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1. Introduction

Let S be a semigroup. The power semigroup P(S) of S is the set of all non-
empty subsets of S with the operation defined by

XY= {xy|lxeX, yeY}

for X, Yin P(S). This concept is old as is found in Dubriel [1], Liapin [4] and
Tamura [9], but precise studies have begun recently (see, for example, Gould and
Iskra [2], Tamura [7]). Even if S has a simple structure, the structure of P(S) can
be very complicated. This is especially so if S is infinite. Suppose that S is a
commutative semigroup with a non-preiodic element. In this paper we show that
(i) P(S) has uncountably many incomparable archimedean components, and (ii)
P(S) contains uncountably many free generators. The first result answers to a
question posed by Tamura [8]. The second result may be interesting in
connection with the embedding problem in power semigroups.
The set of positive integers will be denoted by P.

2. Archimedean components

If § is a commutatie semigroup, then so is P(S). A standard way to
investigate a commutative semigroup is to decompose it into a semilattice of
archimedean semigroups. Let T be a commutative semigroup. The relation p
on T defined by

xpy if x" =yz and y" = xw for some neP and z, weT,

is a congruence of T. Th\e. p-classes are archimedean subsemigroups of T and are
the archimedean componernis of T. The archimedean component containing xe T
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is denoted by /.. The quotient T/p is a (lower) semilattice and is the greatest
semilattice image of . For &, o, €T/p, o/, <, if and only if x" = yz for some
neP and zeT

Now we shall show the semilattice decomposition of P(S) is intricate in
general.

Theorem 1. Let S be a commutatie semigroup with a non-periodic
element. Then P(S) has uncountably many incomparable archimedean components.

To prove the theorem we need the following easy lemma.

Lemma 1. Let X be a countable infinite set. Then there is an uncountable
Samily {X,}.; of subsets X, of X such that the difference X,\X; is infinite for any
different o and B in 1.

Proor. We may suppose X is the set of rational numbers and I is the set of
real numbers. For ael define a subset X, of X by X, = {xeX|a xS a+ 1}.
Then the family {X,},., satisfies the desired property.

Proor of Theorem 1. Let a be a non-periodic element of S. First we choose
an infinite sequence X = {n(i)|icP} of positive integers such that n(l) =1 and
n(i + 1) > N(i)? for ieP. By Lemma 1 we can find an uncountable family {X,},;
of subsequences of X such that X,\X, is infinite for any different o, fel. We
may assume that every X, contains 1. Let A, be an element of P(S) defined by A4,
= {a"|ne X,} and let o, be the archimedean component of 4, in P(S). We shall
show that ./, and .«/; are incomparable if « 3 f.

Assume to the contrary that .o/, < .o/, that is,

(1) AL = 4,C

for some my,...,m,eX, It follows from (2) and (3) that a" """ =
qgmte-tm,tn-1 or

(2) ata"---a*t =d'c
for some n,,..., n, €X, Since a€ A, again by (1) we have
3) ama™...a"t =ac

for some my,...,m,€X,. It follows from (2) and (3) that
ny+..-+n my+.-+m, +n—1

a i =q ¢ or
4) i+ +n,=my+--+m, +n—1
Since n is not in X,, n is different from any of n,...,n, and my,..., m,.

If n> max(ny,..., n,) then \/ﬁ>max{n1,.:.,na} by the property of the
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sequence X. So by (4 we bhave n=<n +--+n,< ﬁ'é <n a
contradiction. Hence n < max{n,,...,n,}. We may suppose that =n,
= max{ny,..., n,} and m, = max{my,...,m,}. If n; >m,, then \/Z > m; for
i=1,..., £. Noting \/Z > n, we get the impossible inequalities

nEm+--+m+n—-1</n(€+1)=/nn<n,.

In the same way n; < m, is impossible and we have n; = m,. Thus we can cancel
n, and m; in (4) and we get

ny+--+n,=my+--+m, +n—1.

Repeating the above argument, we can cancel all the n; and m; in (4) and finially
we would have n = 1, but this is impossible.

Similarly, ./, = </, is impossible either. Therefore ./, and ./, are
incomparable and the proof of the theorem is complete.

What about the cardinality of each archimedean component of P(S)? We can
show that some of the components are uncountable. In fact, let S be a
commutative semigroup with a non-periodic element a. Consider the subsets of
{a'lieP} containing 4¢*> and d' for all positive odd integer i. There are
uncountably many such sets and the square of them are all equal. Therefore they
are in the same archimedean component which are uncountable. Thus, P(S) has
uncountably many archimedean components some of which are uncountable.

The semilattice decomposition of P(G) for a finite group G was described by
Putcha [5]. Tamura [8] studied the archimedean components of P(G) for the
infinite cyclic group G and asked how many archimedean components P(G)
has. The answer is “"uncountable” due to Theorem 1.

3. Free commutative subsemigroups

The embedding problem in power semigroups has been of interest (Gould and
Iskra [3], Trnkova [10]). In this section we shall prove a somewhat surprizing
result that the power semigroup of a semigroup with a non-periodic element has a
very large free commutative subsemigroup.

Theorem 2. Let C be a infinite cyclic semigroup. Then P(C) contains a
subsemigroup isomorphic to a free commutative semigroup on an uncountable set of
generators.

We need the following lemma stronger than Lemma 1. The result is due to
Sierpinski [6].

Lemma 2. Let X be a countable infinite set. Then there is an uncountable
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family {X,}.e1 of infinite subsets X, of X such that X,0 X, is finite for any different
o and B in L

PrOOF. We may suppose X = P and I is the set of real numbers between 1/2
and 1. For ael, define X, = {Int(2"x)|ne P}, where Int(t) for a real number ¢ is
the greatest integer not exceeding t. Let o and f be different elements in I. Since
2" < 2"a<2" and 2"7' <2mB < 2™ for any m,meP, we see that
Int(2"«) % Int(2™B) if n x m. Moreover, Int(2"x) = Int(2"8) if n > — log,|a — B|.
It follows that X,n X, is finite.

PROOF of Theorem 2. We may assume that C is the additive semigroup of
positive integers. The operation of P(C) is also written additively and n4 denotes
the sum of n A’s for neP and AeP(C). Let X = {n(i)|icP} be an infinite
sequence of positive integers such that n(i + 1) > n(i)* for all ieP. Let {X,},. be
an uncountable family of subsequences X, = {n(«, i)|ieP) of X such that X,n X, is
finite for any different « and f in I. The existence of such a family is guaranteed
by Lemma 2. X, are considered to be elements of P(C). We claim that the
subsemigroup generated by {X,},.; is a free commutative semigroup with the free
generating set {X,},c;-

Let {m,}.,.; be a set of non-negative integers indexed by I such that only a
finite number of m, are positive. Let

Y= Zaelded = leax + -+ mrXa,a

where {m; = m,|i = 1,..., r} is the set of all positive integers in {m,},;,. We have
to show that the integer m, is determined only by Y and « for any ael. Let acl
and ieP, and set

Yo, i) = (neYn < n(a, i)?}.

Let n be in Y(a, i), then n is written as

5) n= _; kz n(e, i(k)).

If some of n(a;, i;(k)) in (5) were greater than n(x, i), then n>n(a, i)?, a
contradiction. So every n(a;, ifk)) in (5) is not greater than n(x, i). If just m
numbers in n(x; i;(k)) are equal to n(a, i), then

n=mnl i+ p,

where 0 < p < M- /n(a, i) with M =), m,=m,; +-- +m, By the choice of
the family {X,},o;, there exists a positive integer N such that if i = N, then n(«, i)
= M? and n(a, i) is not in X,, foreachj=1,..., r with a; % «. Therefore, if i = N,
then the greatest number in Y(x, i) is of the form m, n(a, i) + p with p < n(a, i)
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C Y(o, i :
< M- /n(a, i). This implies m, = Int(%) for i = N. Consequently we
, 0

have

) max Y(a, i)
m, = lim Int[ ————— ),
io o n(e, i)

showing that m, is determined by Y and «.

Corollary 1. Any commutative semigroup S whose cardinality is not greater
than the cardinality of the real numbers devides the power semigroup P(C) of the
infinite cyclic semigroup C, that is, S is a homomorphic image of a subsemigroup of
P(C).

Corollary 2. If a semigroup S contains a non-periodic element, then P(S)
contains an uncountale free commutative semigroup.

The above results imply that P(S) contains a large cancellative subsemigroup
in general. [t may be interesting to point out that P(S) itself is not cancellative at
all.

Proposition. If S is a semigroup with at least two elements, then P(S) is not
cancellative.

Proor. If S is a band of order greater than 1, then S is not cancellative and
neither is P(S). If S is not a band, then S has a non-idempotent element a. Let
A be the subsemigroup of S gnerated by a. Then we have A-{a} = A-{a, a*} in
P(S). Since {a} x {a, a*}, cancellation does not hold in P(S).

If S is a monoid with a non-periodic element a, then P(S) contains an
uncountable null subsemigroup as well as an uncountable free commutative
semigroup. In fact, subsets of {a'|ieP} containing 1 and a’ for all positive odd
integers i form an uncountable null subsemigroup of P(S).
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