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Abstract

Firstly, the fundamental equality of Darboux transformation of the differential operator
H(u)= — ¢*+u is proved based on the Kupershmidt-Wilson factorization of the
associated A-operator A(u)=0""-(2 'u + ud —47'¢%. Secondly, elementary algebraic
properties of the Darboux transformation are studied with the aid of A-operator. Finally,
as an application of the fundamental equality of Darboux transformation, solutions of
the higher order KdV equation are constructed.
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1. Introduction

In this paper we study the Darboux transformation of the differential
operator

H(u) = — 0% + u(x),

where u(x) is a meromorphic function defined in the region £ of the complex
plane and 8 =’ =d/dx. The Darboux transformation of H(u) is defined as
follows; Suppose ¢(u)eker H(u)\ {0} and put g(x) = dlog ¢ = ¢'(x)/P(x) then
H(u) is factorized as H(u) = A, - A_, where A, = £ 0 + ¢(x), and 4 - B denotes
the product of the operators A and B. Interchanging the factors 4, we obtain
the another operator Hwu)=A_-A,. One immediately verifies

H(u) = — 0% + u(x) — 20% log $(x).
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The operator H(u) and its coeflicient
u*(x) = u(x) — 20% log ¢(x)

are called the Darboux transformation of H(u) and u(x) respectively.

The idea of this approach was originated by Darboux [3]. After that,
Burchnall and Chaundy [1] developed a similar method in their study of
semi-commutative operators. Subsequently, Crum [2] used this method as an
algorithm for adding or removing eigenvalues of Sturm-Liouville operator.
Recently, there are many applications of the method of Darboux transformation
to the soliton theory [6].

The first aim of the present paper is to clarify certain algebraic properties
of Darboux transformation of H(u) by using the A-operator

Aw)=0"1- (%u’(x) + u(x)0 —;53’).

More precisely, we investigate several criteria for u(x) such that u*(x) is the
rational function of u(x) and its derivatives.

On the other hand, the A-operator generates the infinite sequence of the
differential polynomials Z,(u), ne Z,, which are called the KdV polynomials. In
[8, p623, Theorem 3.2], the fundamental equality of the Darboux transformation

B* Zn(u) = B+ Zn(u*)

is proved, where B, = + 0 4+ 2¢q(x). The second aim of the present paper is to
give the alternative proof of the above equality based on the Kupershmidt-Wilson
factorization of A(u).

In [8], rational function solutions of the nonstationary higher order KdV
equation are constructed as an application of the fundamental equality of the
Darboux transformation. The third aim of the present paper is to generalize
this method and construct some class of solutions of the nonstationary higher
order KdV equation.

The contents of this paper are as follows. Section 2 is devoted to
preliminaries such as KdV polynomials, the notion of A-rank and A-
algorithm. In section 3, the fundamental equality of Darboux transformation is
proved with the aid of the Kupershmidt-Wilson factorization of A(u). In section
4, the notion of rational Darboux transformation is introduced. In section 5,
the rational Darboux transformation with spectral parameter is discussed when
rank , u(x) is finite. In section 6, we study the A-rank of Darboux transformation.
In section 7, solutions of the nonstationary higher order KdV equation are
constructed. A part of the present work is announced in [11].
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2. Preliminaries

In this section, the necessary materials are summarized from [10].

Suppose that u(x) is a meromorphic function defined in the region
Q2. Throughout the paper, we assume that u(x) is not constant in Q. Let .o/, be
the differential algebra of differential polynomials in derivatives u" = (d/dx)u(x),
jeZ, of the meromorphic function u(x) with constant coefficients. Note that
o/, can be simultaneously regarded as an integral domain, i.e, a commutative
unitary ring without zero devisor. We can uniquely define the infinite sequence
of differential polynomials Z, (u)e.«/,, ne Z, by the reccurence relation

Zn(u) = A(M)Zn—l(u)’ nEN

with Z,(u) = 1. They are called the KdV polynomials. Let V(u) be the vector
space over the complex number field C spanned by Z,(u), neZ_ ;

Vi) = U CZ,(u).

neZ +

When dim¢ V(u) < oo, the A-rank of u(x) is defined by
rank 4 u(x) = dim¢ V(u) — 1.
If n=rank,u(x) < oo, V(u) is spanned by Z,(u), Z,(), -, Z,(u);
Vu) = (—T} CZ;(u).
j=0
Therefore there uniquely exist a,(u), v=20, 1,---,n such that

14

Z,o () = ) a,)Z,(u(x).
v=0
We call a,(u), v=0, 1,---,n the A-characteristic coefficients of u(x). On the other
hand, the following expansion formula of the KdV polynomial holds: Define
the coefficients «™, v =0, 1,---,n by the recurrence relation

1, j=n
L )+ =12, n— 1
! (2n)! .

224(n /=0

then

(1 Z (u(x i S Z (u(x)) A"
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holds. By (1), one has

Viu+ A) = V(u), LeC.
Therefore, if n = rank ,u(x) < oo then
(2) rank , u(x) = rank , (u(x) — 4)

holds for any 2e C. Hence there exist the A-characteristic coefficients a,(u— 4),
v=20,1,---,n of u(x) — A The coefficients a,(u—4), v=0,1,---,n are the
polynomials of degree n —v + 1;

n
a,u—A)y= —al O 4 N aWa ()i
u=v

Moreover put

() Fix, 2) = Z,u) = ) = ¥ au = DZ,- (o) — A,
then F(x, 4) is not identically zero for any Ae C. Put
A(A; u) = F(a, A)* — 2F(a, AF.(a, 1) + 4(u(a) — A)F(a, 1)?
and
4) I'(u) = {1€C|4(Z; u) = 0},
then I'(u) #@. Moreover, since A(4;u) is the polynomial of degree 2n + 1,
#I'(u) <2n + 1 follows. If 1;,€l(u), j=0,1,---,2n then
fle 1) = Flx, 47
are the corresponding eigenfunctions of the eigenvalue problem of
(H() — 2,)f(x) = 0.

The A-algorithm is such a method to study the problem related to the
spectrum of the operator H(u) on the basis of the algebraic properties of the
corresponding A-operator A(u) as above.

3. The proof of the fundamental equality

In what follows, we fix the fundamental system f,(x), v = 1, 2 of the solutions
to the differential equation

H(u) f(x) = — f"(x) + u(x) f(x) = 0.
Let «e C* = CU {0} and put
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dlog (fi(x) + afz(x)), aeC

q(x;a):{E)logfz(x), o= o0.

Then H(u) is factorized as

where
A4(0) = %0+ q(x; a).
The Darboux transformation H(u; «) of H(u) is defined by
H(u; a)=A_(a)- A, (x).
Put
uy = u*(x; o) = u(x) — 2¢'(x; a),
then H(u; «) = H(u¥) follows. On the other hand, put
Bi(0) =+ 0+ 2q(x; o),

then Kupershmidt and Wilson [5] discovered that the A-operators A(u) and
A(u¥) are factorized (K-W factorization) as

(5) A(u):;a-l-m(a)-a.B_(a)
and
(6) A(u;‘:)zia‘l-B*(oc)-5~B+(oc).

The linear operators B, (x) can be formally regarded as the Fréchet derivatives
of the Miura transformations g*> + ¢’ =u and g> —q =u*. In [7], the study"
on the Miura transformation from this standpoint of view is developed by the
second author of the present work.

First we show the following.

Lemma 1. For any ae C*, the identities

(7) B ()l =B_(2)1
and
(8) Bi(x):07' B_(¢)=B_(2)-8""- B, ()

are valid.
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PROOF. One readily verifies
B (x)1 =2qg(x; a).
Hence (7) follows. Moreover, by direct calculation, we have
Bi(@): 07" Bi(2) = — 0 +4q(x; 00" - q(x; ).
Hence (8) follows. This completes the proof.

The following identities were obtained by the first author in [8]. Since it
plays fundamental roles in the study of Darboux transformation, we want to call
it the fundamental equality. Here we give a simplified alternative proof based
on the K-W factorization.

Theorem 2. The identities
9) B_(0)Z,u) =B (1)Z,(u})
hold for any oe C* and neZ, .

PrOOF. Note that Z,(u) = Z,(u¥) = 1. By lemma 1 and K-W factorization
(5) and (6), we have

B_(0)Z,(u) = B_ (o) - A(u)"Zo(u)

)"B_w) 0 B0 B_())' Zo(w)

(B_(@)- 07" By () 0)'(B_(0)1)

> (By(2)- 071 - B_(2) - 0)"(B (1))
) B (o) (07" B_(0)- 0 B, ()" Zo(uf)

B () - AuF)' Zo(uF)
= B (0)Z,(u).

This completes the proof.

4, Rational Darboux transformation

We say that the operator H(u) admits the rational Darboux transformation
if and only if there exist ¢(x)eker H(u)\ {0} such that
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w*(x) = u(x) — 20% log ¢(x)e A,

where . is the field of quotients of the integral domain .<7,.
Since the Darboux transformation of u(x) is the I-parameter family
u¥ = u*(x; o) = u(x) — 2¢'(x; o), we consider the set

(W) = {oe C*|u*(x; o) e A, .

While y(u) itself depends on choice of the fundamental system f,(x), v=1,2 of
solutions, the cardinal number #y(u) does not depend on it. Let %,(€2) be the
set of all meromorphic functions u(x) defined in € such that #y(u) >k for
ke N. Moreover let Z_(£2) be the set of all meromorphic functions u(x) defined
in Q such that y(u) = C*. 1In this section we investigate several criteria for
u(x)e# .. (£).

Since

u*(x; o) = u(x) — 24'(x; o)
= —u(x) + 2q(x; %)’
it follows that u*(x; «)e A, if and only if g(x; a)e 7,,.

Put

. :fz(x)
7053 4 f1(x) .

Of course, n(x;u) depends on choice of the fundamental system f (x),
v=1,2. However, the property “n(x; u)e #,” does not depend on it.

First we have the following, which is the most fundamental criterion for
u(x) to belong to Z_(£2).

Proposition 3. The nontrivial meromorphic function u(x) defined in Q belongs
to R () if and only if n(x; u)e.x,.

PROOF. One has
Wl f
(10) wicia = )
Ji1(x)
where W(f, g) = fg' — f'g is the Wronskian. Hence one verifies

F00) = en'(x; u) 2

and

() = en'(x; w)

tal—

n(x; u),



8 . Mayumi OHmiYA and Yordan P. MisHEV

1
where ¢ = W(f;, f,)?. Therefore we have

n"(x; u) an'(x; u)

_ , aeC
2n'(x;u)y 14 an(x; a)

11 (x; o) =
) R n'(e;u) on(x;u)

200wl w)

Firstly assume that n(x; u)e#,. Then, by (11), q(x; o)e.#, are valid for any
aeC*. Hence u*(x; o)A, holds for any aeC*, ie, u(x)e#,(L2). Secondly
assume that u(x)e Z,(22). Then g(x; «)e #, holds for any ae C*. Particularly,
q(x;a), a =0, 1, o belong to J#,. Hence

q(x;OO)—q(x;O):lJr 1

e,
q(x; 1) —q(x; 0) n(x; u)

follows, i.e, n(x; u)e A,. This completes the proof.
Note that the above proof simultaneously implies the following,
Corollary 4. If k= 3 then R,(Q2) = R.,(L2) are valid.

On the other hand, if one cannot decide whether 5(x; u) itself belongs to
A, or not, the following criterion 13 effective.

Proposition 5. If u(x)e #,(2)\ {0} and ' (x; u)e A, then u(x)e R, (2) holds.

Proor. By the assumption and (10), f;(x)*e.#, follows. Suppose that
o, fex(u) and o # f. We can assume a, ff # oo without loss of generality. By
direct caluculation, we have

= AWy, f3) |
F1)2 (1 4+ on(e; w) (1 + Br(x; u))

q(x; a) —qlx; f) =

Hence (1 + an(x; u))(1 + pn(x; u))e A, follows. Therefore, by differentiating
(1 + an)(1 + Bn), one verifies

@+ B+ afnle; Wn'(x; we A,

Since #'(x; u)e #,\ {0}, n(x;u)eA, follows. Hence, by Proposition 4, u(x)e
R (Q) i1s valid. This completes the proof.

The following is useful for investigating the rational Darboux transformation
of H(u) with spectral parameter when rank , u(x) < oo, which is discussed in the
next section.

Proposition 6. The nontrivial meromorphic function u(x) defined in Q belongs
to #.(Q) if and only if there exists F(x)e A\ {0} such that
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(12) F/(x)? — 2F () F"(x) + 4u(x) F(x)> = 0
and 0~ H(F(x) Y)eA,.

Proor. First suppose u(x)e#.(£2). Then, by Proposition 3, n(x; u)e ¥,
holds. Since f;(x), f,(x) are linearly independent, #'(x; u) does not identically
vanish, we can set

w
Fg = WU L)
n'(x; u)
1
F(x)e %, holds. By (10), F(x)?eker H(u) follows. Then, one verifies (12) by
direct calculation. Moreover we have

1
a—l F =1y — 8—1 ’ :
(F(x)™) W 1) (' (x5 u))

= M + Const_

W(f 12)

Hence 0~ }(F(x)”')e#, follows. Conversely put

S

filx) = F(x)

and

1
f(0) = F(x)? 07 (F(x)™1),
then, by (12), f,(x), v =1, 2 turn out to be the fundamental system of solutions
to Hu)f = 0. Since
f2(x)

1.0 =07 (F(x)")eA,,

nix;u) =

u(x)e #,(Q) follows. This completes the proof.

Next we investigate some elementary examples. Put

wiy =D ey,

X

and let us consider the Euler differential equation

— f"(x) + ug(x) f(x) = 0.
The fundamental system f,(x), v = 1, 2 of solutions of this equation are as follows;

1
if ¢#1 then fi(x)=x% and f,(x)=x""%if =3 then f(x)=x? and
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1
f>(x) = x?log x. Hence we have

n(x; ”g) = {

xl_zé,

U
N
(ST ST

log x, &=
Moreover suppose £eZ\ {0, 1} then, by direct calculation, we have

E—1
M ug) = x' 7% = —;(é(;_ 1)> ui(x)us(x) 2 e oty

Hence, if £€Z\ {0, 1} then
1
ué(x) - é(é )eg?oo(c)

x2

2u—1
follows. Next suppose that ¢ = ﬂz , ne Z\ {1} then we have

. _ —2u __ 4 g u
nix; u) =x" "= <(2M—1)(2M“3)> us(x) e A,

Hence ueZ\ {1} then

2u—1)Q2u—-13
i = I3 g

follows. Moreover one easily verifies

Furthermore, one can see casily that if e C\3Z then u.(x)e#,(C)\ %, (C)
follows, where 3 Z = {{n|neZ}. The theory of Darboux transformation of the
above rational functions are extensively studied by Duistermaat and Grunbaum

[4].

5. Rational Darboux transformation with spectral parameter
In this section, we consider the Darboux transformation of H(u) with spectral

parameter A, when rank ,u(x) < oo.
First we fix the fundamental system f,(x, A), v =1, 2 of the solutions of the

eigenvalue problem
(H(u) — 24) f(x) =0, ieC.

Put
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dlog (fi(x, 4) + afy(x, 4)),  a#
dlogf,(x, 4), o= o0,

(13) qlx, A; o) = {

and
uf , =u*(x, 4 0) = u(x) — 24'(x, A; ).

We call H(uf, and uf, the Darboux transformation of H(u) and u(x) with
spectral parameter respectively.
Now suppose

n = rank , u(x) < oo

and let a,(u—4), v=20, 1,---,n be the A-characteristic coefficients of u(x) — A
Define F(x, 2) by (3) and the set I'(u) by (4). As explained in Section 2, we
can set as follows;

[

(14) 1x, }vj):{F(x, )2, v=1

[S1

F(x, 2)?07Y(F(x, )7, v =2

for ;€ I'(u), j=0,1,---,2n. Note that F(x, 4;) are the differential polynomials,
Le, F(x, A)ed, j=0,1,---,2n. One verifies
F'(x, 2)F(x, A) — F'(x, 4;)*
F(x, A)? '

u*(x, A Q) = u(x)

Thus we have the following.

Proposition 7. Suppose n = rank ,u(x) < oo then u(x) — ;€ #,(Q) holds for
any i;el’(u), j=0,1,---,2n.

Since
nix;u—24)=0""(F(x, A)™h

and #,_,= A, for any /AeC, one has immediately the following from
Proposition 3.

Proposition 8. Suppose n =rank,u(x) < oo and i;el(u) then u(x)—/;
belongs to R, (Q2) if and only if

O"NF(x, ) e,
On the other hand, since
n'(x;u—2)=F(x, ) ‘e,

the following fact follows from Proposition S.
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Proposition 9. Suppose n = rank ,u(x) < oo and u(x) — ;€ R,(Q2) for some
A;eI'(u), then u(x) — A;e R, (82) follows.

6. A-rank of u*(x, 1; a)

In this section we investigate rank,u*(x, 4;; «) when rank ,u(x) < co.
Suppose n = rank,u(x) < co and define f,(x, 4;), v =1, 2 by (14), which are
the fundamental system of solutions of
(H(u)*ﬂ,j)f(X)ZO, }ger(u), ]=O> 1,,2”
Moreover, define q(x, 4;; o), j =0, 1,---,n by (13). Put

B (A 0) = + 0+ 2q(x: 4, 2)

then the K-W factorizations
1
Alu — Ay = 16_1 "B (4, @) 0-B_(4;, o)
and
* ] (P
Aty — ) = 5071 B_(42) 0~ BL (4, )

follow. Hence, by Theorem 2, we have

n

(15) Bl @) (Zyir (0 — A~ Y alu— A)Z, (ko — 1)

v=0

= B_(A), 0)(Zysy(u — 2) — io a,(u—3)Z,(u— 1)) =0,

Operating with B_(4;, ) - 0 on the both side of the above from the left, we have

0Zy 4o (UF, 0 — 4j) — Z a,(u — 4)0Z, . (uf, , — 4) =0.

v=0

This implies

Zn+2(“:1kj,a - }~j) -

v

a,(u—3)Z,. (uk,, — i) = Const,

ip=

Hence, by [9, p4l, lemma 5.1],

n+1
Vit —A)= U CZ,uk,—i)= U CZ,uf,, — %)

veZ + v=0
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follows. Thus we proved
dime V(uf,, — 4) <n+ 2,
in other words, we have
rank, (uf, , — 4) < 1 + rank u(x)=n + 1.

On the other hand, by Darboux’s lemma [12, p&8, lemma 1],

hold, where

1
g(x, Aj; o) = S i)+ ah i) #OO
1 —
falx, 2)° S

By the definition of u*(x, 4;; ), one verifies

"

u(x) = u*(x, 4;;

a) — 20% log g(x, 4;; o),

i.e, H(u) can be regarded as the Darboux transformation H(u}, ,) with spectral
parameter. Hence, by the above discussion, one has

n=rank,(u — i) <1+ rank,(u;, , — 4,
in other words,
n— 1 <rank,(uj , — 4).
From (2),
rank su¥, , = rank, (u¥, , — 4)
follows. Thus we proved the following.
Theorem 10. [f n = rank,u(x) < co then
n—1<rank, u*(x, 4;;0) <n+ 1
holds for any 7;eI'(u), j=0,1,---,2n and ae C*.

Crum’s algorithm [2] is based on the above fact.

7. Solutions of KdV equation

In this section, we show that the function u¥, , constructed in the preceding
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section solves the some nonstationary higher order KdV equation by applying
the fundamental equality in Theorem 2.
Put

G(Xﬂ }"J’ O() = Zn+ l(ui,a - /A']) - Z av(u - )‘j)Zv(u:l":j,rx - ;J)’
v=0
then, by (15), G(x, 4;; o) turns out to solve the first order differential equation
G'(x, Aj; ) + 2q(x, 4;; 1) G(x, 4;; 0) = 0.
Hence, if o # co, we have

dlog ((f1(x, 4) + afs(x, 1))*G(x, 4;; 2)) = 0.

This implies that there exist the constants c;(), j =0, 1,---,2n, which rationally
depend only on the parameter a, such that

Cj(o‘)

T (il 4+ afa(xn )

On the other hand, by direct calculation, one verifies

0 S 1N o S1x Ay +afz(x, 4)
%u (X’ /Lj’ OC) - 4W(fl>f2) (fl(X, /‘Avj) + chz(x, )vj))3 ’

G(x, /

Lis

%)

This implies
0 0
di(o) —uf ,=—G(x, 4;; ®),
i )&x " 0x (6, 453 @)

where d;(x) = — c;(0)/2W(fy, f2). By (1), one can explicitly calculate the
coefficients b,(1;), v=0, 1,---,n, which are polynomials in one variable Z;, such
that

G(X, ;Vj; O() = Zn+l(u?t*j.oc) + Z bv(}“j)zv(ufj,a -
v=0

Thus we proved the following.

Theorem 11. If n=rank,u(x) <oo and Z;el(u), then uf, , solves the
nonstationary higher order KdV equation

a a n X
dj(a) - u;tkj.a = (Zn+ l(u;lfj,a) + Z bv(/“j)Zv(u;'kj,a))'
ou dx v=0

Moreover, if 0~ '(F(x, A)”'Ye A, then the solution u%, , belongs to ¥, for any
ae C*.
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The above theorem is the generalization of [8, p626, Theorem 4.2].
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