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Abstract
We study harmonic maps of nonorientable surfaces into complex Grass-
mannians. J. C. Wood coded a factorable harmonic maps of a Riemann
surfaces into a complex Grassmannian by a sequence of holomorphic
maps of the surface into Grassmannians. We investigate codes of har-
monic maps of nonorientable surfaces. Especially the degrees of codes
are studies.
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§1. Introduction

The construction of all harmonic maps from the two-sphere to a complex
Grassmannian was discussed by many authors(see, for example, [3,5,9,10, 11,
12]). Especially, J. C. Wood [12] gave the explicit construction of all harmonic
maps S? — Gi(C™). In the present paper, we shall invesitigate harmonic maps
of nonorientable surfaces into a complex Grassmann manifold Gx(C™). We deal
with a nonorientable surface M which is a quotient of a Riemann surface M
by the equivalence relation z ~ w if and only if w = I(z), where I is an anti-
holomorphic involution of M with no fixed point. Let # : M — N be the
natural projection. A necessary and sufficient condition for a map ¢ of M into
a manifold N to be factored as ¢ = ¢ - 7, where ¢ is a map of M into N, is
that, ¢(I(p)) = ¢(p) for each p € M. Let g be a Riemannian metric compatible
with the conformal structure of M. Then there exists a Riemannian structure
g on M such that 7 is locally isometric. The assignment ¢ — ¢ is a bijective
correspondence between harmonic maps ¢ : M — N with ¢-I = ¢ and hrmonic
maps ¢ : M — N. We study harmonic maps ¢ : M — Gi(C™) with ¢ - I = ¢.

If M = 52, we identify S? with CU{co}. The antipodal map is an involution
given by I(z) = —1/z. The quotient space is the projective plane P%. If a
harmonic map ¢ : S? — S?™ satisfies-¢ - I = %¢, there corresponds the map
¢ : P? — P?™_ N. Egiri [6] studied these maps.

Let ¢ : M — Gi(C") be a harmonic map and é be obtained by some
reduction/extensin. In §2, we show ¢ - I is obtained from ¢ - I by the natu-
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rally corresponding reduction/extension. J. C. Wood [12] coded a factorable

harmonic map ¢ : M — Gy(C™) by a sequence of holomorphic maps from M
into complex Grassmannians. In §3, we shall get the necessary and sufficient
conditions about codes under which harmonic maps ¢ satisfy ¢ - I = ¢. In the
final section, we investigate the degrees of the codes of harmonic maps ¢ with

¢-I=4¢.
§2. Preliminaries

For the definition and basic properties of harmonic maps into a complex
Grassmannian, see [4, 11, 12]. For any integers n,k with 0 < k < n, let
G (C™) be the Grassmannian of complex k-dimensional subspaces of C” with
its standard Kahler structure. Let M be a Riemann surface with antiholomor-
phic involution I. We identify a smooth map ¢ : M — G4(C™) with the smooth
complex subbundle ¢ of rankk of the trivial bundle C™. Denote by ¢ -1 the

subbundle with fibre qS I = ¢I( )

¢. It is evident that (¢ - I)* = ¢ - I. Let @ denote the flat connection on
C™ and <, > the standard Hermﬁlan metric. A subbundle ¢ inherits a met-
ric <, >¢,andconnect10n\7¢ by < v,w >4= <vw>vw€¢ z € M and
(Ve)oV =748 V,w € TM,V € C®(¢). We give ¢ its Koszul- Malgrange
holomorphic structure. It is known that q’) is a holomorohic (resp. antiholo-
morhic ) subbundle of C" if and only if ¢ is a holomorphic (resp. antiholomor-
phic) map. Moreover, it is called harmonic if ¢ is a harmonic map.

Let ¢ and ¢ be mutually orthogonal subbundle of C". Denote by 9Dy the
subbundle with fibre ¢_+¢ atz € M. Let /i' : T1’0M®£ — 1) be the global
0’-second fundamental form of ¢ in ¢ @ . Then (A% y)wv =m0V, where
we T M v e ¢, and V is a smooth extension of v. The global §"-second
fundamental form /1;; v : T M @ ¢ — ¢ is defined similarly. Choose a local
holomorphic vector field Z on M, for example Z = /82 for some local complex
coordinate z and denote the representatives (A )z and (Aqs v)z by Ay, and

A" ¢, respectively, which are again called 6'— and 8"- second fundamental
forms. Particularly, the second fundamental forms of ¢ in c”, = A’ oL and

Let Q"' be the orthogonal complement of

Ag = A;; 4. are immportant. These are called the fundamental collineations
of ¢ in [5, 11]. We also put Ay = (A s)z and A} = (A”)Z Note that ¢ : M —
Gk(C") is holomorphic (resp antlholomorphlc) if and only if Ay = 0 (resp.

4, = (0 . Moreover, ¢ is harmonic if and only if A’ p—¢is holomorphic or
Ay ¢ — é_ is antiholomorphic (see [4,12] ).
Suppose that ¢ : M — Gi(C™) is harmonic. Then the §’-Gauss (resp.
0"-Gauss) bundle G'(¢)(resp. G"(¢) is the holomorphic subbundle ImAj of ¢
(resp. antiholomorphic subbundle [ mAg of ¢. These bundes are harmonlc We

define GO)(9), (i € Z) by GO(9) = ¢, GO = G(GE-D)(9),(i 2 1), ) =
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G//(G( z‘+1)) (z > 1)

If ¢, 1 are subbundle of C" with ¢ C ¢. Then 1/) N¢ is denoted by ¢S ¢. Let
¢ : M — Gx(C™) be harmonic. Assume that o C é and BC¢ satisfy the &'-
replacement (resp. 8"'-replacement) conditions, that is, a is holomorphic(resp.
antiholomorphic) subbundle of ¢ and 3 is holomorphic(resp. antiholomorphic)

subbundle of QJ' with A%(a) C B and Ay, C a ( resp. Ay(a) C B and
Ays C . Then 55_: (¢ © a) @ B is harmonic (see Proposition 2.1 in [12]). The
transformation ¢ — & is called the &-repracement (resp. §”-replacement ) of
the holomorphic (resp. antiholomorphic) subbundle o by §.

Proposition 2.1.Let ¢ : M — Gi(C™) be harmonic. Puty = ¢ - 1. Then
¥ is also harmonic. If a(a C ¢)and B(B C qS ) satisfy the &'-replacement(resp.
0"-replacement) conditions, then a - I(a-I C ¢) and 3 - I(,B IC gé ) satisfy
the 8" -replacement(resp. O'- replacement) conditions, and qS (poa)®pB and
_—(wea Nep-I satzsfy¢ ¢- 1

PrOOF. Assume that o and § satisfy the &'-replacement conditions. For a
local holomorphic vector field Z, we can put dI(Z) = aZ and dI(Z) = aZ. For
veEa-l,

Ai/',(v) = Tyl(a) -67 = a7r¢.l_(1(x))6z(v I) = aA’ (’U)
where V € C*(a - I) is a smooth extension of v which is also regarded as an
element of a ;). As Ay(v) € ﬁf(:c) = -1 , ws we show that
w(@.I) C B-I. Similarly we have Ay, (8 1) C a L. It is evident that
é = ¢ - I. We can show tha dual statement similarly.

Let @ is a holomorphic subbundle of kerA, ! +. Then with B =0, it satisties

the replacement conditions. The resulting harmomc bundles qS = ¢ ®a and

¢ = ¢ © a are said to be the extension of ¢ by the holomorphic subbundle
d)‘L by the holomorphic subbundle @. Similarly for a holomorphlc subbundle
a of kerA , we have harmonic bundles ¢ ¢ © ¢« and ¢ = ¢ P «, the
eductlon/ extension by a holomorphic subbundle @. There a dual notion of
reduction/extension by an antiholomoarphic subbundle. J. C. Wood[12] codes
these eight types of reduction/extension as follows;
(1)35_: _gél ©a, (2)¢ = ¢ ® afor a holomorphic subbundlea C m;,.l.,
(3)(}_2 q_S“L ©a, (4)¢ = ¢ ®afor a antiholomorphic subbundlea C _]Q_@_T_'_A_gi.,
(5)é =¢0a, (6)¢= QJ' @ « for a holomorphic subbundlea C l_c_e_r_fi:z,,
(7)%: $0a, (8)¢ = Q‘L @ a for a holomorphic subbundlea C Mg

Moreover, J. C. Wood gave the one-to-one correspondence between holo-
morphic maps f : M — G,(C") and reductions/extensions ¢ — ¢ of type ¢
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and said that ¢ is obtained by the teduction/extension coded by (£,¢) Ifais
a holomorphic subbundle of kerA’,(resp. kerA’,., o - I is an antiholomorphic

subbundle of kerAy ; (resp. kerAy ;). The dual fact is also true. Hence we
have

Lemma 2.2. Let ¢ : M — G (C"™) be harmonic. Put¢y = ¢-1. Let é(resp.

_zZ_ be obtained by reduction/extension coded by (f,() (resp. (f-I,{*), where
*=3,2=4,3=1,4 =25 =7,6'=8"7" =58 =6. Thenyp=¢-1I.

§3. Factorizations

If a hrmonic map ¢ : M — G (C™) is factorable by reduction and extensions
(see Definition 3.1 in [12]), J. C. Wood found a sequence ((f1,¢1), - -, (fr,¢r))
of holomorphic maps f; : M — G,(C*) and integers (i € {1,-- -, 8} such that
aubbundles ¢q, - - -, ¢, = ¢ are given iteratively as follows: ¢g = 0, for ¢ > 1, ¢;
is obtained from ¢;_; or (¢; ) by performing the reduction/extension coded
by (f;,¢;)(see Theorem 5.1 in[12]). We shall say that ¢ is coded by the sequence
((f1,¢1), -+, (fr,¢r)). From Lemma 2.2, we obtain

Proposition 3.1. Let ¢ : M — Gg(C™) be harmonic which is factorable by
reduction and extensions. Assume that ¢ is coded by a sequence ((f1,(1),: -,
(fr1¢r)). Then ¢ satisfies ¢ -1 = ¢ if and only if ¢ is also coded by the sequence

((fl ‘IaC’lk)"'W(fr'I:C:))'

Let ¢ : M — Gi(C™) be harmonic. Let q; be a holomorphic extension
of G'(¢) of a subbundle of rank s. (see Example 2.7 in [12]). It is also a
reduction of ¢ of type 3(see Lemma 2.11 in [12]). Put t = rank kerAy. For
any s € {0,1,---,t}, there is a cononical one-to-one correspondence between
holomorphic maps f : M — G4(C") and holomorphic extensions qS of G'(¢)
by subbundle of rank s (see Lemma 4.13 in [12]). In this case, ¢ is said to
be the holomorphic extension of G'($) coded by f. ¢ is a harmonic map of
finite 8"-order if G(-")(¢) = 0 for some positive integer r (see Definition 3.7
in [12]). Let So be the set of all sequences (fi,--, fe) of holomorphic maps
fi : M — G,,(C}), where 0 < s; < t;, which give harmonic subbundles [
0 < i < £ of C" iteratively by :¢9 = 0, , ¢; obatained from ¢;_; as the
holomorphic extension of G'(¢;_1 coded by f; and lcerA'ti_1 =0,0<< 4.
Then the assignment (fi, -+, f) — ¢ = ¢¢ is a bijection between Sp and the
set of all harmonioc maps ¢ : M — Gi(C"™) of finite §”-order( see Theorem
5.2 in [12]). The hrmonic map is said to be coded by the sequence (fi,---, fe)
of holomorphlc maps. Dually, we have an antiholomorphic extension of G"(¢)
of rank s’ coded by an antiholomorphic map g : M — Gy (C*), where t/ =
rank kerA!,. Moreover, dually all harmonic maps of finite 0’-order are coded
by unique sequences (91,"-, ge) of antiholomorphic maps. Let ¢ : M —
Gy (C™) is harmonic map of finite J-order and 0"-order. Let ¢ be coded by a
sequence (f1,-- -, f¢) of holomorphic maps and coded by a sequence (g1, -, ge')
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of antiholomorphic maps. We shall call (g1, -, g¢) the polar of (f1,---, fe). If
the polar of (f1, -+, fe)is (fi-I,--+, fe-I), (f1,- -+, fe) is said to be symmetric
with respect to I. Let Sy be the subset of Sy whose elements are all sequences
(f1,--+, f¢) symmetric with respect to I. We can see with ease that ¢ is a

holomorphic extension of G’'(¢) coded by f if and only if qS I is a holomorphic
extension of G’(¢-I) coded by f-I. Assume ¢ : M — G (C™) satisfies ¢-1 = 4.
Then if phi is a harmonic map of finite §’-order if and only if it is of §"-order.
In this case, ¢ is coded by the sequence (f1,- - -, fe) symmetric with respect to
I. Conversely, if ¢ is coded by the sequence (fi, - -, f¢) symmetric with respect
to I, it satisfies ¢ - I = ¢. Thus we have

Theorem 3.2. The assignment (f1,---,fe) — ¢ is the bijection between
the subset Sy and the set of all harmonic maps ¢ : M — G(C™) of finite
0" -order(or &'-order) with ¢ - I = ¢.

if M = 52, all harmonic maps ¢ : M — G(C™) are of finite 8"-order. Par-
ticularly, for a full harmonic map ¢ : S — C P2, there is a unique holomnorphic
map, called the directrix curve such that ¢ = GU)(f), for some i, 0 <i < n.
G™)(f) is the polar of f (see [7]). Thus we get

Corollary 3.3. Let ¢ : S? — CP™ be a full harmonic map. Let f be
the directriz curve of ¢. The polar of f is G™(f). The harmonic map ¢
satisfies ¢ - I = ¢ if and only if n is even, that s, n = 2m, ¢ = G™(f) and
G(fy=f-1

Remarks. (1) The author was imformed by N. Egiri that the above corol-
lary has been obtained by J. Bolton, L. Vrancken and L. M. Woodward in [3].
(2) For a harmonic map ¢ : M — S*", N. Egiri[6] showed that ¢ satisfies
¢ - I = +¢ if and only if its directrix curve f satisties f(z) = +22m f(1(2)). (3)
J. Bolton, G. Jensen, M. Rigoli and L. Woodward investigated harmonic maps
of S? into CP™ with induced metrics of constant curvature. They determined
such harmonic maps ¢ with ¢ - I = ¢ explicitly(Theorems 5.2 and 5..4 in [2]).

We shall construct some examples of harmonic maps ¢ of S? to CP?™
with ¢ - I = ¢. Let £ : S2 — CP?™ be a full holomorphic curve. Con-
sider S? covered by isothermal coordinates given by stereographic projections.
Then I(z) = —1/Z. We can represent Z by a polynomial £ : €' — c2mtl
given by £(z) = > a;2'. Particularly, we deal with the polynomials con-
sidered by J. Barbosa [1]: €xm(z) = a0 + Z?;n;l Ak—myizt ™ 4 age2?F
k > m. Let denote by «Sj be the j-th derivative of £,,. Put £*(2) = apz?* +
Zzzml L ag_ mai(—=1)F~m¥iz=ktm=i 4 4., Let ®m be the harmonic map such
that its directrix curve is £ and @y, = G(m)(ékm) Then ®y,, - I = @ if and
only if £* is the polar of £k, that is, for j = 0, k—m+1,k—m+2,- k4+m—1,
< &, & >=0, where <,> is the Hermitian inner product of 6’2"""1 From
< §k+m Lex >= 0, we get < apym-1,a2c >= 0. Inductively, we have
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< a;,a; >= 0,7 # j. Moreover, we get that k — m is even and that for

. 2k k—m+4i—1
2:1’”"2m_1’”ak+m_i”2:(k—m+i)( k—m )Hazkllz,

Ilao IPP= (2 (=) ( k—m+i ) ( e ) — 1) |} aar |I*

k—m
4. The energy and the degree

For any smooth map of a closed Riemann surface M to G(C"), we define
the (1,0) and (0,1) energy integral(see [12])

E’(¢):/ | 8¢ |? dM, E”(d)):/ | 0¢ |2 dM.
M M
Then they satisfy

(1) E'(¢) — E"(¢) = dndegp = —4me1 ().

Let ¢ be obtained by replacing a(C ¢) by B(C ¢) where o,  satisfy the
0'-replacement conditions. In [12], J. C. Wood got

(2) E'($) - E'(¢) = —4mei(B), E"($) — E"($) = —4nCy ().

Dually, if «, ( satisfy the 8”-replacement conditions, then

(3) E'($) — E'(¢) = dmei(a), E"(¢) — E"(¢) = 4nC1(B).

As ¢t is obtained by &'-replaceing of ¢ by ¢+, we have E'(¢%) = E'(¢) +
4mei(9), E"(¢*) = E"(¢) — 4nC1(¢). Since the antiholomorphic involution I
is an isometry, we have E'(¢ - I) = E'(¢), E"(¢-I)= E"(¢). Hence we get

Proposition 4.1. Let ¢ : M — G§(C") be a smooth map with ¢ - I = ¢.
Then E'(¢) = E"(¢) and degd = 0.

Let ¢ be a holomorphic extension of G’ (¢) coded by a holomorphic map f.
Then G'(¢) — & is the &'-replacement of &« = 0 by 8 = f (see Lemma 2.11 in
[12]), & — G'(#) is the 0'-replacement of & = ¢ by B = G'(¢$). Hence, using
(2), we obtain

Lemma 4.2. Let ¢ : M — Gx(C™) be a harmonic map. Let é be a
holomorphic extension of G'(¢)coded by a holomorphic map f. Then we have

E'(§) = E'(¢) — 4ner(G'(9)) — 4mer(f), E"(9) = E"(¢) — dmes(9).
Let ¢ be &'-irreducible. We consider the fundamental collineation Ay : ¢ —
G'(¢). Taking the k-th exterior power of each bundle, we get the holomorhic

bundle map det Ay : /\'c ¢ — /\k G'(¢) of line bundles. Then detA} has only
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isolated zeros. The nunber of its zeros, counted according to multiplicity, is
called the ramification index of detA) and is denoted r(detA'qS). In [11], J.
Wolfson obtained the Plucker formula for harmonic maps of M to G (C™)

(4) ¢1(G'(9)) = c1(9) + r(detAy) — k(29 — 2),
where g is the genus of M.

Let a harmonic map ¢ : M — Gx(C™) be coded by (f1, -, f¢) of holomor-
phic maps. Let ¢, (1 =0,1,---,£) be the harmonic bundles given iteratively
by :¢, =0, for ¢ > 1, ¢; is the holomorphic extension of G'(¢, _,) coded by f;,

and ¢ = ¢;. Let 71 be the ramification index of detAj, : /\k ¢ — /\]c G'(¢).
Then using Lemma 4.2 and the formula (4) iteratively, we get

-1 £ -1
(5)  E'(¢)=—4n(D_ei(8,)+ Y eai(f) + D ri — k(£ —1)(29 — 2)),
i=1 i=1 i=1

-1
(6) E"(¢) = —4m ) ei(9,)-
=1

We shall call r = Zf;ll r; the total ramification index of ¢. If r = 0, ¢ is said
to be totally unramified. Using the formula (4) again iteratively, we have

i

@ r(8) = Yo er () + Yory  K(i = 1)(29 ).

j=1

Hence, it follows

-1 -1 -2
®) Y er(d) = (= Der(f,) + > (E—i— Vi — k(€= 1)(€ = 2)(g — ).
i=1 i=1 1=1

By taking account of Proposition 4..1, we obtain from(5) and (6)

Theorem 4.3. Let a harmonic map ¢ : M — G(C™) be coded by (f1,- -, fr)
of holomorphic maps. if ¢ satisfies ¢ - I = @, 1t holds

£
Z deg(f,) = r— k(£ —1)(2g - 2).

where r is the total ramification index of ¢ and g is the genus of M.



36 Toru ISHIHARA

Corollary 4.4. Let ¢ : S? — CP?™ is a harmonic map with ¢ - I = ¢. Let
f be the directriz curve of ¢. Then degf = 2m + r.

Hence if ¢ is totally unramified, degf = 2m. N.Egiri determined the har-
monic map ¢ : S? — S with ¢ - I = +¢ whose directrix curve f satisfies
degf = 2m (see Corollary 4.1 in [8]). In this case, we have the corresponding
harmonic map ¢ : P? — P?™(1).

Corollary 4.5(Egiri [6]). Let ¢ : S? — S?™ be a totally unramified
harmonic map with ¢ - I = +¢. Then the corresponding map ¢ : P2 — P*™(1)
is the standard minimal immersion of P? into P?™(1).
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