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As for an n-dimensional C*-manifold M, the following theorem is very famous:
“M admits an O(n)-structure if and only if M is a Riemann manifold.”
Corresponding to this theorem, the present author has obtained in the paper
[11] the following:

“The tangent bundle T(M) admits an F(n)-structure depending on €, if and
only if M admits a generalized metric and a certain quantity o.”

“M is a Finsler manifold if and only if the tangent boundle T(M) admits the
above mentioned structure satisfying d2 = 0.”

In the above, F(n) is the linear Lie group such that

F(n) = {( §A ’ 2>}|A60(n), SeSymm(n)},

%, is the homogeneous standard tangent structure of T(M), and 2 is a differential
2-form associated with an almost symplectic structure induced from the F(n)-
structure.

Moreover, in the paper [13], the properties of the almost symplectic structure
and almost Hamilton vectors, which are derived from @ in T(M), have been
studied in detail. It is, however, to be noted that these arguments do not always
depend upon the choice of Finsler connections in T(M).

On the other hand, the following propositions are well-known:

M is a Riemann manifold | __, | Mislocally |_| M admits an integrable
satisfying Riy = 0 Euclidean | < | O(n)-structure

Corresponding to these, we will consider

M is a Finsler manifold —s | Mislocally | —s| T(M)admits some
satisfying Ry, = 0, Cly. = 0 Minkowskian G-structure

The left hand side of these propositions is the we}l-known theorem.,
However, the right hand side is unknown yet. The main purpose of the present
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paper is to show the right hand side of these propositions holds true under some
condition. Now, the theorem of the Ileft hand side depends upon
curvatures. Hence, it is anticipated that we can not help dealing with, at least, a
non-linear connection in our argument. If T(M) admits a non-linear connection,
T(M) admits an almost product structure. Therefore, instead of F (n), we should
be concerned with a D(O(n))-structure in T(M), where

A, 0
D(O(n))={< 0 >|Ae0(n)}.

The final result will be shown as Theorem 11.

§1. The D(GL (n, R))-structures depending on ¥,

Let M be an n-dimensional connected C*-manifold and T(M) be the tangent
bundle over M. Since we shall be concerned, in the following, with Finsler
metrics and non-linear connections, we ought to treat the open subbundle T(M)-M
of T(M), that is, the bundle consisting of all non-zero vectors tangent to
M. From now on, for the sake of brevity, we denote it by the same notation
T(M) and simply call it the tangent bundle over M. As is well-known, T(M)
admits the homogeneous standard integrable almost tangent structure &, ([1], [2],
(5], [10], [11], [13]), whose structure group is the so-called tangent group given
by

2

T—{(A’O AeGL(n, R), Begl(n, R
n B A>I € (n’ ): EQ (l’l, )}

Now, let n: T(M) —» M be the natural projection, {(U, x)}" be a system of
coordinate neighbourhoods of M, then, for each (U, x%), there exists in T(M) the
caninical coordinate neighbourhood (z~!(U), (x', y')). In each n~(U), the natural
frame {0/0x', 0/0y'} (which will be denoted simply by {0/0x*} hereafter) is an
adapted frame of the G-structure ¥,. On the other hand, there exists, on T(M), a
(1,1) tensor field Q such that Q% =0, which is called the structure tensor of
%, The components of Q with respect to (x?*) are, as is well-known, given by Q

0 , 0 . . .
=< E ) The above mentioned tangent group 7T, is rewritten as T,

= {T|TeGL(2n, R), TQ = QT}.

1) Throughout the paper, we use the following indices and notation:
4, B, C,..., P, Q, R,... run over the range {1,2,3,..., 2n};
a, b, ¢,..., i, j, k,... run oer the range {1,2,3,..., n};
a b,..., 1 j,.. stand for a+n, b+n,..., i +n, j+ n,... respectively;
With respect to any canonical coordinate system in a tangent bundle, (x%) = (x%, x%) = (x%, %),
i.e, x* =" and the natation 9, and 0, stand for 3/dx' and /0y’ respectively.
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Now we suppose that G is a Lie subgroup of T, and T(M) admits the G-
structure as a reduction of %, which is called the G-structure depending on
%o([3], [11], [13]). It is easy to show that the condition for T(M) to admit a G-
structure depending on %, is given by
(1) G is a Lie subgroup of T,.

(2) T(M) admits the G-structure, i.e, M is covered by be a system of local
coordinate neighbourhoods {(U,, x%)} such that each n~!'(U,) admits

a 2n-frame {ZP} satisfying the relation Z¥ = PEZ¥ where (P8)eG in

n ' U)nn~ YUy if U,nUp # ¢ ({Z%9) is called an adapted frame of

the G-structure in =~ Y(U,)).

(3) The adapted frame {Z,} can be written in (z~*(U), x*) as Z, = yi(x, y)

0/0x" + a7(x, y) 0/0y', Zz=yi(x, y) 0/0y" where det|yi(x, y)| # 0, yi(x, y)

is (0)p-homogeneous for y and oi(x, y) is (1)p-homogeneous for y.

The homogeneity condition in (3) can be rewritten as dI(Za)(x,y) = (Z)x.2y)
where di is the differential of the mapping 1: T(M)— TM)((x, y)=(x, Ay), A
being any positive number.

Now we assume that T(M) admits a G-structure ¥ which is depending on
%o If M is covered by a system of local coordinate neighbourhoods {(U, x%)}
such that the natural frame {0/0x*} of the canonical coordinate neighbourhood
(n~'(U), x*) for each (U, x') is adapted to the structure %, then the G-structure %,
which is depending on %, is called integrable.

Putting

2

A
D(GL(n, R)) = {(

0
)IAeGL(n, R)},
0 , 4

we see D(GL(n, R)) is a Lie subgroup of T,. In this section, we treat the case
where T(M) admits a D(GL(n, R))-structure depending on %,, and denote it simply
by ¥,.

E, , 0O

0 , —E,
TeD(GL(n, R)). Hence, if T(M) admits a structure %, then it also admits an
almost product structure. Let {Z,} be an adapted frame of %, in each (n~Y(U),
x4), and let us put Z, = y50,, then I = (yB) is written as

r=(vﬁ)=<”f‘ ’ °>.

i
Oa > Va

If we put P, = ( ), then we see that TP, = P, T holds for any

y . _1>. Now P
oy s> Y

Putting y =(y}) and ¢ = (¢'), we see I ! =( _
-7

E, , 0

=TP, [~ ! =
0 <20V_1 ’ _En

) satisfies P2 =E,, and becomes a globally
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defined (1, 1)-tensor field on T(M), ie, P is the almost product tensor field
associated with the given almost product structure [3].

Putting N = (N) = —oy~", we see, as is well-known, N is a non-linear
connection defined on T(M). Of course, N; is (1)p-homogeneous for y. Now we
show

Theorem 1. A tangent bundle T (M) admits a structure €, (namely, a D(GL(n,
R))-structure depending on €,) if and only if the underlying manifold M admits a
non-linear connection.

ProOF. The necessity is shown already. So, we show the condition is
sufficient. In each (™Y (U), x*), let us put X; = d/0x' — N}* 0/0y™ and X;=Y;
= 0/0y, then {X,} is a 2n-frame in each n~'(U), which we call the N-frame
hereafter. Let {X,} be the N-frame in (x~*(U), ¥4). If Un U # ¢, it is easy to

o OX™ — Ox™ . — .
see that Ymgxx—iz Y, and Xm%=Xi in n~ YU )nn"}U). So, if we put X,
X
ox'
5o 5 ox’ . .
= TE X5 we have (T)) = P eD(GL(n, R)). Since N is (1)p-
0 —
T ox!
homogeneous for y, we see that T(M) admits a structrue %, and the N-frame is an
adapted frame of the structure , in each (z~'(U), x*). Q.ED.
. O s - En .
Next, if we put J, = E 0 , then we see directly that TJ, = J,T

holds for any Te D(GL(n, R)). This means that D(GL(n, R)) = GL(n, C), namely,
T(M) admits an almost complex structure if T(M) admits a structure ¢;. The
almost complex structure tensor F associated with this structure is given by F
=TIJ,"'. Ofcourse, F is a globally defined (1,1)-tensor field on T(M) satisfying

F?> = — E,,[3]. The components of F with respect to the canonical coordinate
{x4} is given by ([7], [14], [15], [19], [20])
—N , —E,
F=IJ, " '= ( >
E,+N* , N

Moreover, the components of F with respect to the N-frame {X ,} are given by J,
itself and also F satisfies F(X,) =Y, F(Y)= —X; According to Matsumoto
[16], this almost complex structure is called the almost complex N structure.
Now we show

Theorem 2. In order that a tangent bundle T(M) admits an integrable D(GL(n,
R))-structure depending on %, it is necessary and sufficient that the underlying
manifold M is locally affine.
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Proor. If T(M) admits the structure ¥, which is integrable, then M is
covered by a system of local coordinate neighborhoods {(U, x)} such that the
natural frame {9/0x*} of each (n~'(U), x*) is adapted to the structure ;. On the
other hand, the N-frame is also an adapted frame of the structure ¢, in (=~ }(U),
x%). So, we have 0/0x?= T5X, where (T5)eD(GL(n, R)). That is, §/0x
= T{0/0x™ — Ny, 0/0y") and 0/0y' = TT70/0y™. These yield Ty =07 and N}
=0. Next, let {U, %'} be another coordinate neighbourhood satisfying the
above. If UnU # ¢, then, in 7z~ Y(U)nzn~}(U), the relations

= OX" 0x 0%

.= N — - '",Ni-=0 d Ni=0
"oxi oxt Y 8x’8x"’y J anc Ay

2

0
hold, and these lead us to —xk = 0, that is, M is locally affie.
0x/0x

Conversely, if M is locally affine, there globally exists a flat affine connection
I'i(x) on M. Then T(M) is endowed with a non-linear connection such as N’
= I, {x)y™. Owing to Theorem 1, T(M), therefore, admits a D(GL(n, R))-structure
depending on %, i.e., a structure ¥, whose N-frame is adapted to %,. Since
I'(x) is a global flat affine connection on M, M is covered by a system of local
coordinate neighbourhoods {(U, x)} such that I"%(x) = 0 holds in each U. Then,
in each U, N} = 0 holds, from which we have X; = 0/0x’ and Y; = 9/0y". Namely,
the canonical natural frame {9/0x4} is adapted to %, in each (z~}(U), x4).

Q.E.D.

§2. Holonomy mapping associated with a non-linear connection

Let us assume, in this section, that the tangent bundle T(M) admits the
structure ¥;. That is to say, a non-linear connection N is defined on T(M). In
the papers ([8], [9], [12]), the notion of holonomy mappings associated with a
non-linear connection has been introduced and some results concerning them have
been obtained. For the later use, we shall give a brief sketch of them.

Let p and g be arbitrary two points of M endowed with a non-linear
connection N, and C be any piecewise differentiable curve joining the two points p
and q. Let C be a horizontal lift of C to the tangent bundle T(M), that is, a curve

1 m

dy ; dx™
o+ N0, 10) - =0,

where we denote by x(¢) the curve C and by x(0) the point p and by x(1) the point
q. Denote by T,(M) and T/(M) the fibre spaces over the points p and g
respectively. For each point (x(0), y) in T,(M), there exists one and only one
horizontal lift C of C passing through the point (x(0), y). And the curve C passes
T,(M) by one point, which we denote by (x(1), y). Then the correspondence y — j
defines a bijective differentiable mapping y: T,(M) — T,(M). We call the mapping

in T(M) represented as (x(t), y(t)) satisfying locally
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¥ a holonomy mapping from T, (M) to T,(M) along the curve C with respect to

the non-linear connection N.
Let S(x, y) be a quasi tensor field. That is, if S(x, y) be, for example, of (1,1)-

0 . . .
e X dx’ in each coordinate neighbourhood (U,
xi) of M. Of course, the components Si(x, y) are C* functions in (z~'(U), x*) and

Vi) s

S . ox
satisfy Si(%, ) = Si(x, ))<=

type, S is written as S = S}(x, y)

in UnU( # ¢) where Si(%, 7) are the componentes

R ) , 0 :
of S in (U, x'). Now, for any point pe U, Si(x, y) 6)7 & dy’ can be regarded as a

tensor field on the space T,(M)(<n '(U)), because al = 5x'

oy’ ox’
n~Y(U)nn~Y(U). We shall denote this tensor by S*(p, y) or S*(x, y) and call it a
lifted tensor on T,(M). It is, however, to be noted that the lifted tensor S* is
neither the so-called vertical lift of S nor the horizontal lift of S, and moreover it is

not a tensor field on T(M). It is only the tensor field on T,(M).

holds in

N
Next, we denote by p the h-covariant derivative with respect to the non-linear

connection N, that is, for any quasi tensor field T, for example, of (1,1)-type,
N P . . R L.
Vi T: = 8, T — 0, TiNP + T7'6,Ni, — T 0; Ny

Concerning these notions, we have obtained ([9], [12])

Theorem 3. Let M be a manifold admitting a non-linear connection N, and let
S(x, y) be a quasi tensor field defined on M. Let p and q be arbitrary two points in
M. In order that any holonomy mapping from T,M) to T(M) with respect to N
always transfers the lifted tensor field S*(p, y) on T, (M) to the lifted tensor field
S*(q, y) on T,(M) for any curve joining the two points p and g, it is necessary and

N
sufficient that VS =0 holds good.

Let us assume moreover that M is a Finsler manifold and g be the Finsler
metric tensor. For any point pe M, the lifted tensor g*(p, y) gives T,(M) a
Riemann metric. Now, let p and g be arbitrary two points in M. If any
holonomy mapping from T, (M) to T, (M) which is associated with a non-linear
connection N is always an isometry from the Riemann space {T,(M), g*(p, y)} to
the Riemann space {T,(M), g*(q, y)}, then the non-linear conrection N is called

N *
metrical. The condition for N to be metrcal is written as g = 0. Let I, be the

1) A quasi tensor is a so-called tensor of Finsler type. However, to avoid the confusion with a
Finsler metric tensor, we shall adopt the terminology “quasi tensor”.
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Finsler connection defined by E. Cartan, and G} be the non-linear connection

*
given by G%=1T,;y", which is called the Cartan’s non-linear connection
hereafter. With respect to these, the following results have been obtained [9].

Theorem 4. Let M be a Finsler manifold. Any holonomy mapping associated
with the Cartan’s non-linear connection is always metrical, if and only if the given
Finsler metric is a Landsberg metric.

Theorem 5. Let M be a Finsler manifold whose metric tensor is g, and let C be

1. .
zg"”amgjk. Any holonomy mapping associated
with the Cartan’s non-linear connection leaves the lifted tensor C* invariant if and

only if M is a Berwald space.

a quasi tensor field defined by C') =

§3. The D(O(n))-structure depending on %,

N
poon ={(§  §)1acom|,

we see that D(O(n)) is a Lie subgroup of T,. In this section, we assume that the
tangent bundle admits a D(O(n))-structure depending on %,, and denote it by €.

Since D(O(n)) = D(GL(n, R)), if T(M) admits a structure %, then it admits a
structure 4, that is to say, T(M) admits a non-linear connection N. Moreover,
since D(O(n)) = O(2n), T(M) admits also a positive definite Riemann metric G. To
be precisely, let (z~}(U), x*) be any canonical coordinate neighbourhood attached
to the structure %, in T(M), and let {Z,} be an adapted frame of €, in n~*(U),
then

Putting

Z,=v.0/0x' + 0.,0/0y', Zz="v.0/0)"

where det|yi| # 0, ¥ are (0)p-homogeneous for y and ¢, are (1)p-homogeneous for
y.  The non-linear connection N is also given by N = — ¢y~ '. For any pcint
Pen Y(U), we can define an inner product in Tp(T(M)) by <{Z,, Zg).-
= 6,5 It is easy to show that this inner product is globally well-defined on
T(M). Let {X,} be the N-frame associated with the given non-linear connection

N and let us denote y~! = B = (B%). Then p7 are (O)p-homogeneous for y. Now,
it is easy to see that

X, =piZ,, Yi=piZs

<Xi9 X}> =Jijp <Xi, Y]> =0, <Yw Y;> =Jijp
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where we put g;; = ?p4. Obviously, g;; are (0)p-homogeneous for y, and g;;
J =4 J y tJ g J

give M a global quasi tansor field g of (0, 2)-type and g,;¢'¢" is a positive definite
quadratic form. Thus we obtain that g is a generalized metric in Modr’s
sense[ 18], namely, a homogeneous positive definite generalized Finsler metric ([6],
[17]). For the sake of brevity, we call g a Modr metric. Now we show

Theorem 6. A tangent bundle T (M) admits a structure €,(i.e., a D(O(n))-
structure depending on €,), if and only if the underlying manifold M admits a non-
linear connection and a Mocr metric.

ProOF. It is shown already that the condition is necessary. Now we show
the condition is sufficient. In a local coordinate neighbourhood (U, x%) in M, let
g:(x, y) and N’(x, y) be the components of the Modr metric g and the non-linear
connection N respectively. Since g;,(x, y) is positive definite and symmetric for i
and j, there exists n linearly independent local quasi vector fields yi(x, y)(a =
1,2,..., n) in U such that g;(x, y)yi(x, y)vj(x, y)= 0, Of course, yi(x, y) are (0)p-
homogeneous for y. If we put y=(y,) and y~ ' = f = (f7), we have g =(g;)
='BB. Let {X,} be the N-frame in =~ *(U), and put Z, = y.X,, Z, = 7Y, Then,
{Z,} is a 2n-frame in 7~ '{U). Moreover we can define an inner product <, in
n~}(U) by

(X, Xj>n—1(U) = gij(x7 V), <X, Yj>n—1(U) =0,
<Y, Yj>n—1(U) = gij(xa ).

Then we have (Z,, Zy>.- @), = Valx, Wyi(x, W{Xy X;Dro1y) = O Similarly, we
have {Z,, Z5),- vy =0 and {Zz Zp),- ) = 0 Thatis, we have {Z,, Zp>, )
=0, Let (U, ) be another local coordinate neighbourhood in M. Then we
can define similarly the N-frame{X ,} and 2n-frame {Z,} in x~}(U). And also, by
the same procedure, we can define an inner product in n~Y(U) and obtain (Z,,
Zs>n- 1@ = 045 Here, we assume UnU # ¢, then, in n~(U)nz~}(U), we have

ox"™ . 0x" ox™ 0X" _

Xy XDty = <WXm9 er>n—l(lj) = Wﬁgmr()@ y)

= gij(x7 y) = <X, Xj>n~x(U)-

Similarly we have (X, Y;>,-1@ = {Xi YDr-1w) and Y, Y, q) = <Y Y-y
Namely, thus defined local inner product in each =~ }(U) is the inner product
which is defined globally on T(M). Next, it is evident, in =~ }(U)n=n~}(U), that
Z,=PSZ, where (P$)eGL(2n, R) holds. Since the inner product is the global
one on T(M), it follows that
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2n
5AB - <Z_Aa ZB> = <Pian PEZD> = Czlpipg’

ie, (P9e€0(2n). On the other hand, it is seen

- = ox" ox"

— gm — am X =5m bZ
Za a Xm ya aim r ya a)zm ﬁr b>
_ - ox" ox"

_=gmY = Y =™ 'Izz_’
a Va a ajm ﬁ b

m a axm r
ie, (P9QeD(GL(n, R)). Thus we have (P$)eD(O(n)). Of course, we have
Z, = 7,0/0y" — Ny 0/dy', Zz = 7,0/0y',

where . are (0)p-homogeneous for y and —N.y" are (1)p-homogeneous for
y.  Summerizing up all the above, we obtain that T(M) admits a structure %,.
QED.

If T(M) admits a structure %,, it also admits a structure ;. So, T(M)
admits an almost product structure. Let P be the almost product tensor and G
be the Riemann metric tensor on T(M) which is derived from the structure %,.

With respect to the N-frame, P and G have the components as

E , O
(5 e
0 , —E, 0, g

respectively. Then, it is easy to verify that ‘PGP = G holds. This tells us that P
and G construct an almost product metric structure.

As is already seen, the components of the almost complex N structure F with
respect to the N-frame is written as F = J,. So, it is seen directly that ‘FGF = G
holds good. This tells us that F and G construct an almost Hermit structure.

As is well-known, on putting w = GF, ® is a skew-symmetric non-degenerate
tensor field of (0, 2)-type. So, we can consider the differential 2-form € which is
determined by . This is the differential 2-form associated with the almost
symplectic structure which is induced from the almost Hermit structure {F, G}
([41, [20]).

Now we write down the components of w with respect to the canonical
coordinate (x’, y). First, direct calculation gives us that

(0/0y', 0/0y’y = g;;, <0/0x', 8/dy’) = g, NT,
(0/0x', 8/0x") = g;j + NI'N'ig -

‘NgN , 'N
Hence we get G= <g g g)'
gN ., g
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On the other hand, in §1, we have
- N ’ - En >
F = .
E,+N? , N

—gN+'Ng —g>
g , 0 )

From these, we get

w = (w,4p) = (

Therefore we obtain
Q=— (gimN}" - gij?')dxiAdxj - 2gijdxiAdyj'
Remark. This @ essentially coincides with the differential 2-form associated
with the almost Finsler structure ([11], [13]).

If the differential 2-form associated with an almost Hermit structure {F, G} is
closed, the structure {F, G} is called an almost Kédhler structure. Now we show

Theorem 7. Let T(M) be a tangent bundle admitting a structure €,. In order
that the induced almost Hermit structure {F, G} from the structure €, is almost
Kdhlerian, it is necessary and sufficient that the following hold good:

(1) The Moor metric g is a Finsler metric,
(2) The non-linear comnection N satisfies

VP ing — P imd = V"G GiN} = 3,ND,
ProOOF. Since 2 can be written as
Q = 2g;, Nidxydx’ — g;;dx} dy’),

we have

dQ = 2{0(g; N7)dx dx}, dx’

+ (g, ND) + 0;g4) dyk dxi, dx? — 0,g;; YK dxidy’).

Therefore, the condition df2 = 0 is written as

(@) g N?) + 349 Ni) + 0491 N7)

— 09 N}) — 0/giNT) — 0dg NY) = 0,
(b) 09 ND + 039 — Olgan NY) — Oigs =0,
(€) 0rgij— 0;9u = 0.

First, it is well-known that (c) is the condition for g;; to be a Finsler
metric. Contracting y* to the equation (b), we have
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(*) ym(aigjm_ajgim)z gy Ni — 9i N3
Using this and the fact that g;; is a Finsler metric, we can easily verify that the
condition (2) is satisfied.

Conversely, if the condition (1) and (2) are satisfied, the condition (c) is
satisfied evidently and the condition (2) is rewritten as the equation (x).
Differentiating the equation (*) by )*, we can see that the condition (b) is

satisfied. Finally, using the equation (x), it follows that
the left hand side of (a)

= 0k(ger§ - girN;') + aj(girN'I; — g ND) + ai(gkrN;' — Gjr K
= ak{ym(aigjm - ajgim)} + aj{ym(akgim - 6igkm)} + ai{y ™(0:Gkm— akgjm)}
= 0.

Thus the condition (a), (b) and (c) are all satisfied, namely, dQ2 = 0 holds good.
Q.E.D.

In the case of Theorem 7, 2 can be rewritten as Q = d(2y™g,,;dx’). This is

the well-known differential 2-form defined on a tangent bundle over a Finsler
manifold ([14], [20]).

Theorem 8. In order that a manifold M is a Finsler manifold, it is necessary
and sufficient that the tangent bundle T (M) admits a structure €, whose induced
almost Hermit structure {F, G} is almost Kahlerian.

Proor. In order to prove this, according to Theorem 6 and 7, it is sufficient
to show that a Finsler manifold M admits a non-linear connection such that the
relation

N N

Y™ (7 iGmj — Viim) = V" G0 N — O,N7)

holds good. To do this, we show that the Cartan’s non-linear connection G}
satisfies it. With respect to the Cartan’s Finsler connection, the relations

. * * . . R .
aigjk = argjng + gkrrjri + gjrrkri > 5;‘ch = 6kG;’
hold true. Then, it is easily seen that

G G . .
ym(Vigmj - ngim) = ym(aigmj - ajgmi - grjamG'l: + griamG;)

* .

. * * *
= ym(argijf + grjrmri + gmrrjplz “argmiG;' - grirr;j ~ Ymr Fl;)
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- ger; + griG;’
=0.

And the relation ymgmr(éiG; — 5jG{-) =0 is evident. Thus the proof is completed.

§4. Integrability conditions

We have considered, in Theorem 2, the condition for the structure %, to be
integrable. On the other hand, if T(M) admits a structure %,, then T(M) also
admits an almost product structure and, at the same time, an almost complex
structure. To consider the integrability conditions of them, we calculate the
Nijenhuis tensor.

Let S be a tensor field of (1,1)-type. The Nijenhuis tensor N of S is given by

Ng(U, V)=[SU, SV] + S*[U, V] - S[SU, V] - S[U, SV],
U, V being any vector fields. For the N-frame {X ,}, we have
[X, X1 =REY, [X, ,1=0;NY, (Y, ¥;]1=0,

where Rl;= — 6;N" + 8;N" + 0, N*N" — 6, N!N™.

First, we consider the almost product structure P which is induced from the
structure ¢, in T(M). P satisfies P(X;) = X; and P(Y,)= — Y, Therefore the
Nijjenhuis tensor N, has the relations

NP(Xi’ XJ) :4R?1Yh> NP(Xp Yj) =09 NP(Y> Y]) =O

Hence, in a tangent bundle admitting a structure %,, the Nijenhuis tensor with
respect to the almost product structure induced from %, vanishes when and only
when the non-linear connection derived from %, satisfies R}, = 0.

Next, we consider the almost complex N structure F. F satisfies F(X,;) =Y,
F(Y)) = — X, Hence the Nijenhuis tensor N, has the relations

NeX; X) = — RiY, — (0N} — O;NDX,,

NF(Xi: YJ) = (61N7 - ajN?)}/h - R?tha

Ni(Y, Y) = REY, + (O:N} — 0,NDX,,
Therefore, in a tangent bundle admitting a structure %,, the Nijenhuis tensor with
respect to the almost complex N structure derived from %, vanishes when and
only when the non-linear connection derived from €, satisfies R}; =0 and J;N"
— 0;N¥ =0. This is the well-known result ([7], [14], [16]).

Of course, if N =0, T(M) is a complex manifold. However, with respect to
the complex structure, it is not always true that T(M) is covered by a system of the
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suitable canonical coordinate neighbourhoods {(x~*(U), x*)} such that (z') =

(x* + </ — 19" becomes the local complex coordinate of =~ !(U).

As is shown in Theorem 2, if the structure €, is integrable, M is locally
affine. In this case, M is covered by a system of local coordinate neighbourhoods
{(U, x')} such that Ni=0 holds in each n~(U). Hence, both N, and N
vanish. Moreover the natural 2n-frame {0/0x“} in each n~'(U) is adapted to the
almost complex N structure F.

Conversely, in a tangent bundle T(M) admitting a structure %y, if T(M) is
covered by a system of the local canonical coordinate neighbourhoods {(n~}(U),
x4)} such that the canonical natural frame {9/0x*} is adapted to the induced
almost complex N structure in each 7~ }(U), then it follows, in each (z~'(U), x*),
that F = J, and F(9/0x’) = 0/0y', F(0/dy') = — 8/dx' hold. On the other hand,
F(X;) =Y, and F(Y;) = — X; hold. Hence we get N; =0 in each n~'(U), that is,
M is locally affine. Thus we obtain

Theorem 9. Let T(M) be a tangent bundle admitting a structure %, and let us
consider the almost complex N structure induced from the structure €,. The
tangent bundle T(M) is covered by a system of local canonical coordinate
neighbourhoods {(n~*(U), x*)} such that the natural frame {3/0x*} in each n~'(U)
is adapted to the almost complex N structure, if and only if the underlying manifold
M is locally affine, that is, the structure €, is integrable.

Next we show

Theorem 10. In order that a tangent bundle T(M) admits an integrable
D(O(n))-structure depending on €., it is necessary and sufficient that the underlying
manifold M admits a flat Riemann metric.

Proor. First, let us consider a tangent bundle T(M) admitting an integrable
%, structure. Due to the definition, T(M) is covered by a system of canonical
coordinate neighbourhoods {(n~}(U), x*)} such that the natural frame {0/0x"} is
adapted to the structure 4,. Then {9/dx4, 8/0x5) = 45 holds. That is, g;; = J;;
holds true with respect to each (U, x%). Of course, {(U, x*)} covers M. Hence M
is locally Euclidean.

Conversely, if M admits a flat Riemann metric g;;, then M is covered by a
system of local coordinate neighbourhoods {(U, x)} with respect to which g;; = J;;

i
holds al . Th
olds always en {jk

}zO holds. Now, the system of the canonical

coordinate neighbourhoods {(z~!(U), x*)} covers T(M). With respect to these

coordinate neighbourhoods, the non-linear connection Nj.z{ l}y’” vanishes.
mj

Hence the N-frame {X,, .Y} for the non-linear connection coincides with the
canonical natural frame {¢/0x*}. On the other hand, according to Theorem 6, g,;
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and N} determine a structure %, in T(M) and the relations <X, X = Gij
Y, Y)=g; and (X, Y>=0 hold Hence we have (3/dx*, 0/0x®)
= d4p. Thus the natural frame {3/0x*} is adapted to the structure %¥,. That is,
the sructure %, is integrable.

Finally we show

Theorem 11. In order that a manifold M is a locally Minowski manifold, it is
necessary and sufficient that the tangent bundle T (M) admits a structure €,
satisfying

(1) The structure €, induced from €, is integrable,

(2) The almost Hermit structure {F, G} induced from %, is almost
Kahlerian,

(3) The non-linear connection derived from €, is metrical with respect to
the Modr metric derived from € ,.

Proor. Let M be locally Mikowskian and g;; be the metric tensor. Then M
is covered by a system of local coordinate neighbourhoods {(U, x%)} such that
0xg;; = 0 holds good in each U. Then, in these coordinate neighbourhoods, the

*
Cartan’s Finsler connection /7 and the Cartan’s non-linear connection G

vanish. Now, g;; and G} induce a structure %, in T(M). We consider this
structure ¥,. The N-frame associated with G} is an adapted frame of the
structure ¢, determined by G}, and G* = 0 holds in each z~}(U). So, the natural
frame {0/0x*} is adapted to the structure %,. Of course, by definition, ¥,
coincides with the D(GL(n, R))-structure induced from %,. Namely, the structure
%, satisfies the condition (1). On the other hand, it is obvious in each U that

G . . .
Vidij = Ougij — OmgiiGr  — m;j0:;GY — 9im0;Gy = 0. Hence the condition (3) is

satisfied. Moreover, ,G* — 3,G¥ = 0 is evident. And, of course, g;; is a Finsler
metric. Hence, owing to Theorem 7, the structure %, satisfies the condition (2).

Conversely, let us assume that T(M) admits a structure %, satisfying (1), (2)
and (3). Then there given a non-linear connection N and a Moo6r metric
g. Now, according to Theorem 7, the condition (2) tells us that g is a Finsler
metric. And the condition (1) implies that T(M) is covered by a system of local
coordinate neighbourhoods {(z~'(U), x*)} such that {(U, x)} covers M and N

N

=0 holds in each n~}U). On the other hand, the condition (3) means pg

= 0. Then, with respect to these coordinates, 0,g;; =0 holds. Namely, M is
covered by a system of local coordinate neighbourhoods {(U, x’)} such that d,g,;
=0 holds good in each U. Therefore M is locally Minkowskian.

Remark. According to Theorem 9, the almost Hermit structure {F, G} in
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Theorem 11 is K&ahlerian.
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