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In this paper we investigate the inverse scattering problem for 1-dimensional
Schrodinger operator

H,=—02+u(x), 0,=d/dx, —o0<x<c0,
with certain real potential u(x) in L, where

L ;={u(x)|real valued continuous,I xl}rz} u(x)=0 and
j Ix[Hu(x)ldx < o0}, A20.

We consider the unique selfadjoint extension of H, considered in the space of
twice continuously differentiable functions on (— o0, c0) with compact support; we
denote it again by H, itself. Throughout the paper, we assume that the unique
selfadjoint extension H, has no bound states, i.e. o,(H,)= ¢, where a,(*) denotes the
point spectrum.

Let f+(x, & u), £eR\{0}, be the solutions of the differential equation

Hof, =[] +u(x)fy =&f,, '=dldx

with the asymptotic conditions £, (x, &; u)~e ** as x— + oo respectively, which are

called the Jost solutions. If we assume u(x)e L j then the Jost solutions exist uniquely
for (e R\{0}. Since the solutions f, (x, +&; u) are linearly independent for £e R\ {0},
there exist a(&; u) and b(¢; u) such that

f-0e G u)y=a(S u)fr(x, =& u)+b(E u)fi(x, & u).
We have immediately
la(&; w)?=1+1b(&; u)*.
Therefore a(¢; u) does not vanish for EeR\{0}. Put
re(85 u)=2b(L£&; u)/a(l; u).

The functions r, (¢; u) and r_(&; u) are called the right and left reflection coefficient
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respectively. Moreover the function

(& u)=1/a(S; u)
is called the transmission coefficient. The 2 x 2 matrix
e, u)  ro(&u)
ro(ou) 1 u) >

is called the scattering matrix for the potential u(x). We refer to [1], [5] and [6] for
detail of the scattering theory.

If u(x)eLi and 0,(H,)= ¢, then, by Levinson’s theorem [5; Corollary, p208], the
potential u(x) 1s uniquely determined by the right reflection coefficient r (£, u) only.
On the contrary, the present author showed in [8] that if u(x)e L\ L! then the right
reflection coefficient r, (¢; u) does not determine the potential u(x) uniquely even
without bound states in general, i.e., there exist u;(x)eL{\L} (j=1, 2) such that
Uy (x)#u,(x), aP(H,,j) =¢andr, (& u)=r, (¢, u,). The main goal of the present work
is to give an algorithm for recovering all potentials u(x)e L such that ¢,(H,)= ¢ and
the right reflection coefficient r, (£; u) coincides with the given function r(¢) with
certain additional conditions.

The contents of this paper are as follows. In §1 we explain the classical Darboux’s
lemma and define the Darboux transformation. In §2 we prove the existence of positive
solutions for the equation H, f=0.In §3 we investigate Tanaka’s lemma. In §4 we study
the property of the Darboux transformation A, ,in the case of ue L {. Finally, in §5, we
give a solution of the reconstruction problem. §6 is devoted to the concluding remarks.

S(E; u)=(

1. Darboux’s lemma

In [2], G. Darboux obtained the following (see also [3] and [9: pp 88-91]).

Lemma 1 (Darboux’s lemma). Let f,(x) be the nontrivial solution of the
equation H, f,=Af,. If u#v then

9x)=W . LI,

solves the equation

H, uvg =ug,
where

uy(x)=u(x)—2(d/dx)* log f,(x)

and W (¢, )= Y’ — ¢'p is Wronskian. In particular, h(x)=1/f,(x) solves the equation
H, h=vh.
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PrROOF. Put A=f,"'0.f, and A*=—f,0,f, " then H,=AA*+v,H, =A*A+v
and g =A*f, follow. Hence we have
H, g=(4%4+ v)A*f,
=A*(H,—v)f,+vA*f,
=A*H,f,=pA*f,=ug.
The proof for 4 is quite similar. Q.E.D.

On the other hand, the Darboux transformation is defined as follows: Let g(x) be
a nontrivial real valued solution of the differential equation

(1) H,g=—g"+u(x)g=0.
Put A,=¢g"'0,g and let A*= —gd,g~" be its formal adjoint. Then
) H,=A,A*

follows. By exchanging the roles of 4, and A4} in (2), we obtain the Darboux
transformation

Hu,y:A;Ag

of H, by the solution g(x). The spectral property of ﬁu,g was studied precisely in [8] in
the case of u(x)eL; and ¢,(H,)= ¢. On the other hand put

q(x)=(d/dx) log g(x)
then we have
u(x)=q(x)+4q(x)*
Moreover define 74,(x) corresponding to u(x) and g(x) by
8y (x)=—q'(x)+q(x)* =u(x)—24 (x),
then one easily verifies
H,,=—32+1i,(x).

If we require 4,(x) to be continuous together with u(x) then it suffices to consider the
Darboux transformation ﬂ,,,g only by the positive solution g(x). Consequently we
must investigate first of all whether the differential equation (1) has a positive solution
or not. Hence we do this in the next section.

2. Positive solution of (1)

In [5], Deift and Trubowitz proved the following: If ue L | then the Jost solution
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S x, &; u) are defined even at £ =0. Moreover 6 ,(H,) # ¢ if and only if 1, (x,0; u) vanish
for some Xx.

This implies that if u(x) is in L] and ¢,(H,)= ¢ then S, (u)# ¢ and S (x, 05 u)
€S (u), where S, (u) is the set of all positive solutions of the differential equation (1).
We want to generalize the resusit of Deift and Trubowitz mentioned above for the
potential u(x)in L. However note that the Jost solutions f’ , (x, & u) are not necessarily
defined for £=0 when u(x) is in L§. Therefore we can not obtain any information
about solutions of (1) from f, (x, &; u).

Let S™)(u;v) (v=0, o0) be the sets of all solutions f (x) of (1) such that f(x) tend to
v as x— £ oo respectively. Similarly let S*)(u; R, ) be the sets of all solution f'(x) of (1)
such that _ljngo f(x) exist and belong to R, = (0, co) respectively. Then we have the
following.

Theorem 2. Suppose that u(x)eLj, 6,(H,)=¢ and S*)(u; R,)# ¢. Then
SE(u; R, )=S , (u) is valid.

Proor. It obviously suffices to show that if the solution £ (x) of (1) tends to 1 as x
— o0 then f'(x) does not vanish for arbitrary x. The following argument is quite similar
to [5; pp 163-165]. Assume that f(x) has a zero. Then, without loss of generality, we
can assume that f(0)=0and f (x) #0 for any x > 0. Then /" (0) > 0 follows. Let A be the
Friedrichs extension of H, restricted to C§’(—a, o), where a is an arbitrary positive
real number. Note that functions g(x) in the domain D(H) vanish at x= —a, where
D(+) denotes the domain of the operator. Suppose g(x)e D(H) then, by putting g(x)=0
for x< —a, one can deem that g(x)e D(H,) and (g, H,8)12(- w,0)= (8 HZ)12(~0.00)
hold, where (%, *); denotes the inner product in the Hilbert space E. Hence, by the
minimax principle, #o,(H,)= ﬁap(ﬁ) 1s valid, where # denotes cardinal. Therefore it
suffices to prove o,(H)# ¢. Let

1 for xZn,
An(X)=9 2—x/n for n<x=<2n,
0 for x=2n,
and ¢(x)eCy(—1, 1) with ¢(x)=0 and ¢0)=1. Now, for >0 and n>1, define
0 for x<—a
Juslx)=¢ e(x/a+1) for —a<x<0,
InX)f(x)+ep(x) for  xz0.
Then f, ,e D(H) follows. By direct calculation (see [5; p 164] for more detail.), we have

Alfytucl = J )
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2n

=c,e” =2 (0)e+ 0(1)+J {0 (0)f () + 2 ()7 (x))?

+u(x)y, (x)* £ (x)*}dx.

One verifies

j n{(X;(X)f(XHxn(x)f’(X))2 +u(x)y(x)2 £ (x)*hdx

n n

2n ' 2n
éZJ (n_zf(x)2+f'(x)2)dx+J S () lulx)ldx

2n

<c,n? +2J‘2n]”(x)2a’x+c3Jv lu(x)|dx

n

2n
f(x)%dx, n—oo.

=0(1)+2j

n

On the other hand one can show

Fx)=— J ") f )y +C.

X

Assume C #0 then there exists § and a positive constant K such that (f (x)/f"(x))* <K
for all x= 4. Since

(f" ) + (f o)f () =ulx),
by straightforward calculation, we have

a0

f(X)/f’(x)=x+J u)f Pl ) dy+C

X

for all x=4. This is contradiction, i.e., C=0 follows. Hence f”(x) tends to 0 as x— oo.
Therefore we have

f ()< J TP e =L () f (01 —rf(x)f”(x)dx

n n n

— ) )~ J ") f (x2dx=o(1), n .

n

Thus, for arbitrary ¢>0, we have

H[ f, 0 fred=c182=2f"(0)e+0(1), n— 0.

Since f7(0)>0 by hypothesis, we can choose ¢>0 such as ¢,&*—2f"(0)e, which is
independent of n, is negative. Hence A[ f, ., f, . ]is negative for sufficiently large n. This
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implies () +# ¢. Q.E.D.

Now we classify H, such that u(x)eL and o,(H,)= ¢ as follows.

Definition. (cf. [8; p 16])

(I H,is of type 1 if and only if u(x)eL3, o,(H,)=¢ and |r , (& u)| <1 for all
EeR.

(II)  H, is of type 11 if and only if u(x)eL}, o,(H,)=¢ and r+(0; u)= —1.

(1) H, is of type N1+ if and only if u(x)eL{, o,(H,)= ¢ and H, satisfies the
Sfollowing (A) and (B +) respectively:

(A) rt(é; u)_1=lpi§+o(é), E—)O’
(Bx) S®w; Ry ) #

where p. are some real numbers.

Remark. Note that the operators of type III, actually exist. In fact, let H, be of
type II then, by lemma 1, f (x)=1/g, (x) (resp. 1/g _ (x)) solves the equation H,,,ﬁ f=0
(resp. H,, f=0)and 1/g. (x) belong to S™)(8,,; R.) respectively, where g, (x)=
f (x,0;v). Moreover, by Tanaka’s lemma [8], the condition (A) turns out to be fulfilled
by both 6, (x). Hence A,,’g , are of type III+ respectively.

The Darboux transformation of H, of type I and type II are studied in [7] and [8]
respectively. The main purpose of the following sections is to study the Darboux
transformation of H, of type III+.

3. Tanaka’s lemma

In [10], S. Tanaka proved the following: Suppose that u(x)eL}, o ,(H,)= ¢ and
there exists an absolutely continuous q(x) in L} such that u(x)=q'(x)+q(x)?. Put v(x)
= —q'(x)+q(x)* then v(x) is in L}, 0,(H,)= ¢ and

ro(&u)y=—ry (&)
are valid. See [7] for detail.
In [8], this resuslt is slightly generalized. In this section we give further

generalization of Tanaka’s lemma.
If f(x) is a solution of (1) then

3) £(x)= f () f )y +1 )+ (O)x

and
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@ £/(x)= ﬁ:u(y)f(y)dwf’(o)

are valid. Suppose that u(x)=0 for all x and S, (x)# ¢. Then, by (3),
S+ (@)= SH(u; 0)US(w; R, )US® (u; )
follows, i.e., any positive solutions have non-negative limiting values including + co as

X— + 00.

Taking into account the above consideration, we have

Lemma3. Suppose thatu(x)eL},u(x)=0forall xand S, (u)# ¢.If f(x)eS, (u)
then q(x)=(d/dx) log f(x) tends to 0 as x— + 0.

ProoF. First suppose that f(x) is in S (u,; 0)US*)(u; R.). Then, by (4), we

have

Fix)=C— f " u)f )y,

X

o

where C=f’(0)+J u(y)f (y)dyeR. Hence f'(x) tends to C as x—oco. Assume C#0

0
then there exist DeR and KeR . such that g(x) ™% < K holds for all x= D. Since ¢'(x)

+q(x)*=u(x), we have immediately

—q(x)" +x= —j u(y)g(y) 2dy+C

X

for all x=D. This is contradiction. Therefore C=0 follows, i.e.,

Fix)=— f ") f0)dy.

X

Hence it immediately follows that if f (x)e S*(u, R, ) then ¢(x) tends to 0 as x—c0. On
the other hand let f(x) be in S™(u,; 0) then, by I'Hospital’s theorem, we have

lim a0 =lim S =limu) =0

Next let £ (x) bein S (u; ). By (4), f*(x) either diverges to oo or converges to a finite
value as x—o0. If f'(x)—> 00 as x— o0 then, similarly to the above, we can show

lim g(x)*=1im u(x)=0.
If /'(x) converges to a finite value then g(x) obviously tends to 0 as x— 0. Q.E.D.

Next we have
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Proposition 4. (Tanaka’s lemma) Suppose that u(x)eL}, o,(H,)=¢ and
S, (u)# ¢. Then

re (& u)=—r=(&; 4,)
and
H&; u)=1(&; d,)
are valid for all g(x)eS, (u).

Proor. Let{eR\{0} and g(x)eS, (u). Then, by lemma 1, s+ (x, EY=A¥fi(x, & u)
solve the equation

Note that (¢, H,$) = (4 ), AFp)=0for ge S, (v) and for pe CF. On the other hand, if
u(x) is negative on some open interval then one easily verifies that there exists
YyeD(H,) such that (y, H,y)<0. Hence it follows that (x) is non-negative.Hence, by
lemma 3, g(x)= (d/dx) log g(x) tends to 0 as x—oo. Therefore A+ (x, ¢) turn out to
behave like +ife** as x— + oo respectively. Thus we have

Ji e, & ty)= £i™ AF f1 (x, & u), CeR\{0}.

By straightforward calculation, one verifies

a(&; dy)=(2i)" YW (=& AF - (x, &5 u), i1 AF f1 (x, & u))

= Qi)W (f-(x, & u), [+ (x, & u))=a(é; u)
and
b(&; )= Qi) W(—iET AF [ (%, =& u), —iET AR (x, & u))
=— Qi)W (f+(x, =& u), f-(x, & u))=—b(&; u).

Therefore

1+ (85 4g)=b(&; 4y)/a(C; dy)= —b(S; w)fal(l; u)=—r, (& u)
and

(& ag)=1/a(&; 4,)=1/a(&; u)=1(¢; u)

follows. The proof for r_(; #,) is completely parallel to the above. Q.E.D.

Corollary. Suppose that H, is of type 111, (resp. 111_) and let f(x)e S (u; R..)
(resp. S (u; R.)) then

) r+(§5 dp)=—re(&; u)

and
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(6) t(é’ ﬁf)':t(é; u)
hold.

Proor. By Theorem 2, $‘*)(u; R,) is included in S, («) . Hence, from
Proposition 4, (5) and (6) follow. Q.E.D.

4. Properties of H.s

In [5], P. Deift and E. Trubowitz solved the characterization problem in the class
LY by giving necessary and sufficient conditions for a given 2x2 matrix
(5:5(8))i,j=1,26€ R\ {0}, to be the scattering matrix of a potential in L}, In this section,
on the basis of this result, we show that if H, is of type I11+ and satisfies some additional
conditions then A, s is of type IL. More precisely we have

Theorem 5. Suppose that H, is of type 11 . and f (x) is in S (u; R , ). Moreover
assume that

%) Flx)=n"" f (& uperede

— o0

is absolutely continuous with

a

@®) r (14 x%)|F'(x)|dx < o0

for all aeR. Then, ﬁu, 1 is of type 11. In addition

S (x, 04, )=K/f (x)
holds, where K= liﬁm f(x) is the positive real number. The completely parallel assertion is
valid also for Huxofojype I _.

PROOF. We show that the scattering matrix of A, ; satisfies the conditions (cf. [5;
pp 210-212]) for a given 2 x 2 matrix to be the scattering matrix of the 1-dimensional
Schrodinger operator with a potential in Lj; without bound states. First, by
Proposition 4, we have r+(&; 4,)= —r+(&; u) and #(&; 4,)=1(E; u). Since f_(x, &; u)
(£eR\{0}) solves the integral equation

X

f-(x, & u)=e‘i‘f"—f &7 siné(y—x)u(y) f- (0, &; u)dy,

we have
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e e}

fx, & u)=e (1 2i€)” 1f ePu)f- (v, & u)dy)

— 0

+ei<"((2i£)_1r " uy)f_ (v, & u)dy)+o(1)

as x— oo. This implies
ePu)f- (v, & udy

[ee]

a(; u)=1—(2i€)*‘j

and

0

b, u)=(2i5)" 1f e”Pu(y)f- (v, & u)dy.

= 0

Hence we have
ro(C; u)=>b(; u)a; u)=0(1/%), [¢l—c0.

Moreover note that, by (A) in Definition (III) and Corollary, r+(&; @) is continuous
evenat {=0andr,(0;4,)= — 1 hold. Therefore, by [ 5; Theorem 3, P 212], it suffices to
prove that #(£; @) is the boundary value of the function analytic in the upper half plane.
While the Jost solutions f, (x, &; u) themselves are not defined for Im¢>0 in general
when u(x)isin L §, we show that #(£; u) can be extended analytically into the upper half
plane in our case. To do this, put

o0

T(C):exp{(2ni)‘1f

(E=0)7" log(l—Ir (&; u)?)dE}

for Im{>0. The function T ({) is defined and analytic in Im{>0 because log
(1—|r.(&; u)|?) is locally integrable by (A) in Definition (IIT) and log (1 —|r, (&; u)|?)
=0(1/}¢]) as |&|] > 00. Then, by quite similar argument to [5; pp 154-156], one can
verify that #(&; u)=¢(&; 4,) is the boundary value of the function 7' ({) analytic in Im
{>0. Consequently, we have proved that the 2 x 2 matrix

( 1, dy) r_(&; ﬁf))
ro(&; i) t(&; )

satisfies the conditions to be the scattering matrix of the operator with the potential in
Lj. Thus 4,eL] follows. On the other hand, by the commutation formula [4],

a(PP*)\{0} =a(P*P)\{0},

where P is a densely defined linear operator on the Hilbert space and o(*) denotes
spectrum, we have ap(ﬁ“, N\{0} = ¢. Moreover it is well known that ¢ .(H,) = [0, 00) if
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v(x)e L1, where a,(*) denotes the continuous spectrum. Thus we have proved that H, i
is of type II. Hence, by [5; Remark 9, p 1251, f, (x, 0; 44,) are linearly independent. On
the other hand, by theorem of Deift-Trubowitz about the virtual levels [5; Theorem 3,
p 163], £, (x, 0; it,) turn out to be in S, (#,). Since 1/f(x)eS . (2,) by lemma 1, there
exist o, feR such that

fe)=afe(x, 0; dp)+ B/ (x, 0; 4y).

H, is realized as the Darboux transformation of A, s by 1/f (x)and ¢ ,(H,)= ¢. Hence,
by [8; pp 23-24], «=0 or f=0 is valid. On the other hand, o= 1/K follows, because
1/f (x) tends to 1/K and f_(x, 0; @1,)=0O(x) as x— 0. Q.E.D.

5. Solution of reconstruction problem

The reconstruction problem in scattering theory is understood in general to give
an algorithm for recovering all potentials from given scatterisng data (cf. [5; p 122]). In
this section we give a solution to this problem in the following restricted sene: Let r(¢),
£eR, have the following properties.

(Ry) r(¢) is continuous for all real ¢.

(Ry) [7(£)l <1 holds for all £eR\{0}.

(R3) r(§)=0(1/¢) as -+ o.

(Ry) r(&)—1=ipé+o(&) as £—0, where p is a real number.

Rs) r(&)=r(—¢&).

(Rg) F(x)=n"1 J r(€)e***d¢ is absolutely continuous with

J (1+x?)|F (x)[dx<oo forall «eR.

-4

The reconstruction problem considered here is to construct the set X (r(¢)) of
allpotentials u(x)eLg such that r, (& u)=r(¢), o,(H,)=¢ and S R,)y
S R, )#¢.

We solve the above problem in the following. Roughly speaking, by the solution of
the characterization problem [5; Theorem 3, p 212], there exists the unique potential
without bound states in L} such that its reflection coefficient coincides with —r(&).
More precisely, put

Q0

Fw_»(x)=7t_1j re(&)e *24dg,

—a

where r., (§)= —r({),
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0

a(é)=lj,111§>(§p{(27fi)"lj ((—&—in)™" log(1—[r(O)I?)dL}

and r_(§)= —r,(—&)a(—&)/a(&). Then, the Gelfand-Levitan-Marchenko equation

+ o0

Bx(x, y)+ J Fi(x+y+2z)Bz(x, z)dz+ F+(x+y)=0
0

are uniquely solvable for each x. By the assumption (R,), F B+ (x, 0) coincide with each

other; we denote it by v(x). Then it follows that H,= — 8% +v(x) is of type II and

r+(& v)= —r(€). Next put

us (x)=0v(x)—2(d/dx)* log f.(x, 0; v).

Then, by [8; Corollary, p25], H, , turn out to be of type 11+, respectively and r, (&; u+)
=r(&) follow. Therefore u +(x) belong to X'(r(£)). Moreover we have

Theorem 6. If the conditons (R, }-(Re) are fulfilled, then

2(r(&))={uy(x), u_(x)}
holds.

ProoF. Suppose that w(x) is in Z(r(¢)). First we assume H,, to be of type I11,.

Let (x)eS™) (w; R ). Then, by Theorem 2, 4(x)isin S, (u). Hence f,, , is of type II by

Theorem 5, and r,(&; w,)= —r(&) holds by Corollary. On the other hand, by

Levinson’s theorem [ 5; Corollary, p 208]), this implies w,(x) = v(x). Therefore we have

w(x)=u_ (x) by Theorem 5. The proofin the case of type III _ is completely parallel to
the above.

Q.E.D.

6. Concluding remark

It is well known that if u(x) is in L{ then the Jost solutions f, (x, {; u) are analytic
in Im {>0 whereas if u(x) is only assumed to be in L}, such analyticity is not
necessarily expected. Moreover if u(x) is in L then e ***f_ (x, {; u)—1 are known to
belong to the Hardy space H** of functions ¢ ({) analytic in Im{>0 with

gggj P (& +in)PdE < oo.
This property plays crucial role in the inverse problem of scattering theory. In the
following, we show that while the Jost solutions f= (x, {; u) for H, of type IIl+ are
extended analytically to Im{>0, e¥®* f(x, {; u)—1 do not belong to H?*.
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Suppose that H,,is of type III , . Then, there exists uniquely the potential v(x) such
that H,is of type ITand H,= H,, Ia holds, where f, =1, (x, 0; v). By the argument in the
proof of Proposition 4, one verifies

©) o, G u)= £l TUAE f, (3, G 0).

Since H, is of type I, especially v(x) is in L}, the right hand side of (9) is analytic in Im{
>0. Moreover, because e¥ % f, (x, {; v)—1is in H*>", the integral representations

+ o

S (x, G o)=e {14 J B (x, y)e 2% dy}

0

are valid (see [5] for more detail.). Hence we have

-+

(10) RS u)=eiicx{1ij mBi(x, y)e 20 dy

0

+

+i{ " g(x) £ J Cx(x, y)e " 20dy)},

0

where  Ci(x, y)= A} B:(x, y)= — B, (x, y)+q(x)B:(x, y) and g(x)=
(d/dx) log f(x, 0; v). Obviously, the right hand side of (10) is analytic in Im{>0.
On the other hand,by (10), f; (x, {; #) may be singular at { =0. First suppose H,, to be of
type III,. Then,by direct calculation, we have

girr(l)iﬁﬂ(x, {; u)=0,
and

}irré — v (x, G u)=1/f1 (x, 0;0),

where v=W (f, (x,0;v),/_(x,0;v))>0(cf. [8; Corollary 2.2, p 18]). Since f, (x, 0;v) do
not vanish by [5; Theorem 3, p 163], f_ (x, {; u) is singular at { =0. Similarly, if /,, is of
type III_,

lgirr(l)—iv‘léﬂ (x, G u)=1/f_(x; 0; v),
and
imil f_(x, {; u)=0
-0
follow and f, (x, {; u) turns out to be singular at {=0.
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