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Abstract

We consider a condition that arises in the theory of H-surface and
the Plateau problem. This condition is related to the fact that the
Plateau problem is invariant under the conformal transformations of
the unit disk. Therefore some normalization is needed for the confor-
mal transformations. Concerning this condition, we state preliminary
results in this paper.
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§1. Notations

In some problems of H-surface parametrized with isothermal coordinates in
the unit disk, the invariance under conformal transformations of the unit
disk makes it necessary to choose some parameters. Three points condition
1s well-known one to normalize conformal transformations of the unit disk..
But, in certain cases, three points condition does not work well and another
condition is needed (cf. Struwe [4]).

To state this condition, let G be the Lie group of conformal transforma-
tions of the unit disk B, and let identify two-dimensional Euclidean plane
R? with complex plane C. Then a member of G is of the form

(1) g(z)=¢€?

zZ—a .
f‘ o e .
P org e R, a=pe®*ecB
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We identify G with G which is the group of mappings from the unit circle
onto itself. More precisely, any ¢g(z) € G corresponds to
9(z) = 9(2)|op € G.

Furthermore, in polar coordinates, we can identify g(z) with §(#) that satis-
fies
1

g(2) = expi g(0) for z = e?.

Then §(f) is a function on R with the property §(6 +27) = §(0) + 2.
Explicit form of §(6) corresponding to ¢(z) of the form (1) is given by

psin(f — ) )
1—pcos(f—a))

(2) §(8) =0+ ¢+ 2tan™" (
Hereafter we do not distinguish §(z) from g(8), and denote like 3(0) € G.
Let T;4G be a tangent space of G at id € G, then it is easy to see that
(3) TiG = span {1,sin8,cosf}.
Now denote
M={z:2€C(R),z(8+27) = z(f) + 2r, z is non-decreasing },
and
1_ 2n -
(4) M ={!I)€M:/O (x —id)ndd =0,  for any n € TG }.

Here, we do not explain the meaning of 2 € M (see Struwe [4]). Then the
condition is stated as follows. For any z € M, choose §(6) € G such that
zog l(f) e mi.

In the following sections, we consider some basic results relating to this
condition. And in the last section, we will state a result (without proof)
which is equivalent to this condition as an application.

§2. Basic Results

We show, in this section, preliminary results concerning above functions.
First we see the fundamental formula concerning the equation (2).
Proposition 1. For 0 <r < 1, we have

rsind Xt
tan~! (.___) =5 inno.

1 —rcosf —n
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ProoF: The left-hand side of the above equation is an odd function, so it
is expressed only by the terms of sin nf. Then we must show

1 2 o i T
~ [ tan™! _rsinf sinnddf = —.
7w Jo 1 —1rcosf n

This can be shown, for example, by the following computation. Integrating
by parts, we see

2n 3 9 . 2
tan™! (M> sinnd df = —71;/ reosf —r cosnf db.
0 0

1 —7cosé 1 —2rcosf +r?
So it is enough to compute the Fourier coefficient of cosnf of the function

rcosf — r?
n(l — 2rcosf + r2)’

Let z = €, then the above function is reduced to the form

e = ().

Nz

Now it is easy to see that the Fourier coefficient is r"/n. &

For an elegant proof of Proposition 1, see Zygmund [5, p. 2]. From the

above Proposition 1, we obtain the following Fourier expansions of §(6) and
of §'(9).

Corollary 2. For §(8)€ G and §'(0), we have

(5) g0 = 0+¢+22—smn - a),

6) g0 = 1+22p”cosn(9—a).

n=1

ProOF: The equation (5) is a direct consequence of Proposition 1. Now it
is easy to see the equation (6). W

Note that the above expression of §'(#) is exactly the well-known Poisson
kernel. Incidentally, in order to obtain the above relation (6) briefly, we may
differentiate the equation (2) and see that

7(0) = 5
7 ~ 1-2pcos( — a) + p*’

Then the right-hand side of the above equation is the P01sson kernel, so we
obtain the formula (6).
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Next we show the elementary formulas that will be used in the next
section to obtain the formulas for sin §(#) and cos §(0).

Proposition 3. For 0 <r < 1, we have

(1—1r?)sind

o
1 — 2rcosf + r? (1 —r?)_r"sin(n +1)4,

n=0

(14 7%) cosf —2r oy
= (1—r*)> r"cos(n+1)d —r.

1 —2rcosf +r? o

PROOF: Let z = ¢, then the left-hand side of the first equation is reduced
to the form

(1 - T2)(Z2 - 1) — (1 _ TQ)iTn (Zn+1 - 2~(n+1)) '

2(l —rz)(z—71) 2i

n=0

So we have the first equation.
By the same way, let z = €' in the left-hand side of the second equation,
then we have

1/1— - o] n+1 —(n+1)
_2_( rz T z>=(1_rg)zrn(z +2z )—r.

z—r1r 1l-—rz R

This shows that the second formula is also valid. ®

Finally, we show elementary formulas that will be used in the next section.
By the definition, we have

ei& _ peia
1 — pei(ﬂ—cx)
St ) ei0=0) _ 9, 1 p2e=ild=0)
1—2pcos(d — )+ p®
Then comparing the real and imaginary parts of the above equation, we have
- R (L4 p*)cos(@ —a)—2 v
) cos(g(f)) = : cos{a + ¢
(1) coslglh)) = o cosla+9)
(1 =p*sin(@ - a)
1 —2pcos(f@ —a)+p
(1 — p?)sin(f — a)
1 —2pcos(f —a)+p
(14 p*)cos(d — a) — 2p

1 —2pcos(d — a) + p? sin(a + ¢).

expi§(8) = G(e) = e

5 sin{a + @),

(8) sin(§(9))

5 Cos(a + o)
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§3. Further Results

Using the results in the former section, we can show the next formulas.

Proposition 4. Forsin(g()) and cos(§(6)), we have

(9) sin(g(0)) = (1 — p*)cos(a + qb)ip" sin(n + 1)(6 — a)

n=0
0

+ (1 — p*)sin(a + qﬁ)Zp” cos(n + 1)(8 — a) — psin(a + @),

n=0

(10) cos(g(8)) = (1 — p*) cos(a + qb)ip“ cos(n + 1)(6 — «)

n=0
— (1 - p?*)sin(a + ¢)> p"sin(n + 1)(6 — ) — pcos(a + o).
n=0
PRrROOF: By (8), we have
(1 = p?)sin(d — a)
1 —2pcos(f — a) + p2
(14 p*) cos(d — a) — 2p
1—2pcos(f — a) + p?

sin(§(0)) = cos(a + @)

sin(a + ¢).

Then, using Proposition 3, we easily obtain the first formula. The second
formula is proved by the same method. B

The condition that z o g0 e M fis eqivalent to
2m ~
/ (xog ' (8) —0)n(@)dd =0  for any n € TG,
0 .
and this can be written as

/0% (2(0) - 3(6)) n(3(0)) §'(6) d9 = ©.

It is more convenient to express the above equation as

2%

2%
(1) [ (@(0) = 0@ ©)d8 = [ (@(0) - 6)n(a(6))5/(6) .

0

Because of (3), we need to take as 7 only 1, sin6, and cosf. From the
above consideration, we may see that it is useful to obtain the expressions of
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sin(§(6))g'(¢) and cos(g(0))g'(6)-

Proposition 5. For sin(§(0))g'(8) and cos(§(6))g'(6) where §(0) € G, we
have

o

sin(§(0))§'(0) = (1 — p*) cos(a + ¢) Y (n + 1)p" sin(n +1)(0 — a)
n=0
+ (1 — p*)sin(a + qb)i(n +1)p" cos(n + 1)(6 — «),
n=0
cos(@(0))(6) = (1 ~ p%) cos(a+ &) 3 (n + 16" cos(n + 1)(6 — o)
n=0
~ (1 - p?)sin(a + ¢)§:(n +1)p"sin(n + 1)(8 — ).
n=0

ProoF: By Proposition 4, the proof of Proposition § is straightforward. B

Finally, we make some remarks about further development briefly. For

any * € M, we set z —id = f (note that f is a 27-periodic), and denote by
F' the solution of

(12) AF =0 in B, Flop=f

Expanding f in Fourier series as

(13) f(6) = ?§ 2; G cOS Tl + b, sinnf),

we have the expression of the above solution F' in polar coordinates

(14) F(r,0) = % + > r™(a, cosnl + b, sinnd).

n=1
With these notations, we will be able to show the following statement.

For any © € M, the condition that §(6) € G satisfies
(15) zog}(0) € Mi

is equivalent to the condition that there ezist a point pe'* € B and ¢ € R
such that

oF 10F 2
(16) F(p’a> - ¢’ —aT(p)a) =0, ;_éb—(p) O‘) 1 pz.
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The proof of the above statement will be given in [3]. The condition (16)
determines ¢ and a = pe®, so it determines the explicit form of §(6) which
normalize £ € M and also of corresponding g(2).
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