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Abstract

In the present paper, we consider the conformal theory of Finsler manifolds. We
find, under a certain condition, a conformally invariant Finsler connection and several
conformally invariant tensors of a Finsler metric. Finally we come to show, in terms of
the conformally invariant tensors, the necessary and sufficient condition for a Finsler
manifold to be conformally flat.
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Introduction

The present author has introduced, in his paper [1], the notions of a (g, N)-
structure and its conformal changes where g is a generalized Finsler metric and N
is a non-linear connection, and has found conformal curvature tensors and
conformal torsion tensors of such a structure.

In the present paper, continuing the paper [17], we are mainly concerned with
the (g, N)-structure where g is a Finsler metric. First we establish the notions of
flatness and conformal flatness of the structure. Next we find some conformally
invariant Finsler tensors and a conformally invariant Finsler connection. Based
on these results, we find the condition for the structure to be conformally flat in
terms of these tensors. The main results are shown as Theorem 5.2 and Theorem
6.1. In the last section we also investigate the condition for a Finsler manifold to
be a conformally flat Finsler manifold.

The present author wishes to express his sincere gratitude to Prof. Dr. M.
Matsumoto and K. Okubo for their invaluable advice.

§1 (L, N)-structures

Let M be an n-dimensional differentiable manifold and let us suppose that
there are given on M a Finsler metric L(x, y) and a non-linear connection N
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= (N*;(x, y)). We call such a struture an (L, N)-structure. Of course, the Finsler

1. .
metric tensor is given by g;;(x, y) = EﬁiajLz(x, y).
Using the operator X; =9, — N™,0,,, we put

. 1. N R
(1.1) Fii(x, y) = ig‘m(ngmk + Xy Gmj — Xm gi)s Cj'x = 59' Om9 ji>

then the triplet (F;',, N';, C;,) defines a symmetric Finsler connection. We call
such a connection an (L, N)-connection hereafter. We denote by F and V
respectively the h- and ov-covariant derivatives with respect to this (L, N)-

connection. According to Matsumoto [2], we write the h-torsion and hv-torsion
of the (L, N)-connection as

(1.2) R, = X,N',— X;N', P, =0N',—F/,
and the three kinds of curvatures as
R)uw=XF,';— X;Fl + F, L F™ 5 — F, i Fy™e+ G WR™ s
(1.3) Phijk = 5thij - Vjchik + Chiumjka
Si'i = 0:Ch' s — 0,C  + C'k G — Ct Gy
Moreover we put
(L4 { K, =Ry 5 — Cl uR" . = X.kF,,"j — X;F' 4+ F, ' Fy 5 — FofF™
thjk = Vjchik - Chiumjk = athij - Phijk'
It is obvious that the relations

(1.5) ngij =0, V.kgij =0

hold. Applying the Ricci identities to (1.5), we have
(1.6) Rijth=—Riiwns Pijin = — Pjuw> Sijin = — Sjirn-
Due to the second Bianchi identity, we have
ViCini = ViCipi + Cipe P'ii — Coe P ji — Py + Pryyji = 0.

Now applying the so-called Christoffel process [2] with respect to j, h, k to
the above, we have

Phkji = thkij - chhij + Cherrki -C Prhi'

kjr

Hence we obtain
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(1'7) Phkji = ijhi - thki
where we put Qju; = g4nQ;"r;- The relations (1.7) and (1.4), lead us to
(1.8) athij = gim(Qmjhk - thmk) + thjk'

Moreover, by using the relation Q,;;, = V;Cy;,; — C;,, P™ ;. and (1.8), we can
show easily

(1-9) thjk = Qihjka

1. .
= aiFhkj + gkmghraiFmrj)'

(110) Qi'5i = 5

§2 Flat (L, N)-structures
We begin with the definition of flatness of an (L, N)-structure.

Definition. Let M be assumed to admit an (L, N)-structure. If, for any
point p of M, there exists a coordinate neighbourhood (U, x') containing p such
that X,g;; = 0 holds in U, then the (L, N)-structure is said to be flat.

In connection with this definition we show first

Theorem 2.1. An (L, N)-structure is flat if and only if the (L, N)-connection
satisfies K,';, =0 and Q,°;, = 0.

Proof. If an (L, N)-structure is flat, F;', =0 holds in each coordinate
neighbourhood (U, x') which defines its flatness. Hence we have K,';
= 0. Moreover we have, in each U, 0,9;, — 2C;;,N™; = 0. Differentiating this
with respect to ", we have

Jjkm

aicjkh - a.hcjkmNmi - Cjkmathi = 0»

which implies, in this case, V;Cjy, — Cjy,, P";, = 0. Namely, we have Q,';, = 0.

Conversely, assume that K,’;, =0 and Q,’;, = 0 hold on M. Then, F}/; are
functions of position alone because of (1.8). So, the condition K,’;, = 0 implies
that M is covered by a system of local coordinate neighbourhoods {(U, x')} such
that F;*, = 0 holds in each (U, x). Hence Vegi; = 0 means that X, g;; = 0 in each
U, that is, the given (L, N)-structure is flat.

Moreover we show

Theorem 2.2. An (L, N)-structure is flat if and only if the Finsler metric L is a
locally Minkowski metric and the (L, N)-connection satisfies C;;,, P",o = 0, where we
put P"o = P", )"

Proof. If an (L, N)-structure is flat, M is covered by a system of local
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coordinate neighbourhoods {(U, x')} such that, in each U, X,9:; = 0 holds, that is,
0x9i; — 2C;;mN™, =0 holds. On transvecting this with y'y/, we have 0,L? =0,
from which we find that Lis a locally Minkowski metric and J,g;; = 0 in each
U. Thus we have C;;,,N™, = 0. On the other hand, we see that F;', = 0in each
U. Hence, from (1.2), we see that N™, = P",, in each U. Consequently we find
that C;;,,P",, =0 holds on M.

Conversely, we assume that L is a locally Minkowski metric and C;;,P™ o
=0 holds. Then, M is covered by a system of local coordinate neighbourhoods
{(U, x")} such that d,g;; =0 holds in each U. In this case, X,g;; = — 2C;;,N";
holds. And we have F/ = — C,/,N";— C,;N", + g™C,;;N",.. On the other
hand, the condition C;;, P",, = 0 is equivalent to C;;,N", = C;;,F,",. Hence, we
have

Fjik = —C W Fy; — CrijFOrk + g"C 1 Fo' -

By transvecting this with y/, we have F,', = — C,',F,", from which we have
Foio =0 and F,', =0. Thus we have C;,N", =0. Hence, in each (U, x')
shown above, X,g;; =0 holds. Namely, the given (L, N)-structure is flat.

Theorem 2.3. If an (L, N)-structure is flat, the (L, N)-connection always

Proof. From our assumption, the manifold is covered by a system of local
coordinate neighbourhoods {(U, x')} such that, in each U, 0,9;;=0 and
henceforth 9,C;;, = 0 hold. In addition to this, from the proof of Theorem 2.2,
we see that C;;,,N™, =0 in each U. So, we have C;;,0,N™, = 0. Hence we see

CijmR™ = — Ci

ijm ijNrkaerh+ Ciijrhaerk
= Nrkarciijmh - tharciijmk

= 0.

§3 Berwaldian (L, N)-structures
Corresponding to Berwald spaces, we prepare the following:

Definition. With respect to an (L, N)-structure, if the connection coeflicients
F;', of the (L, N)-connection depend on position alone, we call the structure a
Berwaldian (L, N)-structure.

Now, paying attention to (1.8) and (1.10), we can conclude immediately

Theorem 3.1. An (L, N)-structure is a Berwaldian (L, N)-structure if and only
if th ik = 0.

Moreover we can show
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Theorem 3.2. An (L, N)-structure is a Berwaldian (L, N)-structure if and only
if the Finsler metric L is a Berwald metric and the (L, N)-connection satisfies
Czijka = 0.

Proof. Let us consider a Berwaldian (L, N)-structure. In this case, we have
OnF;' =0. Since X,g;,)" = 0,9;,y", we have G(= y,%,) = Fo'y. From these, we

. 1 .
have Gj‘k( 2(’3]6,( >= F;'(x). Thus L is a Berwald metric. Moreover we
have Q,';, =0, that is, I,C;;, = C;;,P™,.. Hence we sce
Clij kO — Z{Cury - chruy Crsz k}yr = 0

Conversely, we assume that L is a Berwald metric and C;;,,P";,, =0
holds. Since P, = N, — F,,, we have C;;,N™, = C;;,Fy™, from which X, g,
= akgij - 2Cl'ij0mk. ThuS we have

Fjik = Vjik - gim(cmkrFOrj + CiFo'v — Ciie Fo" )5

from which we see Fy', =yo' — Ci/,Fo" o, Fo'o = 70’0 and Fy'y = 70' — Cil 70”0
The last relation leads us to F;', = I'*',(Cartan). From our assumption, we have
r*, = = 't (x). Thus we have F;y = F;’,(x). Consequently, the proof is
completed.

Remark. By means of the above proof, we can see, at the same time, that
FJ"k = F*"k(Cartan) if C”mP"’k0 =0. In this case the (L, N)-connection
(Fi'v, N'j, C;*) coincides with (I'*%,, G'; — D'}, C;*,) where D'; = —P'}, is the so-
called deﬂectlon tensor satisfying C; D'"k =0.

ijm

§4 Conformal changes of an (L, N)-structure

Let M be a manifold admitting an (L, N)-structure and let o(x) be a scalar
field on M. Then L(x,y)=e"®L(x, y) is also a Finsler metric. Here we
consider the (L, N)-structure defined on M. The (L, N)-structure is called a
conformal change of the (L, N)-structure.

Now, we know very well the conformal changes of a Riemann metric. So, in
this section, we treat only the conformal changes of the (L, N)-structure where L is
a non-Riemannian Finsler metric. Paying attention to well-known Deicke’s
theorem, here, we assume more strictly that C = m # 0 where C,=C,",,.
In the paper [1] we have already obtained that, as for the (L, N)-structure where
L= e"™L, the following relations hold:
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N 2 g o OB pi A i
9ij a(x)glj9 gl=e U(x)g”, R = leka lek = leka

(4.1 _
Py = Pljk - Gj(s;c - O-ké; + 7'

o _ i i i i i
Ky'je = Ky'ji + 0504, — 0x0, — Gnj0'x + gni0';

Eara’ghk and ¢", =

where we out o; = d;0, o' = g0, 0, = Vo, — 0,0, +
ghmamk.

Now, it is seen from (4.1)s and (4.1); that C,P",, = C,P"o — 0,C, +
C,.0™y, where put 6, = g,,y”. On the other hand, we get C, = C,, C* = e 2°CF,
C? = e 2°C%. Hence we have C P"‘,OC’ =e ?(C,,P",,C" — 0,C?. Since C?
# 0, we have ¢, = C,P",,C"/C* - C, P", ,C"/C>

Putting
(4.2) B=C,P",,C"/C?, B,=0B, B*=g""B,,
we have
4.3) 0o =B — B, o,x)=B,— B,

from which C;,P",,=C;,P"o— (B— B)C;, + C;',,g"" (B, — B,)y,. Hence,
by putting

(4.4) Q¥ =C;'\,P"yo — BCj', + C;,,B"y,,

we obtain Q;-“ik = QF,. Namely, the tensor field QF'.(x, y) is invariant under the
conformal changes of the given (L, N)-structure.
Next, by means of (4.1); and (4.3), we have

a.hﬁjik = ahFjik + 2Cimh(Bm - Em)gjk - 2gim(Bm - Em)cjkh'
On the other hand, it is easily seen that C'™,g;, = C"™,g;,. So, if we put
(45) F;fijk = a.hFjik + 2ChimBmgjk - ZBiCjkha

then the tensor field Fi';,(x, y) is also invariant under the conformal changes of
the given (L, N)-structure.
As for the tensor Q,';,, from (4.1); and (4.1)s, it follows that

thj" = X;Cy' + Fmijchmk - Fhmjcmik — kajchim - Chimﬁmjk
= Q' ik + 0ul0;C "y — ¢ Cji — O Cili + g3,;C™).
Using (4.3), we obtain that the tensor field Qj';(x, y) defined by

(4.6) Ol =0, ik + Ba(05C" — ¢ "Chix — O Ci'y + 91;C'™)
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is invariant under the conformal changes of the given (L, N)-structure.
Moreover, because. of a; = g,(x), (4.3) leads us to
(4.7) ;B = 0,B,,

that is, the tensor field 5jBk itself is invariant under the conformal changes of the
given (L, N)-structure.
In addition to the above, we have

VB, = VB, — Vo, — 0, ,B; — 0;B; + 6,,B"g;; + 20,0, — 6,06 g
from which we have
(4.8) V;.O‘k = V]Bk — V;Ek — O-kBj — O—jBk + O'mBmgjk -+ 20'ij - O'm()'mgjk.

Since Vo, = V,0;, we have VB, — V,B;=V,B, — V;,B;,, Namely, the tensor
field defined by

(4.9) V,B, — VB,

is also invariant under the conformal changes of the given (L, N)-structure.
Finally, on account of (4.8) and (4.3), we have

~ 1
ow; =V;By — VB, — 0,B; — ;B + 0,B"g;, + 7,0, iamamgjk
o~ ~ ~ 1~ ~
== V_)Bk — l7]Bk — BJBk + B_]Bk + EBmBmgjk - iBmBngk
Here we put
1
(4.10) Bk} - V]Bk - B}Bk + EBmBmgjk’

then we have o,; = B,; — B,;, from which we have

K, =K' + 84(Byy — Byy) — 4By, — B,y)
- ghjgim(Bmk - Emk) + ghkgim(ij - Emj)‘
Thus the tensor field defined by
(4.11) Ki' =K'+ 6iBiy — 0iBjn — 919" B + 919" " B

is also invariant under the conformal changes of the given (L, N)-
structure. Summarizing up the above, we conclude

Theorem 4.1. Let L(x, y) be a Finsler metric satifying C = ./C,,C™ # 0 and
N be a non-linear connection. With respect to the (L, N)-connection, let us put B
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= C, P",,C"/C? and B, = 0,B. Then the tensor fields QF'y, Fi' ., OF i Ki¥'jrs
which are given respectively by (4.4), (4.5), (4.6), (4.11), and 0 By, V;B, — V;B; are all
invariant under the conformal changes of the given (L, N)-structure.

§5 Conformally flat (L, N)-structures

The following classical definition is well-known: Let L(x, y) be a Finsler
metric defined on a manifold M. If, for any point p of M, there exist a coordinate
neighbourhood (U, x‘) containing p and a local scalar o(x) defined on U such that
e”™ L(x, y) is a locally Minkowski metric on U, Lis said to be a conformally flat
Finsler metric and M 1is said to be a conformally flat Finsler manifold. Now we set

Definition. Let M be a manifold admitting an (L, N)-structure. If, for any
point p of M, there exist a coordinate neighbourhood (U, x') containing p and a
local scalar o(x) defined on U such that the (¢°™ L, N)-structure is flat on U, then
the given (L, N)-structure is said to be conformally flat.

In connection with this notion, we show first

Theorem 5.1. In order that an (L, N)-structure is conformally flat, it is
necessary and sufficient that L(x,y) is a conformally flat Finsler metric and
C;'P™co =0 holds good. Here P, is the hv-torsion of the locally defined (L, N)-
connection where L(x, y) = "™ L(x, y) is the locally Minkowski metric.

Proof, The condition for an (L, N)-structure to be conformally flat is that,
for any pont p of M, there are a local coordinate neighbourhood (U, x*) containing
p and a local scalar o(x) defined on each U such that the (e°™ L, N)-structure is
flat. The result of Theorem 2.2 shows us that the condition under consideration
is that ¢ Lis a locally Minkowski metric and, at the same time, C;/,,P",, =0
holds for the (e°™ L, N)-connection. Since C;’; = C j"k, the condition becomes to
that Lis a conformally flat Finsler metric and C P"., =0 holds. Accordingly
the proof is completed.

Now we will rewrite the above condition in tensor forms. However, we have
full knowledge of conformally flat Riemann metrics. So, as same as the case of
§4, we assume here that the Finsler metric L satisfies C # 0. Now, using the
tensor fields which are defined in Theorem 4.1, we shall show

jm

Theorem 5.2. Let L(x, y) be a Finsler metric satisfying C # 0 and N be a non-
linear connection. In order that the (L, N)-structure is conformally flat, it is
necessary and sufficient that the (L, N )-connection satisfies

5jBk:0, VjB VkB"O Kh]k_o thk—

Proof. We suppose that the given (L, N)-structure is conformally
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flat. Then, Theorem 5.1 and Theorem 2.1 give us C;/,,P",, =0, K,';, =0, 0,7},
= 0. Hence we have B =0, from which E = 0. Moreover, these results yield
d; Bk 0, VB l7,(§j=0, IZ,’}‘ijk 0, O Jk—O Accordmgly, it follows from
Theorem 4.1 that 0,B, =0, V;B, — V.B; =0, K¥',, =0, QF';, = 0.

Conversely, we assume that the above conditions are all satisfied. Here we
put o, = B,. Then the condition J; B, =0 yields o, = 0,(x), and the condition
V.B, — Vi B; = 0 yields d,0; = 0,0,. Hence, for any point p of M, there is a local
coordinate neighbourhood (U, x) containing p such that U admits a local scalar
o(x) satisfying 0,0 = g, = B,. Now we consider in each U such a conformal
change of the (L, N)-structure as (L, N)— (L, N) where L=¢°® L Then (4.3)
leads us to B, = 0. From this and Theorem 4.1, the condition K}';, =0 yields
K, i« =0 and the condition QF';, =0 yields 0, ir =0. Hence, from Theorem
2.1, it follows that the (e’™ L, N)-structure is flat. Consequently the proof is
completed.

Remark. According to Theorem 3.1, we may replace the condition Qj';, =0
in this Theorem 5.2 by Fi'; =0.

Corollary. Let L be a Finsler metric satisfying C # 0 and G be its Cartan’s
non-linear connection. The (L, G)-structure is conformally flat if and only if Lis a
locally Minkowski metric.

Proof. With respect to the (L, G)-connecton, we have F;', = I'#',(Cartan).
So, P';; always satisfies P';, = 0. Then we have B =0. Hence, from Theorem
5.2, Theorem 2.1 and Theorem 22, it follows that the (L, G)-structure is
conformally flat if and only if K,’;, =0 and Q,%;, =0, namely, L is a locally

Minkowski metric.

§6 A conformally invariant Finsler connection

Continued from the preceding section, we are concerned with a Finsler metric
satisfying C # 0.

By substituting (4.3), into (4.1)5, as same as Matsumoto [3], we can see that
the quantity °F;', which is defined by

(6.1) CFjik = Fjik + Bjé;c + Bkéj _ gimBmgjk

satisfies °F,', = °F;',, that is, °F,f, is an invariant h-connection under the
conformal changes of the given (L, N)-structure. Thus the triplet (°F,*,, N Ci'y)
defines a Finsler connection which is invariant under the conformal changes of the
given (L, N)-structure. We call this connection the conformal Finsler N-
connection. We denote hereafter by ¥ and ¥ respectively the h- and v-covariant
derivatives with repect to the conformal Finsler N-connection. Of course, ¥ =V
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holds good, and also
(6.2) Negij = — 2Bigi;

holds good. Moreover we denote by ‘Q,;, ‘K’ i1, ‘R, and °P,‘;, respectively
the tensor fields Q. K, s R, and P,*;, with respect to the conformal Finsler
N-connection. It is easy to verify

(6.3) On' i = Qi jie

(64) “K, ;. =K} + 6,(WB; — V;B) + (V. B, — V,,B,) — 6.(V;B, — V},B)).
Also direct calculation immediately leads us to

(6.5) VB, — Vi B, =V, B, =V By,

(6.6) ViV — VV)gij = — 2B — Vi B9
Moreover, since CngU =0, we have

(6.7) ViV — ViV)gi; = — 204 B — Ci" B s

On the other hand, on account of Ricci identity for the general Finsler
connection [2], it is seen that, in our case,

(VW — CVkCVh)gij = — “Rijn — “Rjins
(CV'hCVk - chCVh)gu = —“Pijin — Pjin — chgijCkmh'
From (6.6) and (6.7), these equations can be rewritten in the forms
(6.8) 2B, — ViBy)g:; = “Rijin + “Rjins
(6.9) 20,Bg:; = “Pijin + Pjiin-
Now we show

Theorem 6.1. Let L(x, y) be a Finsler metric satisfying C # 0 and N be a non-
linear connection. In order that the (L, N)-structure is conformally flat, it is
necessary and sufficient that the conformal Finsler N-connection satisfies

{ CjimRmhk =0, thijk =0, CKhijk =0,

Pijin + “Pjin = 0.

(6.10)

Proof. If the given (L, N)-structure is conformally flat, then Theorem 5.2
gives us

0;B,=0, VB, —VB;=0, Ki, =0 QF,=0.
Then, by means of (6.3), (6.4) and (6.9), we have
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thijk = 0> CKhijk = 0, CPijkh + CPjikh = 0.

Moreover, due to Theorem 2.3 and (4.1), we have C;/,,R™,, = 0.

Conversely, let us assume that the condition (6.10) is satisfied. First, the
condition “P;;y, + ‘P, = 0 and (6.9) yield d,B, =0. The conditions Ci' W R™
=0 and °K,’;, =0 yield °R,’;, = 0. Then (6.8) gives us V,B, — V;B, = 0. And,
therefore, (6.4) leads us to Kj';, =0. Moreover, the condition °Q,';, =0 and
(6.3) also lead us to Qf';, =0. Consequently the proof is completed.

§7 Conformally flat Finsler manifolds

In this section we consider the case where a Finsler metric L(x, y) is given but
a non-linear connection N is not assigned previously.

Concerning the given Finsler metric L(x, y) and its conformal change L(x, y)
= "™ L(x, y), the respective Cartan’s Finsler connections (I'¥',, G';, C;,) and
(I'#%. G';, C;'}) have the relations
r}kik = r;'kik - Uocjik + O'm(cmiij + Cmijyk - ijkyi)

- ?a™(C,}, Cn"j + Crijcmrk - Cmircjrk)

(7.1) + 0,0, + 0,95 — ' g1,

Gij =G+ L0"C, i+ 0,y + 0,6, — a'y;,

~

Cjik = Cjik.
By virtue of (7.1),, we have
(7.2) G' =G + 20,y — I*6'.

Of course, here, we put G' = G'; and G' = G';. Therefore, we have y, G”
= ¢??(y,,G™ + I? ¢,), from which we have

0o = Jme/I‘Z — yme/Lz‘

By putting
(7.3) o= y,G"/I2, o, =0, do=g"a,
we have
(7.4) O =0 — 0, 0, =0 — &.

Substituting these into (7.2), we have
G —26y' + I?6' = G' — 20y + I2o.

That is to say, if put
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(7.5) B =G — 20y + 2o,
we obtain
(7.6) B =p.

Using this conformally invariant quantity S, we can show

Theorem 7.1. In order that a Finsler manifold (M, L(x, y)) is a conformally
flat Finsler manifold, it is necessary and sufficient that, for any point p of M, there
exists a local coordinate neighbourhood (U, x') containing p such that the relations

(7.7) ﬁi = 0, 5jak = 0, ajka = akOCJ
hold in each U.

Proof. Assume that (M, L(x, y)) is a conformally flat Finsler manifold.
Then M is covered by a system of local coordinate neighbourhoods {(U, x')} such
that a local scalar g(x) exists in each U satisfying >y, (x, y) = g;,(y). By
means of this o(x), we define a conformal change L— L= ¢°® L in each U. Of
course, the Finsler metric tensor of Lis g;;(y) itselfl. Now, in each (U, x'),we have
G' =0, from which we have 4 =0, & =0 and ' =0. Hence (7.6) says that
B =0 holds in each (U, x'). Moreover (7.4) leads us, in each U, to

3J(Xk= —3JO'k=0, a](xkz —-6JO'k= —-akO'J:akOCJ.

Conversely, let us assume that M is covered by a system of local coordinate
neighbourhoods satisfying (7.7). Here we put g, = — «,, then (7.7) gives us that,
for any point p of M, there are a local coordinate neighbourhood (U, x%)
containing p and a local scalar o(x) defined on U such that d,6 = o, and (7.7) hold
true. By using this o(x), we consider the conformal change L— L= ¢*® L. defined
on each U. In this case, from (7.4),, we have & =0 and & = y"d, =0. Hence
we have, in each (U, x'), G'= i = p'=0. Namely, L is a locally Minkowski
metric on U. Therefore, L is a conformally flat Finsler metric on M. Accordingly
the proof is completed.

Now, it is easily seen that

1 1
YmG" =5 Ymd™ (0:Grs + 059 — 0,95)¥°Y" = 5(0,9:) ' V"Y'

So, we have o = y"0,1?/21?, namely,
(7.8) o=y logL.

It 1s to be noted that, from the form of (7.8), « is obviously not a scalar field,
and also (7.7) is not written in tensor forms.
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If an (L, N)-structure is conformally flat, then, due to Theorem 5.1, L must be
a conformally flat Finsler metric. In addition to the above, if L satisfies C # 0,
the proof of Theorem 5.2 tells us that o; = B;. So, in this case, ; must be a
vector field defined globally on M. Now, we show finally

Theorem 7.2. Let M be a manifold endowed with a conformally flat Finsler
metric L(x, y), that is, M is endowed with a Finsler metric L(x, y) and is covered by
a system of local coorinate neighbourhoods each of which admits a local scalar o(x)
such that ¢’ L(x, y) is a locally Minkowski metric. If ;= 0,0(x) is a vector field
defined globally on M, then the non-linear connection N which is determined by

(7.9) N'; =G+ I*Cj 0™+ 0,05 — a'y;
composes, together with the Finsler metric L, a conformally flat (L, N)-structure.

Proof, From the assumption that g;(x) is a globally defined vector ficld on
M, (7.9) gives M a non-linear connection N. Then the connection coefficient F %,
of the (L, N)-connection is written in the form

(7.10) jik = ;‘kik - Uocjik + am(cmikyj + Cmijyk - ijkyi)
- I?6™(C,%, Cn'j+ Crijcmrk - Cmircjrk)'

In this case we have P\, = 6,0, — o'y,. On the other hand, L= ¢’® L is a
locally Minkowski metric. And, from (4.1), it follows that the (L, N)-structure
satisfies

CjiumkO = Cjim(Pka — o y" — 090 +0"y,) = 0.

Consequently, Theorem 5.1 shows us that the (L, N)-structure is, surely,
conformally flat.
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