On Uniform Limit of Quasiperiodic Functions

By

Atsuhito Kohda and Yoshitane Shinohara

(Received September 14, 1989)

In the papers [1], [2], we use the proposition which states that the uniform limit f(t) of a sequence of quasiperiodic functions $f_n(t)$ is also quasiperiodic. We say a function f(t) quasiperiodic with periods $\omega_1, \ldots, \omega_m$, if f(t) is represented as

$$f(t) = g(t, \dots, t)$$

for some continuous function $g(u_1, ..., u_m)$ which is periodic with period ω_i in each u_i . We assume here that every ω_i is positive and $\omega_1^{-1}, ..., \omega_m^{-1}$ are rationally linearly independent.

The present paper is concerned with an alternative proof of the above fact and gives some examples.

Proposition. Let $\{f_n(t)\}$ (n = 1, 2, ...) be a sequence of quasiperiodic functions with periods $\omega_1, ..., \omega_m$, and let f(t) be the uniform limit of $f_n(t)$ as $n \to \infty$, then f(t) is quasiperiodic with the same periods.

PROOF. From the quasiperiodicity of $f_n(t)$ there exists a continuous periodic function $g_n(u_1, ..., u_m)$ with periods ω_i in each u_i such that $f_n(t) = g_n(t, ..., t)$.

By Kronecker's theorem, for arbitrary $u_1, ..., u_m$ and for any positive number ε correspond a real number t and integers $p_1, ..., p_m$ such that

$$|u_i - p_i \omega_i - t| < \varepsilon \quad (i = 1, ..., m).$$

Since $g_n(t + p_1 \omega_1, ..., t + p_m \omega_m) = g_n(t, ..., t)$, $g_n(u_1, ..., u_m)$ converges uniformly on the dense subset $\{(t + p_1 \omega_1, ..., t + p_m \omega_m)\}$, so converges uniformly on \mathbb{R}^m . It is evident that the uniform limit g(t, ..., t) of $g_n(t, ..., t) = f_n(t)$ equals to f(t). From the periodicity of $g_n(u_1, ..., u_m)$ we have

$$g(..., u_i + \omega_i, ...) = \lim_{n \to \infty} g_n(..., u_i + \omega_i, ...)$$
$$= \lim_{n \to \infty} g_n(..., u_i, ...)$$
$$= g(u_1, ..., u_m).$$

This completes the proof.

Remark. In the proposition, we fix the set of periods $\{\omega_1, ..., \omega_m\}$ for every $f_n(t)$. This is essential as the following example shows.

Example 1. Let $\{c_j\}$ be a sequence such that $\sum_{j=1}^{\infty} c_j$ is absolutely convergent, and let $\{\omega_j\}$ be a set of positive numbers such that any finite subset has the property that the reciprocals of the elements are rationally linearly independent. Set

$$g_m(u_1,\ldots,u_m) = \sum_{j=1}^m c_j \sin \frac{2\pi u_j}{\omega_j},$$

then $f_m(t) = g_m(t, ..., t)$ is quasiperiodic with periods $\omega_1, ..., \omega_m$. It is clear that $f_m(t)$ converges uniformly to

$$f(t) = \sum_{j=1}^{\infty} c_j \sin \frac{2\pi t}{\omega_i}$$

but f(t) is of course not quasiperiodic.

The next example shows that the set of periods $\omega_1, \ldots, \omega_m$ of f(t) may contain irrelevant elements.

Example 2. Let $f_n(t) = \sin t + \frac{1}{n}\sin 2\pi t$ (n = 1, 2, ...), then $f_n(t)$ is quasi-periodic with periods $1, 2\pi$. It is obvious that $f_n(t)$ converges uniformly to $f(t) = \sin t$ and f(t) is (quasi-)periodic with period 2π only. In the same way, let

$$f_n(t) = \sin 2t + \sin 2\pi t + \frac{1}{n}\sin t \quad (n = 1, 2, ...)$$

which is quasiperiodic with periods 1, 2π . It converges uniformly to $f(t) = \sin 2t + \sin 2\pi t$ and f(t) is quasiperiodic with periods $1,\pi$ rather than with periods $1,2\pi$.

Department of Applied
Mathematics,
Faculty of Engineering,
Tokushima University

Department of Applied
Mathematics,
Faculty of Engineering,
Tokushima University

References

- [1] M. Kurihara, Quasiperiodic solutions of quasiperiodic differential difference equations, Reports Fac. Eng. Yamanashi Univ., 37 (1986), 65-69.
- [2] Y. Shinohara, M. Kurihara and A. Kohda, Numerical analysis of quasiperiodic solutions to nonlinear differential equations, Japan J. Appl. Math., 3 (1986), 315-330.