similarly as [4] on the basis of Egorov’s theorem.
Let Q = \/Z (the positive square root of A), which is a (formally) self-adjoint, elliptic,

. U(1)-invariant pseudo-differential operator of order one with the principal symbol H.

Then, we have
O = VIO +DE o) =V

Let S(s) = expis@ (s € R), and let R be a U(1)-invariant pseudo-differential operator.
Put R(s) = S(s)"'!RS(s). By virtue of Lemma 4.5 we get the following from Egorov’s

theorem for \/Z (cf. [14, p.147]).

Lemma 5.3(Egorov’s theorem on line bundles). The operator R(s) is a U(1)-invariant
pseudo-differential operator on P, and ‘

o(R(s)x)(z,€) = o(R)(¢{(2,€))

holds, where ¢ (-) is the flow on (Py,()) which is generated by the Hamiltonian vector
field X associated to a(Q») = V H.
Proof of Theorem(cf. Helton [6], Guillemin [4]). Let f be an element of C§°(R). Let R

be an arbitrary U(1)-invariant pseudo-differential operator of order zero on P. Consider
Ry = / F(5)S(s)7 RaS(s)xds = / F(s)(S(s)™ RS (s))ads.

Let pp = /2 +|A? (p = 1,2,...) be the eigenvalues of Qx. Then, it follows from the
spectral theorem that

Ry =3 ftp = )y RaTl,

P
where II,’s are finite rank projection operator satisfying @x = 3_ ppIl,. Suppose ¥ # R.
Then, we have an interval I containing only finitely many (u, — pq)’s because a cluster
point of (v, — v,)’s is also a cluster point of (4, — ug)’s and vice versa. If the support
of f is contained in I, then R; is of finite rank, and is a smoothing operator. Let

- A be the principal syrnbol of Ry. By virtue of Lemma 5.3 the principal symbol of
F(5)8(s)y RaS(s)y is given by f(s )r,\(cﬁ(’\)( *)), and we can derive

(5.1 [ fem(@(a, )ds = 0
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for any (z,¢) € Py from the fact that Ry is a smoothing operator. Noticing this equation
holds for any 7, we can conclude that every orbit of ¢{¥ is closed as follows. Suppose
there exists a orbit y(s) = ¢M((x, £)) which is not closed. Given any compactly supported
function g and any K > 0. Then, there exists ry € C*(P) as the principal symbol of a
pseudo-differential operator R) such that

ra(1(s)) = g(s) + h(s),

where h € C®(R) with ||h|| < ||g]lec and supph N [—K, K] = ¢. Here we notice that
H), is constant along the orbit y(s). The equation (5.1) turns out to

[ F©)g(s)ds + [ Fls)h(s)ds = 0.

By letting K go to infinity, we get
/_Oo f(s)g(s)ds = 0.

This implies f =0 and also f = 0. This, however, contradicts the fact that (5.1) holds
for f # 0. Thus we have shown that every trajectory of the Hamiltonian vector field X
is closed. To complete the proof it remains to prove the following lemma.

Lemma 5.4. Every orbit of the flow of (Px, 0, Hy) is closed if and only if every orbit
of the flow of (P, {2, \/EA) is closed.
Proof. Note that the flows by 1/ H, and H,, are both contained in each level manifold

E.:\Hy=c (a positive constant). Let X and Yy be Hamiltonian vector fields associated
to \/FA and H,, respectively. Since dyV Hy = (1/2\/§A)dHA, we have Yy = 2¢X), on E..

Hence, the traces of the associated integral curves are the same. O
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