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Abstract

By using the recursion operator R(u) = 8~1(271u’ 4+ ud — 47183),
various kind of the trace formulae for the 1-dimentional Schiédinger
operator H(u) = —8% + u(z) are proved. A notion of rank of the
function with respect to R(u) is introduced. Moreover, an alternative
proof of the characterization theorem of the reflectionless potentials is
given.
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In [4], Deift and Trubowitz derived the trace formula

o N
(1) i [ eraleu)fale, & w2t - Y 26, (28 fulo, iB30)" = 27u(a)

for the 1-dimensional Schrodinger operator
H(u) = =02 + u(z), 6, = d/dz,—00 < z < 00

with the twice differentiable real valued potential u(z) such that uv/(z) and
u"(z) are in L}(R), and

[ lallutz)ldz < o,
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where fi(z,& u) and ri(€;u) are the Jost solutions and the reflection coef-
ficients; —f2 and c; () are the discrete eigenvalues of # (u) and the normaliz-
ing coefficients of the eigenfunctions fi(z,f;; u) respectively (j = 1,2,--+, N).

The purpose of the present paper is to study the problems related to the
trace formula (1) by using the operator

R(u) = 071 (27 W/ (2) + u(z)d, — 47'82).

R(u) is usually called the recursion operator, since it is related to the recur-
sion relation

Znt1(v) = R(u)Z,(u), n=0,1,2---

with Z(u) = 1, which is called the Lenard relation, where u(z) is an infinitely
differentiable function. By giving appropriate meaning of the operator d;7,
we can determine uniquely the functions Z,(u) as the differential polynomlals

of u(z). The general representations for Z,(u) in terms of the scattering data
and the eigenfunctions are known;

@ [ ‘: £y (6 u) falo, € )

zzc )87 fu(e,iB50)” = Zu(u), nEN.

The formulae (2) are usua]ly derived by the method of asymptotic expansion
of an appropriate quantity associated with scattering data. See [2], [8], [14]
and references cited in them. In reflectionless case, a simple proof was ob-

tained in [7]. On the other hand, in view of (2), one may conceive that the
formulae

(®) in [ (G ufale, )

+ZZCJ(i T fi(z,iB;5u)? = Zo(u) =1

are also valid. However this is not true in general. In fact, if the potential
u(z) is reflectionless, i.e., r1(€;u) = 0, then the formula

(4) 22% By fu(x,iBy0)” + fulz, 0 u)’ =1

1=1
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are valid. See e.g. [9:§6]. On the other hand, in [3], Deift, Lund and
Trubowitz proved the formulae

(5 i [~ (G fa (e, ) = 1

for the rapidly decreasing real valued potential u(z) such that H(u) has
no bound states and ry(0;u) = —1. It is pointed out by many authors
that there exists a close relation between spectral theory and constrained
harmonic motion with the constraint defined by (4) or (5). See e.g. [9] and
[3]. Therefore it seems to be worthwhile to give an unified understanding of
(4) and (5). Accordingly the first problem of the present paper is to prove
the following.

Theorem 1. Let u(z) be the twice differentiable real poténtial such that
u(z) and u"(z) are in L}(R), and

/oo lz||u(z)|dz < oco.

b ¢}

Suppose that H(u) has N bound states —(37, j=1,2,--+, N, where0 < f; <
Pr < .-+ < Bn, and the normalization coefficients c;(£), j = 1,2,--- N.
Then the formulae

@) i [ (G0 fale, u)d

N
+ 3 26;(£)B; fa(z, iBy5u) + (L4 r(0u)) fia(z, 05 w)* = 1
~
are valid, where the integrals in (6) are interpreted as principal values.

Thus, by Theorem 1, the formulae (3) turn out to be valid for the potential
u(z) such that

(7) re(0;u) = —1.
The condition (7) is known to be quite generic one, while condition

|re(0;u)] < 1
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is unstable. See [4] for details.
On the other hand, in [3], they simultaneously proved the formula

®) —ir [ (G W, 6w = 7u()

for the real valued rapidly decreasing potential u(z) such that H(u) has no
bound states and satisfies (7). The second aim of the present paper is to
prove the following formulae which are generalization of (8).

Theorem 2. If the potential u(z) satisfies the conditions in Theorem 1,
then the formulas

00 N
O IR RGRIACK ) st C Ll R

= (14 r+(0;0) file, 0 u)’ = 27 u(z)

are valid. Moreover if the real potential u(z) is rapidly decreasing then

(10) —ix? /

o0

. E My (6 u) fi(w, & u)’dE

N

= (=1)" 32 2¢,(£)8" 7 filz, 155 w)?

= ~Znr1(u(2)) + u(z) Za(u(z)) — 2705 Z,(u(z))
are valid for alln € N. |

The third aim of this paper is to give elementary proof of already known
results in the soliton theory such as the formula (2) and the characterization
theorem of the reflectionless potential. We shall do this by enhancing the role
of the recursion operator R(u) without using the inverse scattering theory
and the asymptotic expansion.

The contents of the present paper are as follows. In section 1, we give a
brief sketch of scattering data of H(u). In section 2, we prove Theorem 1. In
section 3, we give a simple proof of the formulas (2) for n > 2 by using the
recursion operator R(u). In section 4, we prove Theorem 2. In section 5, we
give an elementary proof of the characterization theorem of the reflectionless
potentials.
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§1. Scattering data.

In this section, we will briefly explain the scattering data of H(u). We
refer to [1], [4] and [6] for details.
Let fi(z,&; u) be those solutions of the eigenvalue problem

(1.1 H(u)f = —f"+u(z)f = £f

which behave like ¢*%* as z — +oo respectively. If the potential u(z) is a
real valued measurable function and satisfies

/_Z ||| u(z)]dz < oo

then such solutions uniquely exist for all £, <€ > 0, and are analytic in
€ > 0 for any z. They are called the Jost solutions. Since e¥4% fi(z, &u)—1
belong to H**, the Hardy space of functions A(¢) analytic in $¢ > 0 with

sup |h(s + it)|*ds < oo,

t>0 J—oo

the integral representations

. too ) :
(12) f:l:(m’ 6, u) = eiz&t(l + /(; Bi(.'z:, y)e:l:2z£ydy)
hold. By(z,y) satisfy

|Bs(z,y)| < e*@ny(z +y),

where
o) = [ (- 2)luto)at
and

)= ()| dt.

Since u(z) is real, f4(z,+&;u), & € R\ {0} are linearly independent solutions.
Hence there uniquely exist the functions a4 (€;u) and by (€; u) such that

(1.3) f-(z,&4) = ay(§u) fo (2, =& u) + b4(§ ) fo (2,65 0).
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Similarly, there exist a_(¢;u) and b_(&; u) such that

f+(z,&u) = a(§u) f- (2, =& u) + b (& u) f-(z, & u).

Therefore
ax(§u) = (£26) 7 W (f+(2, & u), felz, & u))
and
b:t(&; u) = (:E2Zf)-1W(fi(:L', —63 u)) f;(z,f; u))

follow, where W(f,g9) = f¢' — f'g is the Wronskian. Hence ai(&;u) are
analytic in §¢ > 0. Moreover if £ is real then we have

lax(&u)? = 1+ [b(& ).
Hence the functions
r+(&u) = bx(¢; u)/ax(& u)

are defined for £ € R \ {0} and continuous, which are called the right and
left reflection coefficients. We have

(1e r2E0) = ra(—£ ).

Moreover if the potential u(z) satisfies

/oo z?|u(z)|dz < oo

then r.(&; u) are continuous even at £ = 0, and there are two possibilities:

(19 a0 = -1
(1.6) Irs(&u)] <1, §€R.

Furthermore u(z) belongs to the Schwarz space S of rapidly decreasing func-
tions, if and only if r1(&; u) belong to S. The functions ay(€;u) have only
finite number of simple zeros ¢f;,1 < j < N on the purely imaginary axis in
$€ > 0, where 0 < 8 < 3 < --+ < By. Since fi(z,10;;u) decay exponen-
tially as £ — oo and W(fz(z,16;; u), f+(z,iB;;u)) = 0, fa(z,iB;; u) belong
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to L*(R), that is, it follows that H (u) has the N bound states —f2, -+, —~f%.

Put o
= ([ fala,ifsuida) ™,
which are called the normalization coefficients. The triplets
Yy = {ri(&-; U), —:312) Tty _512\[) Cl(:t)> 't cN(j:)}

are called the right and left scattering data. The scattering data uniquely
determines the potential u(z) provided

/oo |z||u(z)|dz < co.

Here we explain Crum’s algorithm for removing eigenvalueas (see [4:
pl172]): If u(z) satisfies

/_°:o || ju(z)|dz < oo,

and H(u) has the N bound states —f7,---, —5%, where 0 < 8 < -+ < By.
Put

u*(z) = u(z) — 20;log f4(z,ifw; u)
then H(u*) has N — 1 bound states -ﬁf, cer,—f%_,, and

* ZﬁN
re(§u”) = re(€;u
:I:(E) ) §+ ,3 ﬂ:(g) )
hold. The above procedure obtaining the potential u*(z) from the original
one u(z) and/or u*(z) itself are called the Crum transformation. By N
times repeated applications of the Crum transformation, we can construct
the potential uo(z) such that H(ug) has no bound states and

(17) i) = (-0 T £ Ersle)

Now suppose u(z) € C*(R) and let @Q,(z;u),n =10,1,2,--. be the infi-
nite sequence of the functions defined by the recursion relation

a:::Qn+1 (:1:; u) = L(U)Qn(xa u)
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with Qo(z;u) = 1, where
L(u) = 8, R(u) = 27'/(z) + u(z)8, — 4718,

Then, Q.(z;u) are known to be polynomials of u,/,---, u®2) with con-
stant coefficients. While an arbitrary constant appears when we integrate
0:Qn(z; u) to obtain Q,(z;u) itself, we can define uniquely Q,(z;u) by
putting it zero. Hence we can determine uniquely the infinite sequence of
differential polynomials @, (z;u). We denote them by Z,(u(z));

Za(u(z)) = Qn(z;0).
Here we give the first two of them:
Z1(u) = 27 u(z), Za(u) = 871(3u? — u").

Note that if u(z) is in the Schwarz space S then

Zuss((@)) = [ L(u(@)Za(u(y))dy, n=0,1,2,-

follows. The ordinary differential equations

ZN+1 +ZOZJ

are called the N-th stationary KdV equations, which play important roles in
the soliton theory. We will also use the notations

X (u(z)) = 0, Z,(u(z)), neN.

The differential polynomials X, (u) are related to the theory of semicommu-
tative differential operators originated by Burchnall and Chaundy.

§2. Proof of Theorem 1.

In this section we shall prove Theorem 1. Put

o) = in [l oo, G + 32651 oo, i

1=1
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One easily verifies that the integral of the above converges as principal value.
Noting that u(z) is twice differentiable and eliminating iz, & u) by (1.1),
one can check that ¢(z) is three times differentiable. Accordingly, by differ-
entiating ¢(z) three times and using the formula (1), we have

(2.1 #"(z) ~ 4u(2)§ (z) - 2 (a)(c) = —2u/(z).

One can readily check that the constant function 1 solves (2.1). On the other
hand let f;(z),7 = 1,2 be the fundamental system of sclutions of

(2.2 —f" + ua)f = 0

then fi(z)? fi(z)f2(z) and f(z)? are the fundamental system of solutions
of

9" —du(z)g' - 2'(z)g =0
(see e.g. [12],[13],[14]). Put

f(z) = fi(z,0;u).
Note that fi(z) tends to 1 as z — co. Hence
Fal#) = fole,050) [ Fuly,0)dy
solves (2.2) for sufficiently large ¢, and

W(f1, f2) =1

follows. Therefore there exist c;,j = 1,2, 3 such that
3
(2.3) (z) = 143 ¢;9;(z),
3=l

where g1(z) = fi(z)? g2(z) = fi(z)f2(2) and gs(z) = fa(z)?. Since fi(z)

tends to 1 as 2 — oo, we have

lim %) _
z—o0 p1-1
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Now we investigate the asymptotic behaviour of ¢(z) as z — oo. Since
filz, &u) ~ e¥® as 2 — oo, we have

$(z) ~ir™ /oo Elry (6 u)e® = dE + i zcj(_}.)ﬁj—le—wﬂ
o0 pod

as r — oo. Put
re(§u) = Pi(€) +iPa(0),
where P;(£),7 = 1,2 are real valued. Then we have

[ € weeede = Rufe) + iRafe),

where o~
Ri()= [ ER()eds, j=1,2.
From (1.3), Py(¢) = Pi(—¢€) and P,(§) = —Py(—£) follow. Hence we have

Ri(s) =2 [ €7 Pi(E) sim Gad,

Ry(z) = 2 / " €1 Py(£) cos Exde.
0
On the other hand, by (1.3), we have
P0)=ra(0w),  Py0) =0,

Taking into consideration the above, we rewrite R (z) as follows:
1
Ra(e) = 2 [ € (Pi() = ra(05u))sin 2w

1 o
+2ir, (0; u) / £1sin 26z d€ + 2% / €71 Py(€) sin £z de.
0 1
Since P;(£) is differentiable at { = 0 and
PL(0) 4 (0;) =0,

E~Y(Py(€) — r4(0;u)) is bounded in the compact interval [0, 1]. Moreover
£71P(€) is summable in the interval [1,00). Hence, by the well known for-
mula '

4
lim/ v lsinydy = 27w
Atoo Jo
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and the Riemann-Lebesgue theorem, we have
Ry(z) ~ iy (O u)m

as ¢ — oo. Similarly one verifies that R,(z) tends to zero as z — oo.
Therefore we proved

#(z) ~ =r4(0;)
as £ — co. Hence, from (2.3) and (2.4),

$(z) =1 — (1+ r4(0; ) f1 (2, 0; )

follows. Thus we proved (6) for +. The proof for — is similar. This completes
the proof of Theorem 1.

§3. Proof of (2) for n > 2.

In this section we will give a simple proof of (2) for n > 2 assuming the
original formula (1). The method for the proof is a quite simple inductive
argument based on the recursion operator R(u). This method was already
carried out by Gardner et al in [7] for the reflectionless potential.

Put

(31) (}5-,,(:12, :t) = z.”r_l ,/_O:o 627!-—17,:!:(&-; u)fi(m) 6) u)zdxi) n= 0) 17 23 ot

and
¢nj($; :}:) = (—1)n/3_72n_1fi(m) Z‘ﬂj; u’)zy n=0,1,2---

First we have
Lemma 3.1.

(32) * ’ L(u(:z:))qﬁn(a:, :i:)dfl) = ¢n+1($;:{:)5 n=20,1,2---
Foo

and
(33) i/ L(u(2))nj(z; £)dz = tPni1j(z;£), n=0,1,2,--

are valid.
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Proor. First we prove (3.2). By direct calculation we have

(34) L(u)fi(ma€7u) _zng:i:(m 6) ) ( g; )

Hence
£ [ L(ue)dnlys £)dy
Foo
= xin™ [ dy [ € ra(Gu) L(uln)) falo, € e
= 427! fx dz foo Em 1y (& 4) falz, & u) fi(z, & u)dE
Foo -00
= ir™! [ M6 u)fa(o, &)

= ¢n+l($; :h)'
follows. Second we prove (3.3). Similarly to (3.4), one verifies immediately

L(u)ihs(z; £) = (=1)* 287" fu(z, iBj;u) fi(z, iBj; ).
Since fi(z,i6;;u) exponentially tend to zero as |z| — oo,
£ [ D) s (43 )y = (1) fu o, 15

= ¢n+1j($; i)
hold. Q.E.D.

Here we prove (2) for n > 2. The trace formula (1) can be expressed as
(3.5) $i(z; ) +2> (25 £) = Zy(u).
~

Assme that
Pn-1(z; £) +2Z¢n (25 x) = Z1(u)

J—-

holds. Then, by lemma 1, we have

e [ B ers( )+ 25 s )My

7=1
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N
= $n(z;E) +2 Z_: Pns(2; %)

= [ Lu() Zunr(u(v))dy = Za(u).

This completes the proof of (2) for n > 2.

Remark. The formula (1) itself can be derived by elementary contour
integral (see [4;p195]). Consequently, all of the trace formulae (2) can be
derived by the quite elementary method without making use of the inverse

scattering theory and the asymptotic expansion. Compare this proof with
the one in [15].

§4. Proof of Theorem 2.

Differentiate twice the both sides of (2), then by (2), (1.1) and the Lenard
relation, we have

(41)  Bza(w) =2 [ (e, & ) fi(e, & w)de

2401 ﬁgn lfi:(z Zﬁj, ) _22n+1(u)+2u(m)zn(u)a

for n > 1. This 1mphes (10). On the other hand, similarly to the above, by
differentiating twice the both side of (5), eliminating f{ by (1.1) and taking
into consideration the trace formula (1), we have

i1 / €71rs (6 u) fi(z, € u)2dE — ch, ()87 fi (2, 3855 u)?

j=1

= (14 r2(0;4)) fi(, 0 u)? = 27 u(z).
This completes the proof of Theorem 2.

§5. Application of (2).

The following results are classical ones in the soliton theory:
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(A) Suppose that u(z) is the reflectionless potential with the N discrete
eigenvalues —f2,--+, —F%, and the corresponding normalization coefficients
ci(£),+++,cn(£). Define pj(u),j =1,2,++-,N by

N

0+ = X7+ L s(ux™

1=1 7=1

that 1s, p;(u),j = 1,2,+++, N are the elementary symmetric polynomials of
?,j =1,2,-++,N. Then u(z) solves the ordinary differential equation

N
Zy41(u) + ;Mj(u)zj(u) = 0.

(B) Conversely if u(z) is the rapidly decreasing solution of the N-th
stationary KdV equation

0x(Zn+1(u) + 3 4iZi(w)) = 0

5=1
then u(z) is the reflectionless potential, i.e., r+(€;u) =0, and
fop(H(w) <
where o,(*) is the point spectrum and § denotes cardinal.

In this section, we will explain the new method to prove (A) and (B) by
applying the formula (2) and Crum’s algorithm.

First we introduce the notion of the rank of the potential. Suppose u(z) €
C*(R). Let V(u) be the vector space over C spanned by the infinite sequence
of the differential polynomials Zo(u), Z1(u), Z2(u),- - -

Definition. The potential u(z) is said to be of finite rank if and only if
the vector space V(u) is finite dimensional. When u(z) is of finite rank, we
put

rank u(z) = dim V' (u) — 1.
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Then we have

Lemma 5.1.  Suppose 0 # rank u(z) = N < co. Then V(u) is spanned
by Zo(u), Z1(u),- -+, Zy(u). Conversely, if Zy(u), Zo(u), -+, Zy(u) are lin-
early independent and Zyiq1(u) is ezpressed as the linear combination of
Zo(u), Z5(u),- -+, Zn(u) then rank u(z) = N follows.

Proor. Since u # 0 follows from the assumption, there exists m €
N such that Zg(u), Z1(u), -, Z(u) are linearly independent and Zy(u),
Zr(u), <+, Zm(u), Zm41(u) are linearly dependent. This implies that we
can uniquely express Z,41(u) as

Tmir() = 3" 0, 2, (1),

v=0

Hence we have

Xnt2(u) = L(w) Zyn1 (u)

=3 e L(w)Z,(v)

v=0

m—1

= Cme+1(u) + Z CVXV""].(U')

v=0

m m—1
=c, Z X, (u) + Z ¢ Xy 41(u)
=0

v=0

= i(cmcy + CV—1)Xv(U) + eme1 X1 ()

v=2
This implies that Z,,4,(u) can be expressed as the linear combination of
Zo(u), Za(u), "+, Zm(u). Similarly to the above, one verifies that Z,.;(u),j >
1 can be expressed as the linear combination of Zo(u), Z1(u), -+, Zm(w).
Hence m = N follows. The converse statement can be proved by the similar
argument. Q.E.D.

By Lemma 5.1, it follows that if 0 # rank u(z) = N < oo then there
uniquely exist pio(u), p1(u),- -+, uy(u) such that

N
Zn+1(u) + ;w(U)Zy‘(U) = 0.
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We call p;(u),7=0,1,:++, N the characteristic coefficients of u(z).

Remark. By Novikov’s theorem [5], it follows that the periodic poten-
tial u(z) is finitezonal if and only if u(z) is of finite rank. The calculation
of the rank and the characteristic coefficients will be carried out for various
potentials in the forthcoming paper.

Now we can express the assertion (A) as follows, which is a slight refine-
ment of (A).

Theorem 3. Ifu(z) is the reflectionless potential with N discrete eigen-
values — B2, — B2, -+ —B% thenrank u(z) = N, po(u) = 0 and p1(u),- -+, un(u)
are the elementary symmetric polynomials of B2, 52, -+, B%, i.e.

N N .
(5.1) P(X) = 1_1()( +8=x"+ }_j pi(u) X7

Proor. First we prove that Zo(u), Z1(u),+--, Zy(u) are linearly inde-
pendent. Suppose that there exist A, € C,n=1,2,--+, N such that

(5.2) > AnZa(u) = 0.
n=0
Onme readily verifies Ag = 0, because u € S. By (2), we have
N N N
2 AnZa(u) = 3 c(H) QU (=187 ) fi (=, 85 w).

n=1 7=1 n=1

Since fi(z,iBj;u) ~ e Pi®asz — o0 and 0 < By < B2 < --- < B,

N N
e?hr= Z AnZa(u) ~ c1(+) Z(—l)”ﬁf”‘l)\n, T — 00
n=1 n=1

follows. By (5.2), we have

N

S (-1, = 0

n=1
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Similarly to the above, one verifies

N
Z(—l)nﬂ?n_lkn =0,7=2,---,N.

n=1

This implies Xy = Xy = -+ = Ay = 0. Hence Zy(u), Z1(u), -+, Zy(u) are
linearly independent. Next we have

ZN+1 +Z}uz Z(U

1=1

N
= = 3 (1) e i85 (DY + 3 )~

j:l =1
N

= — X_: Cj(+),BjP("ﬁ?)f+($1 iﬁj; u)z'

Since P(—=f2) = 0,5 = 1,2,--+,N by (5.1), Zi(u), -+, Zx(u), Zy41(u) are
linearly dependent. Q.E.D.

Next, to show the converse of Theorem 3, we show the following.

Lemma 5.2. Suppose that g(¢) € L*(R),

[ lallute)l < o,

and

/: 9(€) fe(z,&u)’dE=0

then g(€) = 0 follows.
Proor. By (1.2) and the convolution formula, we have

Fule £ = 521+ [ K(a, etiody),
0

where v
K(z,y) = 2By(z,y) +/0 B, (z,z — y)By(z,2)dz.

Hence one verifies

[ a(@)hs o 6w
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= 7 a@e =1+ [ Klo,y)eray)de
— 3(e) + / /’ g(&)e¥ =) dedy

where

ie) = /_ : g(6)e™éedt.

Since §(z) solves the homogeneous Volterra integral equation of the second

kind, G(z) = 0 follows. Q.E.D.
Next we have
Lemma 5.3.  Suppose u(z) € C°(R) then
V(u+A)=V(u)

holds true for arbitrary A € C.
Proor. Put

() = 3 (25000, 2 X, ) H (P

then one easily verifies

[An(w), H (u)] = 2Xn41(u),

where[A, B] = AB — BA (cf. [8] and [13]). First we show that there exist
ag-")()\) €C,7=0,1,--- n such that

(5.3) Za(u+X) = Za<">(A (u).

7=0

We prove this by induction. If n = 1 then one can check readily that (5.3)
holds. We assume that (5.3) holds for any j < n. Suppose that f is a
nontrivial solution of

Hu+Xf=—f"+@u+I)f =
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By the assumption we have

n

An(u+2) =D ((Zi(u+ N0, — 272X (u + N) H(u+ A~

= 3 3 a0 (0% — 27 Xy ) H s + A
On the other hand we have
2Xns1(u+ N f =[An(u+ ), Hu+ N)]f
=—H(u+ M)A (u+ N

Moreover, by slight calculation, we have

An(u+ M) f = (Zn(u+ X)8; — 271 X, (u+ N) f

= 3 a2 (w3, - 27X, (w)) .

=0

This implies
s+ Y) = —H(u+ ) Y o (N)(Z(0)f' - 27X, () ).

By calculating the right hand side of the above and eliminating f" and i
by

= (u+ N,
f"=df+(w+ N)f,

we have

2Xpp1(u+ A f Za(") (A (—2L(u) Z;(u) — 22 X;(w)) f

=23 e ) Xyaa) 3,0
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Thus we proved that X, 41(u+ ) can be expressed as the linear combination
of X1(u),++, Xn41(u). This implies that Z,41(u + A) is the linear combina-
tion of Zo(u), Z1(w), "+, Znt1(u). Thus (5.3) is proved. By (5.3), we have

Viu+A) CV(u).
This implies also
V) =V({(u+ ) =) CV(ut ).
Hence V(u) = V(u + A) follows. Q.E.D.
Corollary. If u(z) € C™ is of finite rank then
rank u(z) = rank (u(z) + A)
holds for arbitrary X € C.
Next we have

Lemma 5.4. Suppose that the rapidly decreasing real valued potential
u(z) is of finite rank and H(u) has the N bound states —f7,---, —f%, where
0< fy <+ < Py.Put

u*(2) = u(z) — 203 log f+(z, ifn; u)

then u*(z), which is in S, is of finite rank and H(u*) has N — 1 bound states
_:3%) T _:612\7—1'

Proor. By [4], it turns out that u*(z) € S and H(u*) has N — 1 bound
states —f2, .-+, —B%_,. Hence it suffices to show that u* is of finite rank. By
Lemma 5.3, u(z) + §% is of finite rank. On the other hand, by [11] (see also
[10]), we have

rank (u*(z) + B%) < 1+ rank (u(z) + 5%).
This implies that u*(z) is of finite rank. Q.E.D.

Corollary.  Suppose that the rapidly decreasing real valued potential
u(z) 1s of finite rank and H(u) has the N bound states —f2,+-+,—f%. Let
uo(z) be the potential obtained by N times repeated applications of the Crum
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transformation such that H(uo) has no bound states. Then ug(z) is of finite
rank.

Then we can prove the following, which corresponds to the assertion (B).

Theorem 4.  If the rapidly decreasing real valued potential u(z) is of
finite rank then u(z) is reflectionless.

Proor. Let ug(z) be the potential obtained by N times applications of
the Crum transformatin such that H(uy) has no bound states. Then, by
Corollary, ug(z) is of finite rank. Hence there exist ay,- -+, ay € R such that

N
ZN+1(U0) + Z OZJZJ(U()) = 0.
3=1

Therefore, by (2), we have

i [ QUE)ra(Esuo) (o, & wo)de = 0,

where

N
Q(f) — €2N+1 + Zaj€2j_1'

Since up(z) € S,r+(&uo) € S follows. Hence Q(€)r4(&;ug) € S also valid.

Therefore, by Lemma 5.2, we have

Q(E)r+(&u0) = 0,

that is, r+(& uo) = 0 follows. By (1.7), it follows that r4(&;u) itself identi-
cally vanish. Q.E.D.
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