A Note on Conjectures of the Ideal of s-generic Points in P4

By

Hiroshi Okuyama

Department of Mathematics and Computor Sciences,
Faculty of Integral Arts and Sciences,
The University of Tokushima
Tokushima 770, JAPAN
(Received September 17, 1991)

Abstract

Let $A = k[X_0, ..., X_n]/I$ be the homogeneous coordinate ring of s points in generic position in P^n . In this note, we formulate natural conjectures for the number of generators of I, and for the Cohen-Macaulay type of A in terms of the minimal free resolution of I in case n = 4. We then consider the relationship between these conjectures from a stand point of the minimal resolution conjecture made by E. Ballico and A. V. Geramita.

1991 Mathematics Subject Classification. Primary 14A05; Secondary 13D99

Introduction

Let $X = \{P_1, ..., P_s\}$ be a set of s distinct points in a projective n-space $P^n(k)$, k an algebraically closed field, and let I be the defining ideal of X in the polynomial ring $R = k[X_0, ..., X_n] = \bigoplus_{i \ge 0} R_i$.

We denote by A the homogeneous coordinate ring of X, $A = R/I = \bigoplus_{i \ge 0} A_i$. We say, following Geramita and Orecchia [4], that the points P_1, \ldots, P_s are in generic position (or are in generic s-position) if the Hilbert function $H_A(t)$: $= \dim_k A_t$ satisfies

$$H_A(t) = \min \left\{ s, \binom{n+t}{n} \right\}$$
 for all $t \ge 0$.

It is well known that almost every set of s points in $P^n(k)$ (k infinite) is in generic position (see [4]) and that A is an one dimensional Cohen-Macaulay graded k-algebra whose Cohen-Macaulay type r(A) is defined as the k-dimension of the socle of an artinian reduction of A.

In a series of papers [3], [4], [5], [8], the defining ideal I of X has been extensively studied and conjectures made about the minimal number of generators of I and the Cohen-Macaulay type r(A).

These conjectures were verified for P^2 in [3] and in [2] for many infinite families of s in P^n when n > 2. Further, in [1], viewing these conjectures from a point of graded free resolution of the R-module I, it was proved that three conjectures (ideal generation conjecture, Cohen-Macaulay type conjecture and minimal resolution conjecture) are valid for n = 3.

In this note we shall deal with the case n=4 and consider the relations between these conjectures.

1. The ideal generation, Cohen-Macaulay type and minimal resolution conjectures

We begin by reviewing these conjectures briefly.

In order to fix the notation, we assume that P_1, \ldots, P_s are points in generic s-position in $P^n(k)$. Then, there is an integer d such that $\binom{d-1+n}{n} \leq s < \binom{d+n}{n}$, and it follows from [3], [7] that the ideal $I = \bigoplus_{t \geq 0} I_t$ of s points P_1, \ldots, P_s satisfies

$$i$$
) $I = I_d \oplus I_{d+1} \oplus \cdots$,

ii)
$$\dim_k I_d = \binom{d+n}{n} - s$$
,

- iii) I always generated by forms of degree d and $d+1: I = \langle I_d, I_{d+1} \rangle$,
- iv) the graded minimal free resolution of I has the form

$$(*) \quad 0 \longrightarrow R(-(d+n-1))^{\alpha_{n-1}} \oplus R(-(d+n))^{\beta_{n-1}} \xrightarrow{d_{n-1}} \cdots \longrightarrow R(-(d+i))^{\alpha_i} \oplus$$

$$R(-(d+i+1))^{\beta_i} \xrightarrow{d_i} \cdots \xrightarrow{d_1} R(-(d))^{\alpha_0} \oplus R(-(d+1))^{\beta_0} \longrightarrow I \longrightarrow 0.$$

Ideal generation conjecture

From iii) above, the minimal number of generators of the ideal I (denoted v(I)) is determined completely on knowing how much of I_{d+1} can be obtained from I_d . Thus we have

$$v(I) = \dim_k I_d + \dim_k I_{d+1} - \dim_k R_1 I_d$$

The ideal generation conjecture of [5] is that the elements of R_1I_d are 'as independent as possible' in I_{d+1} ; explicitly

$$\dim_k R_1 I_d = \min \{ (n+1) \dim_k I_d, \dim_k I_{d+1} \}.$$

This gives, as a conjectured generic value for v(I), that:

$$v(I) = \max \{ \dim_k I_{d+1} - n \dim_k I_d, \dim_k I_d \}.$$

Since the Hilbert function for points in generic s-position in P^n determines the dimensions of the graded pieces of the ideal of points, this formula can be described completely in terms of n and s, i.e.

$$v(I) = \max\left\{ \binom{d+1+n}{n} - n \binom{d+n}{n} + s(n-1), \binom{d+n}{n} - s \right\}.$$

On the other hand, from the formula (*) of graded minimal resolution of I, we have $\alpha_0 = \dim_k I_d$ and $\beta_0 = \dim_k I_{d+1} - \dim_k R_1 I_d$. So the ideal generation conjecture is the one about the value of β_0 :

$$\beta_0 = \max\{0, \dim_k I_{d+1} - (n+1)\dim_k I_d\}.$$

Cohen-Macaulay type conjecture

Let A=R/I be, as above, the coordinate ring of s points in P^n and let $L \in R_1$ be a non zero divisor on A. If $B=\bigoplus_{i\geq 0}B_i$ denote the graded artinian ring B:=A/LA, then the socle of B is the k-vector space $(I,L):R_1/(I,L)$ which we denote by s(B). Notice that, if k is an infinite field, we may take X_0 as L_1 without loss of generality.

Since $H_B(t) = 0$ for all t > d (see, for instance, [2] (1.3)), the Cohen-Macaulay type of A is given by $r(A) = \dim_k s(B)_d + \dim_k s(B)_{d-1}$. Obviously, $s(B)_d = B_d$, therefore we need only to compute $\dim_k s(B)_{d-1}$.

Since $s(B)_{d-1}$ is the kernel of the linear transformation

$$\varphi: B_{d-1} \longrightarrow \operatorname{Hom}_k(B_1, B_d)$$

which is induced by the multiplication of B, it is clear that

$$\dim_k s(B)_{d-1} \ge \dim_k B_{d-1} - (\dim_k B_1 \cdot \dim_k B_d).$$

The Cohen-Macaulay type conjecture made by L. G. Roberts in [8] is that for a general set of points in generic position in P^n , we have

$$\dim_k s(B)_{d-1} = \max\{0, \dim_k B_{d-1} - n \dim_k B_d\}.$$

This gives, as a conjectured generic value for r(A), that:

$$r(A) = \max \{ \dim_k B_d, \dim_k B_{d-1} + (1-n)\dim_k B_d \}$$

or phrased in terms of n and s only (see [2] (1.6)):

$$r(A) = \max\left\{s - \binom{d-1+n}{n}, (1-n)s + n\binom{d-1+n}{n} - \binom{d-2+n}{n}\right\}.$$

It is well known that the another characterization for the Cohen-Macaulay type of A is given by the (n-1)-th Betti number of I:

$$r(A) = \dim_k \operatorname{Tor}_{n-1}^R(I, k).$$

On the other hand, from the graded minimal free resolution (*) of I, we get

$$\dim_k \operatorname{Tor}_{n-1}^R(I, k) = \alpha_{n-1} + \beta_{n-1} \text{ and } \beta_{n-1} = \dim_k (\operatorname{Tor}_{n-1}^R(I, k))_{d+n}$$

 $=\dim_k s(B)_d$ (= $\dim_k B_d$) by using the graded isomorphism (i.e. an isomorphism preserving degrees) $\operatorname{Tor}_{n-1}^R(I, k) \equiv s(B)(-n)$ (see [6, p. 280]). Hence, we have $\alpha_{n-1} = \dim_k s(B)_{d-1}$.

Therefore, the Cohen-Macaulay type conjecture is the conjecture about the value of α_{n-1} :

$$\alpha_{n-1} = \max\{0, \dim_k B_{d-1} - n \dim_k B_d\}$$

Minimal resolution conjecture

Again we consider the graded minimal free resolution (*) of the ideal I of s points in generic position in P^n and let N_i the i-th syzygy module of $I: N_i = \text{Im } d_i$ for i = 1, ..., n and $N_0 = I$. Then N_i has the following properties:

- i) $(N_i)_t = 0$ for t < d + i,
- ii) $N_i = \langle (N_i)_{d+i}, (N_i)_{d+i+1} \rangle$,
- iii) $\alpha_i = \dim_k (N_i)_{d+i}$ and $\beta_i = \dim_k (N_i)_{d+i+1} \dim_k R_1(N_i)_{d+i}$.

The minimal resolution conjecture of [1] is that, for a general set of s points in generic position, $\dim_k R_1(N_i)_{d+1}$ is as large as possible; explicitly

$$\dim_k R_1(N_i)_{d+i} = \min\{(n+1)\dim_k(N_i)_{d+i}, \dim_k(N_i)_{d+i+1}\}$$

for
$$i = 0, 1, ..., n - 1$$
.

Notice that, the ideal generation conjecture is the special case of the minimal resolution conjecture and by iii) above, the minimal resolution conjecture is the one about the values of β_i :

$$\beta_i = \max\{0, \dim_k(N_i)_{d+i+1} - (n+1)\dim_k(N_i)_{d+i}\}$$
 for $i = 0, 1, ..., n-1$.

2. The conjecture for n = 4.

We shall deal with the case n = 4. Let P_1, \ldots, P_s are points in generic position in P^4 and let d be the least degree of a form in R vanishing at P_1, \ldots, P_s , then $\binom{d+3}{4} \le s < \binom{d+4}{4}$ and that the graded minimal free resolution of I has the form

$$(\dagger) \quad 0 \longrightarrow R(-(d+3))^{\alpha_3} \oplus R(-(d+4))^{\beta_3} \xrightarrow{d_3} R(-(d+2))^{\alpha_2} \oplus R(-(d+3))^{\beta_2}$$

$$\xrightarrow{d_2} R(-(d+1))^{\alpha_1} \oplus R(-(d+2))^{\beta_1} \xrightarrow{d_1} R(-d)^{\alpha_0} \oplus R(-(d+1))^{\beta_0} \longrightarrow I \longrightarrow 0.$$

We denote as above the syzygy modules of I by $N_i (i = 1, 2, 3)$, and $N_0 = I$. As we have noted, α_0 and β_3 are determined by the Hilbert function alone;

$$\alpha_0 = \dim_k I_d = {d+4 \choose 4} - s, \ \beta_3 = \dim_k B_d = s - {d+3 \choose 4}.$$

In the following, we calculate the values α_i for $i \ge 1$.

Lemma 1. With the notation above, we have

(i)
$$\alpha_1 = \dim_k(N_1)_{d+1} = \frac{(d+4)(d+3)(d+2)d}{6} - 4s + \beta_0.$$

(ii)
$$\alpha_2 = \dim_k(N_2)_{d+2} = \frac{(d+4)(d+3)(d+1)d}{4} - 6s + \beta_1.$$

(iii)
$$\alpha_3 = \dim_k(N_3)_{d+3} = \frac{(d+4)(d+2)(d+1)d}{6} - 4s + \beta_2.$$

Proof. Consider the graded short exact sequence obtained from (†)

$$0 \longrightarrow N_1 \longrightarrow R(-d)^{\alpha_0} \oplus R(-(d+1))^{\beta_0} \longrightarrow I \longrightarrow 0.$$

Then, from the additivity of the Hilbert function, we get

$$\begin{split} \alpha_1 &= \dim_k(N_1)_{d+1} = \dim_k(R(-d)^{\alpha_0})_{d+1} + \dim_k(R(-(d+1)^{\beta_0})_{d+1} - \dim_k I_{d+1} \\ &= 5\alpha_0 + \beta_0 - \binom{d+5}{4} + s. \end{split}$$

After a simple, direct calculation we get the desired form.

Similarly by considering the graded short exact sequence started from N_2 (resp. N_3)

$$0 \longrightarrow N_2 \longrightarrow R(-(d+1))^{\alpha_1} \oplus R(-(d+2))^{\beta_1}$$

$$\longrightarrow R(-d)^{\alpha_0} \oplus R(-(d+1))^{\beta_0} \longrightarrow I \longrightarrow 0,$$

$$0 \longrightarrow N_3 \longrightarrow R(-(d+2))^{\alpha_2} \oplus R(-(d+3))^{\beta_2}$$

$$\longrightarrow R(-(d+1))^{\alpha_1} \oplus R(-(d+2))^{\beta_1}$$

$$\longrightarrow R(-d)^{\alpha_0} \oplus R(-(d+1))^{\beta_0} \longrightarrow I \longrightarrow 0$$

and using the values α_1 (resp. α_2) we get the desired formula for α_2 (resp. α_3).

The conjectures on the ideal of points in generic position mentioned in the preceding section can be write down in terms of d and s.

Lemma 2. Let I be the ideal of points in generic s-position in P^4 and (\dagger) a graded minimal free resolution of I. Then

(i) The Cohen-Macaulay type conjecture is equivalent to the following condition

$$\alpha_3 = \max \left\{ 0, \frac{(d+4)(d+2)(d+1)d}{6} - 4s \right\}.$$

(ii) The minimal resolution conjecture is equivalent to the following conditions:

(a)
$$\beta_0 = \max \left\{ 0, 4s - \frac{(d+4)(d+3)(d+2)d}{6} \right\},$$

(b)
$$\beta_1 = \max \left\{ 0, 6s - \frac{(d+4)(d+3)(d+1)d}{4} \right\},$$

(c)
$$\beta_2 = \max \left\{ 0, 4s - \frac{(d+4)(d+2)(d+1)d}{6} \right\}, \text{ and }$$

(d)
$$\beta_3 = \max \left\{ 0, s - \binom{d+3}{4} \right\}.$$

Proof of (i). As we have discussed in the preceding section, the Cohen-Macaulay type conjecture is the conjecture about the value of α_3 and is equivalent to the condition

$$\alpha_3 = \max\left\{0, \dim_k B_{d-1} - 4\dim_k B_d\right\}$$

where $B = \bigoplus_{i=0}^{d} B_i$ is the graded artinian ring $B := A/X_0 A = R/(I, X_0)$.

Now, the Hilbrt function of B is given by

$$H_B(t) = \dim_k B_t =$$

$$\begin{cases} \begin{pmatrix} t+3 \\ 3 \end{pmatrix} & \text{for } t < d, \\ s - \begin{pmatrix} d+3 \\ 4 \end{pmatrix} & \text{for } t = d, \\ 0 & \text{for } t > d, \end{cases}$$

and hence we get the desired form for α_3 .

Proof of (ii). Similary, the minimal resolution conjecture is the conjecture about the values β_i and is equivalent to the following conditions

$$\beta_i = \max\{0, \dim_k(N_i)_{d+i+1} - 5\dim_k(N_i)_{d+i}\}$$
 for $i = 0, 1, 2, 3$.

(a) In case
$$i = 0$$
, we have $N_0 = I$ and $\dim_k I_{d+1} = \binom{d+5}{4} - s$.

Therefore
$$\dim_k I_{d+1} - 5\dim_k I_d = 4s - \frac{(d+4)(d+3)(d+2)d}{6}$$
.

(b) In case i = 1, from the short exact sequence considered in the proof of Lemma 1, we have

$$\dim_k(N_1)_{d+2} = 15\alpha_0 + 5\beta_0 - \binom{d+6}{4} + s = \frac{(7d+17)(d+4)(d+3)d}{12} + 5\beta_0 - 14s.$$

Therefore, we get $\dim_k(N_1)_{d+2} - 5\dim_k(N_1)_{d+1} = 6s - \frac{(d+4)(d+3)(d+1)d}{4}$ by Lemma 1 (i).

(c) In case i = 2, by considering the graded short exact sequence as in the proof of Lemma 1, we obtain

$$\dim_k(N_2)_{d+3} = 15\alpha_1 + 5\beta_1 - 35\alpha_0 - 15\beta_0 + \binom{d+7}{4} - s$$
$$= \frac{(13d^2 + 54d + 41)(d+4)d}{12} - 26s + 5\beta_1.$$

The formula for the second term of the bracket in β_2 now follows after applying (ii) of Lemma 1.

(d) In case i = 3, the similar argumentation shows that

$$\dim_{k}(N_{3})_{d+4} = 15\alpha_{2} + 5\beta_{2} - 35\alpha_{1} - 15\beta_{1} + 70\alpha_{0} + 35\beta_{0} - \binom{d+8}{4} + s$$

$$= \frac{(19d^{2} + 96d + 77)(d+2)d}{24} - 19s + 5\beta_{2}.$$

By applying (iii) of Lemma 1, we obtain

$$\dim_k(N_3)_{d+4} - 5\dim_k(N_3)_{d+3} = s - \binom{d+3}{4}.$$

This complets the proof.

Remark 1. The ideal generation conjecture is described as a special case of the minimal resolution conjecture by the following condition:

$$\beta_0 = \max \left\{ 0, 4s - \frac{(d+4)(d+3)(d+2)d}{6} \right\}.$$

Remark 2. The last condition (d) in Lemma 2 is satisfied always whenever $s \ge \binom{d+3}{4}$, since it holds $\beta_3 = s - \binom{d+3}{4}$.

3. The relationship between conjectures.

In this section we study the relations between these conjectures.

In particular, we shall show that if the minimal resolution conjecture is true for points in P^4 , then the Cohen-Macaulay type conjecture is also true. But conversely, the Cohen-Macaulay type conjecture does not imply, in general, the ideal generation conjecture nor the minimal resolution conjecture.

Proposition. Let I be the ideal of s points in generic position in P^4 and let (†) (as given in p. 5) be its graded minimal resolution. Then

- (a) The minimal resolution conjecture implies the Cohen-Macaulay type conjecture.
- (b) Conversely, suppose the Cohen-Macaulay type conjecture is true, then the minimal resolution conjecture is also true in the following cases:

$$(1) \qquad {d+3 \choose 4} \le s \le \left\lceil \frac{(d+4)(d+2)(d+1)d}{24} \right\rceil$$

(where [n] denotes the greatest integer $\leq n$).

(2)
$$\left\lceil \frac{(d+4)(d+2)(d+1)d}{24} \right\rceil < s \le \left\lceil \frac{(d+4)(d+3)(d+1)d}{24} \right\rceil \text{ and } \beta_1 = 0.$$

(3)
$$\left\lceil \frac{(d+4)(d+3)(d+1)d}{24} \right\rceil < s \le \left\lceil \frac{(d+4)(d+3)(d+2)d}{24} \right\rceil \text{ and } \beta_0 = \alpha_2 = 0.$$

(4)
$$\left[\frac{(d+4)(d+3)(d+2)d}{24}\right] < s < \binom{d+4}{4}$$
 and $\alpha_1 = 0$.

Proof of (a). We distinguish four cases.

In this case $4s - \frac{(d+4)(d+2)(d+1)d}{6} \le 0$ and so the minimal resolution conjecture would say that $\beta_2 = 0$ by Lemma 2. Hence we have

$$\alpha_3 = \frac{(d+4)(d+2)(d+1)d}{6} - 4s$$
 in view of Lemma 1, which implies

that Cohen-Macaulay type conjecture is true.

Case 2.
$$\left\lceil \frac{(d+4)(d+2)(d+1)d}{24} \right\rceil < s \le \left\lceil \frac{(d+4)(d+3)(d+1)d}{24} \right\rceil$$
.

In this case, since $4s - \frac{(d+4)(d+2)(d+1)d}{6} > 0$, it holds $\beta_2 \neq 0$ by

Lemma 2. Hence $\dim_k R_1(N_2)_{d+2} \neq \dim_k(N_2)_{d+3}$. From the minimal resolution conjecture we have $\dim_k R_1(N_2)_{d+2} = \min \{ \dim_k(N_2)_{d+3}, 5\dim_k(N_2)_{d+2} \}$.

Therefore

$$\dim_k R_1(N_2)_{d+2} = 5\dim_k(N_2)_{d+2} = 5\alpha_2.$$

By the result of Lorenzini [7, Proposition 2.1] we have $\alpha_3 = 0$.

This is what the C-M type conjecture predicts and so the minimal resolution conjecture implies the C-M type conjecture in this case.

Case 3.
$$\left\lceil \frac{(d+4)(d+3)(d+1)d}{24} \right\rceil < s \le \left\lceil \frac{(d+4)(d+3)(d+2)d}{24} \right\rceil.$$

In this case, since $6s - \frac{(d+4)(d+3)(d+1)d}{4} > 0$ it holds $\beta_1 \neq 0$ by Lemma

2. Hence $\dim_k R_1(N_1)_{d+1} \neq \dim_k(N_1)_{d+2}$. From the minimal resolution conjecture we have $\dim_k R_1(N_1)_{d+1} = 5\dim_k(N_1)_{d+1} = 5\alpha_1$ which implies $\alpha_2 = \alpha_3 = 0$ [7, Proposition 2.1]. The C-M type conjecture then follows immediately.

Case 4.
$$\left[\frac{(d+4)(d+3)(d+2)d}{24} \right] < s < \binom{d+4}{4}.$$

In this case $4s - \frac{(d+4)(d+3)(d+2)d}{6} > 0$. Hence the minimal resolution conjecture implies $\beta_0 \neq 0$ and $\dim_k R_1 I_d = 5\dim_k I_d = 5\alpha_0$.

By the result of Lorenzini, we have $\alpha_1 = \alpha_2 = \alpha_3 = 0$, which yields

$$\alpha_3 = \max \left\{ 0, \frac{(d+4)(d+2)(d+1)d}{6} - 4s \right\}.$$

Thus the minimal resolution conjecture implies the Cohen-Macaulay type conjecture in all cases.

Proof of (b). Suppose the Cohen-Macaulay type conjecture is correct. In case (1), from the C-M type conjecture, we have

$$\alpha_3 = \frac{(d+4)(d+2)(d+1)d}{6} - 4s$$

which yields $\beta_2 = 0$ by virtue of Lemma 1. This implies $\beta_1 = 0$ and $\beta_0 = 0$ by the result of Lorenzini [6, Proposition 3.1].

The minimal resolution conjecture now follows by applying (ii) of Lemma 2 and its remark 2.

In case (2), from the C-M type conjecture, we have $\alpha_3 = 0$ since $\frac{(d+4)(d+2)(d+1)d}{6} - 4s < 0$. Therefore it holds by Lemma 1 that $\beta_2 = 4s$ $-\frac{(d+4)(d+2)(d+1)d}{6}$ which is a positive integer in this case. This means that $\beta_2 = \max\left\{0, 4s - \frac{(d+4)(d+2)(d+1)d}{6}\right\}$ and since $\beta_3 = s - \binom{d+3}{4}$, the last two conditions (c), (d) of Lemma 2 (ii) are satisfied.

Consequently, if $\beta_1 = 0$ (therefore $\beta_0 = 0$) we get the minimal resolution conjecture.

In case (3), the last two conditions (c), (d) of Lemma 2 (ii) are satisfied in the same way as in case (2). Since $4s - \frac{(d+4)(d+3)(d+2)d}{6} \le 0$, the first condition (a) of Lemma 2(ii) (i.e. the ideal generation conjecture) is satisfied if and only if $\beta_0 = 0$. On the other hand, since $6s - \frac{(d+4)(d+3)(d+1)}{4} > 0$, the second part (b) of Lemma 2(ii) is satisfied if and only if $\beta_1 = 6s - \frac{(d+4)(d+3)(d+1)d}{4}$. From (ii) of Lemma 1, this is equivalent to $\alpha_2 = 0$. Therefor if $\beta_0 = 0$ and $\alpha_2 = 0$ then the minimal resolution conjecture holds.

In case (4), by the similar argument as in case (2), the last two conditions (c), (d) of Lemma 2(ii) are easily verified. Since $4s - \frac{(d+4)(d+3)(d+2)d}{6} > 0$ in this case, the first condition (a) of Lemma 2(ii) is satisfied if and only if $\beta_0 = 4s - \frac{(d+4)(d+3)(d+2)d}{6}$. From (i) of Lemma 1, this is equivalent to $\alpha_1 = 0$. On the other hand, by [6, Proposition 3.1], $\alpha_1 = 0$ induces $\alpha_2 = 0$ which yields $\beta_1 = 6s - \frac{(d+4)(d+3)(d+1)d}{4}$ according to (ii) of Lemma 1.

Therefore the second part (b) of Lemma 2 (ii) is exactly satisfied if α_1 = 0. Consequently, the s points in P^4 which satisfy both C-M type conjecture and ideal generation conjecture also satisfies the minimal resolution conjecture in this case.

We have just completed the proof of Proposition.

Remark. In [2], Geramita et al. investigated the condition when the C-M type conjecture or the ideal generation conjecture can be proved by the lifting of monomials in P^n . It follows from [2, Theorem 4.7], using the method of graph theory, that

- (a) The ideal generation conjecture for s points in P^4 can be proved, by the lifting of monomial ideals, for all $s \le 70$ except for s = 10, 24, 25, 26, 27, 28, 29, 53, 54, 55, 56, 57, 58.
- (b) The C-M type conjecture for s points in P^4 can be proved, by the lifting of monomials, for all $s \le 70$ except for s = 6, 16, 17, 18, 19, 37, 38, 39, 40, 41, 42.

Therefore, for example, s points in P^4 such as s = 5, 15, 35, 36, 70 which are in generic position verifies all these three conjectures.

Note added in proof.

The Cohen-Macaulay type conjecture has been solved for any n by N. V. Trung and G. Valla, J. Algebra. 125 (1989), 110–119.

References

- [1] E. Ballico and A. V. Geramita, The minimal free resolution of the ideal of s general points in P^3 , Canad. Math. Soc. Conf. Proc. 6(1986), 1–10.
- [2] A. V. Geramita, D. Gregory and L. Roberts, Monomial ideals and points in projective space, J. Pure Appl. Algebra 40 (1986), 33-62.
- [3] A. V. Geramita and P. Maroscia, The ideal of forms vanishing at a finite set of points in P^n , J. Algebra 90 (1984), 528-555.
- [4] A. V. Geramita and F. Orecchia, On the Cohen-Macaulay type of s-lines in A^{n+1} , J. Algebra 70 (1981), 116–140.
- [5] A. V. Geramita and F. Orecchia, Minimally generating ideals defining certain tangent cones,J. Algebra 78 (1982), 36-57.
- [6] A. Lorenzini, Betti numbers of perfect homogeneous ideals, J. Pure Appl. Algebra **60** (1989), 273–288.
- [7] A. Lorenzini, Betti numbers of points in projective space, J. Pure Appl. Algebra 63 (1990), 181–193.
- [8] L. Roberts, A conjecture on Cohen-Macaulay type, C. R. Math. Rep. Acad. Sci. Canada 3 (1981), 43–48.