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§1. Introduction

Let L*=(R?, dx®+ dy*—dz?) be the Lorentzian 3-space. Surfaces of revolution are
obtained by rotating about their axes the generating curves. There are three types of
surfaces of revolution in L3, that is, surfaces rotating about a space-like axis, a time-like
axis and a null axis. By using a method similar to Kenmotus’s in [7], for a given
continuous function H(s), we can solve the differential equations about the generating
curves of surfaces of revolution whose mean curvature is H(s).

Using these solutions, we can give a Delaunay’s characterizlation of the surfaces
of revolution in L * with constant mean curvature, which may be stated roughly as the
following; Generating curves of surfaces of revolution in L3 with constant mean
curvature are roulettes of conics. This pboblem was already studied by Hano and
Nomizu in [5]. But they use the method of Hsiang and Yu [6] and treated only space-
like surfaces of revolution. On the other hand, in the present paper, we depend on the
Kenmotsu’s method and deal with space-like and time-like surfaces together. This
gives better geometric interpretation of generating curves of surfces of revolutions.

In the Lorentz 2-space L?=(R?; dy®>—dz?), there are two kinds of conics,
horizontal conics and vertical conics. Moreover, for a given conic we have its roulettes
rolling along a space-like line and along a time-like line. The roulette of a vertical (resp.,
horizontal) conic generates a space-like (resp., time-like) surface of revolution with
constant mean curvature, and the roulette of a conic rolling along a space-like (resp.,
time-like) line is a generating curve of a surface of revolution in L * with constant mean
cuurvature, which rotates about a space-like (resp., time-like) axis (see, for details,
Theorem 4).

The Gauss map of a surface in L> with constant mean curvature is also a
harmonic mapping. Hence the surfaces of revolution with constant curvature
constructed in the paper give the harmonic Gauss maps of the surfaces to the sphere S?
or the hyperbolic space H2.

§2. The outline

A surface in L 3 is called a surface of revolution with axis / if it is invariant under
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the action of the group of motions in L * which fix each point of the line /. A surface of
revolution with space-like axis is given by

2.1) S(s, t)=(z(s)sinh t, y(s), z(s)cosh t), (S-axis),

where (y(s), z(s)) is a curve in L *={R?, dy* —dz*} which is parametrized by the arc
length and defined on some open interval 1. Hence it holds

(2.2) y?—z?=¢,

where ¢is 1 or — 1 according to the space-like curve or the time-like curve. The curve is
called the generating curve of the surface. A surface of revoluution with time-like axis is
given by

(2.3) T (s, t)=(y(s)cost, y(s)sint, z(t)), (T —axis),

where (y(s), z(s)), s€l, is a curve in L ? satisfying (2.2). A surface of revolution with null
axis is given by

2.4 N(s, )= () +z(s)—12z(s), —2tz(s), y(s)—z(s)—1%z(s)), (N-axis),
where (y(s)+z(s), y(s)—z(s)) is a curve in L? with

(2.5) 4y'7 =e.

Though the true generating curve is (y(s)+z(s), y(s)—z(s)) in this case, we call
simply the curve (y(s), z(s)) the generating curve of the surface. In all cases, surfaces of
revolution are space-like or time-like according to e=1 or e= —1.

We can solve the differential equations about the generating curves of surfaces of
revolution with given mean curvature function H(s), s€l. In particular, concerning

surfaces of revolution with constant mean curvature, we have explicit solutions. For a
non-zero constant H and non-negative constant d, we put

f(s)=14d*—2d cosh(2Hs), g(s)=d cosh(2Hs)— 1.
h(s)=1—d*—2d sinh(2Hs), k(s)=d sinh(2Hs)—1,
(2.6) uy(s)=d sin™" (s/d), u_(s)=d log(s +/d —5*),
vi(0)=(r+log ((1—1)/(1+1)))/2IH)),
v_,(t)=(1—2tan" 1)/ (2|H]).

Theorem 1. The generating curves (y(s), z(s)) of surfaces of revolution with
constant mean curvature H are the following, correspondisng to rotating about S-axis, T-
axis and N-axis:

S-axis, H=0, Sy(s)= (4, /d*>—5*), (0<5<d),
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H#0, S,(H, d; 5)=(0 f g//ef ds, /ef| QIH))), if e= —1, d20,

S,(H, d; s)= (o J sk/\/éiz ds, \/eh/(2H))), if e= — 1, 0,

Sy(H; 1)= (L v, 1/(2|H]))),

T-axis, H=0, Ty(s)= (\/d*—s% u_,), (0<s=d),
H#0, T\(H, d; s)=(/ —¢f/(2lH]), 5Jsg/\/ —ef ds), if e=1, d20,

T,(H, d: 5)=(/—eh/(2H)), 5rk/. /—eh ds), if e=1, d#0,

T5(H; t)=(t/2|H]), £v_,),
N-axis, H=0, Ny (s)= (ea*'*/(3d), d s*'*), s>0, d>0,

H#0, N,(H, d; t)= (16;2d<12’ log((lﬁt)/(1+t)> >d>0,

¢ tan " 't— y’ dt ) d>0
H? l—l—y2 ’ ’

th
NS(Na t):<—‘81']?9 € Ht))

where § is the sign of H. The arc-length parameter s and the proper parameter t are taken
on open intervals so that the functions in consideration have meaning. If =1 (resp., —1),
the above curves and the correspondisng surfaces of revolution are space-like (resp., time-
like).

A space-like surface with vanishing mean curvature is said to be a maximal
surface. The surfaces corresponding to S, T and N, are the same as those constructed
by O. Kobayashi in [8].

The curve S;(H, d; s)=(y(s), z(s)) satisfies

N,(H, d; f)=<8

d cosh (2Hs)—1
2|H\z

!

y:

I+

, €(2|H|z)? =1+ d*—2d cosh (2Hs).

From these, we get

dy d*+1

Pty g =0

For other cases, similarly we can obtain the corresponding differential equations.
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Lemma 2. The generating curves S;, T;, N;, S, T{, N; (i=1, 2, 3, 4) satisfy the
following differential equations respectively.

We will consider the conics in the Lorentz 2-space L 2 = (R?; dy* —dz*). Let Fbe a
fixed point and D a fixed linein L 2. Put E=e¢, e>0 or E=ie, e #0. The conic C of focus
F, directrix D and eccentricity E is, by definition, the locus of a point such that
| PF||./| PD||,=E, where | PF| is thhe Lorentzian distance between P and F, and
| PD||, is the Lorentzian distance from P to D. Put A=||PD||/2 for E=1 and A4
= E||FD||/|E*—1] for other E. C is said to be horizontal (resp., vertical) If 4 is a real
(resp., pure imaginary) number. According to E=1,0<E<1 or 1 <E, the conic is a
parabola, an ellipse or a hyperbola. We derive equations describing the roulette of a
conic C, that is, the trace of a focus F of a conic C as C rolls along a line. Let s be the arc-
length of the roulette. We put

{ s if the roulette is a space-like curve,
(2.7 S=
is if the roulette is a time-like curve.

Lemma 3. Let C be a conic with E and A. Let I', (resp., I',) be the roulette of the
conic C as C rolls along the y-axis (resp., z-axis). The roulette I', and I, are space-like
curves if and only if C is vertical (resp., horizontal). If C is a parabola, that is, E=1, the
roulette I', (resp., I,) satisfies

dy dz
2.8 =iz— . A=iy — |
(2.8) A iz (resp, A=iy dS)
If E=e (e>1 or 1>¢e>0)) or ie(e>0), the roulette I', (resp., I,) satisfies

d d
29)  z2+2idz a—?+ (E2—1)4%=0 (resp., y + 2idy d—g— (E2—1)4>=0).

From Theorem 1, Lemma 2 and Lemma 3, we obtain
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Theorem 4.  The generating curves of surfaces of revolution with constant mean
curvature, rotating about S-axis or T-axis are characterized as follows.

(I) Space-like surfaces

Rotating about S-axis (resp., T-axis)
(1) The roulette of the vertical parabola rolling algong y-axis (resp.,, z-axis), which is
exactly Sy(s) (resp., To(s)).

1
(2) The undulary, the roulette of an vertical ellipse with E=d (0<d<1)and A=i T

rolling along y-axis (resp.,, x-axis), which is exactly S, (d, H; s) (resp., T, (d, H; s)) for 0
<|dl<1.

1
(3) The nodary, the roulette of a vertical hyperbola with E=d (d>1) and A=i I

rolling along y-axis (resp., x-axis), which is exactly S,(d, H; s) (resp., T, (d, H; s)) for 1
<|d|.

1
(4) The roulette of the vertical conic with E=id (d>0) and A=i 2 rolling along y-

axis (x-axis), which is exactly S,(d, H; s) (resp., T,(d, H; s)).

(5) The curve S;(d, H; s) (resp., T5(d, H; s)).
Rotatisng about S-axis,

2
(6) The circle y*—z* =<%> with radius H, which is exactly S,(1, H; s).
. 1 S
(7) The line Z=§ﬁ’ which is exactly S{(0, H; s).

(Il) Time-like surfaces

Rotating about S-axis (resp., T-axis)

If we replace vertical conics by horizontal conics in (1),(2),(3) and(4) of (I) respectively, we
get corresponding generating curves of time-like surfaces of revolution. Moreover, we
have

(8) The curve S5 (d, H; s) (resp., T} (d, H; s)).
Rotating about T-axis,

1 2
(9) The circle y* —2* = _<E) with radius iH, which is exactly T, (1, H; s).

1
(10) The line y=s which is exactly T{ (0, H, s).
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§3. Surfaces of revolution
The first and second fundamental forms of the surfaces given by (2.1) are
eds? —I—zz-(s)dt2 and (y"(s)Z'(s)—y'(s)z" (s))ds*> —y' (s)z(s)d??,
respectively. Hence the mean curvature H(s) satisfies
3.1 2H(s)z(s)+ Y (s)+ez(s) (v'(5)2"(s)—y"(s)Z (5)) =0, (S-axis).

Similarly, as the first and second fundamental forms of the surface given by (2.3) are
eds®+y*(s)dt* and (' (s)z"(s)—y"(5)Z (s))ds? + y(s)z' (s)dt>, respectively, we have

(3.2) ZH(s)y(s) =2 (s)—ey(s) (/' (s)z"(s)—y"(5)'(5)) =0, (T-axis).

For the surface given by (24), those forms are eds?+4z%(s)ds* and 2(0"(s)Z'(s)
—)'(5)z"(s))ds* —4z(s)Z (s)dt*. Hence we get

(3.3) 2H(s)z(s)+ 2 (s)+€2z(s) (V' (s)2"(s)—1"(5)Z'(5)) =0, (S-axis).

From the facts described above, it is evident that surfaces of revolution are space-
like (resp., time-like) if and only if their generating curves are space-like (resp., time-
like). Multiplying (2.1) by y'(s) and using (1.2), we get

2H(s)z(s)y'(s) + (z(s)z(s)) +&=0.
If we multiply (2.1) by z'(s) and use (1.2), we have
2H(s)z(s)z'(s) + (z(s)y' (s)) =0.
From these equation, it follows
(34) W(s)+2H(s)u(s)—e=0, vV(s)—2HV (s)—e=0 (S-axis, T-axis),
where
(3.5) uls)=—z(s) (V'()+2'(s)), v(s)=z(s) (v'(s)—2(s)) (S-axis).

Similarly, from (3.2) and (2.2) it follows that the generating curves of surfaces of
revolution with T-axis satisfy the same differential equations (3.4). But in this case, we
put

(3.6) u(s)=y(s) (/'(s)—=2'(s)), v(s)=y(s) (v'(s)+2(s)) (T-axis).
Using (2.5), we get from (3.3) the following equations.

(3.7) u(s)—2H(s)u(s)—e=0, v'(s)+2H(s)v(s)=0 (N-axis),
where

(3.8) u(s)=2z(s)y'(s), v(s)=2z(s)z'(s).
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To solve the above differential equations, we introduce the following functions.

(3.9) F(s)= J sinh ((2fH(t)dt>du, G(s)= J cos h(2JuH(t)dt>du.
0 0 0 o

The general solutions of (3.4) are given by
(3.10) u=(G—F) (b;+e(G+F)), v=(G'+F) (b, +e(G—F)),

where b, and b, are integral constants. Similarly, as the general solutions of (3.7), we
have

(3.11) u=(G+F) (b, +e(G—F)), v=b,(G'—F).
As we get z2= —euv and y' = (v—u)/(2z) from (2.2) and (3.5), for the generating
curve of a surface with S-axis, by putting b, +b,=2c¢,, by —b,=2c, and

(3.12) H(cy, ¢3)= ((F+C1)2”(G+Cz)2)a I(cy, ¢3)=(F(G+cy)—G'(F+cy)).

we have
(3.13) y=J I(cy, ¢,)//eH(cy, ¢;)ds, z=/eH (cy, ¢;), (S-axis).

Similarly, the generating curve of a surface with T-axis is given by

(3.14) y=+/—¢eH(cq, c3), Z=Jsl(cl, ¢,)/~/ —eH(cy, ¢;)ds, (T-axis).

The generating curve of a surface with N-axis has the following expression.
(3.15) y=8j (G'+F) (c;, +G—F)/(2/K)ds, Z-——\/T(, (N-axis),

where we put K=c¢, (c; + G—F ) and ¢,, ¢, are integral constants. Set
S(H, ¢)={(cy, ¢;)eR? eH(cy, ¢;)>0 for all sel},

(3.16) T (H, ¢)={(c;, ¢c;)eR?, —eH(cy, ¢;)>0 forall sel},
N(H, £)={(c,, c;)eR?, K(cy, ¢,)>0 forall sel}.

For a given continuous function H(s) on some interval /, the sets defined in (3.16) may
be empty. Now we have the following theorem corresponding to the main resuult in

[7]1

Theorem 5. If the genreating curve of a surface of revolution is parametrized by
the arc lengths, its mean curvature is a function of the s. The arc length parametrized
generating curve (y(s), z(s)), s€l, of a surface of revolution with mean curvature H(s) is
given by (3.13), (3.14) or (3.15) for some constants cy, ¢,, according as it rotates abouut a
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space-like axis, time-like axis or a nuull axis. A surface of revolution is space-like (resp.,
time-like) if and only if its generating curve is space-like, that is, e=1 (resp., time-like,
that is, e = —1). Conversely, for a given continuous function H(s), seI with S(H, &) # ¢,
by taking a point (c,, c,)eS(H, ¢) and using (3.13), we construct a surface of revolution
with mean curvatuure H(s), which is space-like or time-like according to . Similarly, if
T(H, e)# ¢ or N(H, e)# ¢, we construct a surface of revolution by (3.14) or (3.15).

Now, we will show Theorem 1 in §2. At first, we consider surfaces of revolution
with vanishing mean curvature, that is, H=0. Then the functions F(s), G(s) given by
(3.9) are reduced to F(s)=0, G(s)=s. We get the solutions S,(s), To(s) and Ny(s) in
Theorem 1, from (3.13), (3.14) and (3.15) respectively. Next, for a constant H #0, the
functions F(s), G(s) become

1 1
. F(s)==— G(s)==— sink 2Hs.
(3.17) (s) 5 cosh 2Hs, G(s) 5 sink 2Hs

Hence, from (3.12), we get, after some parallel translations of the arc length
(14d*—2d cos h 2Hs)/(4H?), if c?>c2,
(1—d?—2d sin h 2Hs)/(4H?), if c?<ci,
(1+4Hce *™)/(4H?), if c,=c,=c,
(1+4Hce*™)/(4H?), if c¢;=—c,=c,

(3.18)  H(cy, ¢3)=

(dcos h 2Hs—1)/(2H), if c¢?>c2

(dsin h 2Hs—1)/2H), if c2<c?,

(B.18)  I(cy, cy)=
U —(142Hee ) QHs), i c;=c,=c,

—(1+2Hce*™)/(2Hs), if ¢;=—c,=c,

where d= —sgn(c,)2H,/c} —c} (resp., —sgn(c,)2H./c3 —c2) if ¢ > c? (resp., ¢ > c2).
Using these, we obtain Theorem 1.

§4. The Lorentzian plane

Let L2 be the Lorentzian plane. At first, we describe some facts about angles in
Lorenzian geometry. Details are found in [4]. For a vector p=(y,z)eL? the Lorentian
norm ||p||,. is defined to be ||p|| if p is space-like or null, and i llpll . if p is time-like, where

Ipll is the (absolute) norm of p and i =\/~—“1. If p is non-zero and non-null, its polar
coordinates R, Q2 is defined by R= ||p||,, 2 =0+ 1w, where y = R cos(0 + iw), iz= R sin(0
+iw), 0=0, /2, m, 3n/2, — o0 <w < 00. We call Q the angle of the vector p. For non-
zero and non-null vectors p, ge L 2, let 2, and £2, be the angles of p and ¢ respectively.
The oriented angle from p to qis defined to be 2, — 2, (mod 2n) and denote by pg. Ifpis
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VS
moved to p’ counterclockwise with fixing the beginning point of p so that p'g =0, we say
that pq is the positively oriented angle. The (unoriented) angle is ];5 (resp., @) if pq
(resp., gp) is positiviely oriented. In the Lorentzian plane, we have

<p, 4>
(4.1) cos 15(}=J~9—~—.
IplLliglle

For any points A, BeL2 Let AB the corresponding vector. Let AABC be a
triangle in L % with non-null AB BC CA. If we denote by 4, B, C the angles of the
trlangle then we have A+B+ C=n. If C=n/2, it follows from (4.1) that ||B(,|| L
= 1|ABHL cos B and ||AC|IL— HABHL sin B.

Next, we investigate rolling curves along a line in.L ? and follow the path of any
chosen tracing point on the curve.Let C be a convex curve which can roll along a line /.
The tracing point P can be placed inside, on, or outside C. If P is regarded as the origin,
then C can be described by polar coordinates R, Q. Assume the tangent line / is the y-
axis. If @ is the angle between the y-axis and radial line of C, then C traces out the curve
I' given by y=0— R cos @, iz= R sin @, where o is the arc-length of the curve C. Let C
be on the moving plane {(u, v)}. Let @ be the angle between the y-axis and the u-axis.

av dQ
Then as we have zd—— tan ©® and O =1—Q — &, we get tan @ = RE Since ds? = dR?
u

ds d:
+ R?dQ? = (1+tan* ®)dR?, we may put — Thus we obtain i"o=cot ®.
dR  cos & dy
Hence the radial lineis normal to 1. Let s be the arc length of I',if I is space-like (resp.,

time-like), we put dS=ds (resp., dS=ids). Hence, it follows

dy dz
42 =gsin @, —=cos D.
4.2) 7S = sin ig=cos

If C rolls along the z-line, we have similarly

d d
4.3) 8§= cos D, iI;-—-sin D.

We describe some properties of conics in L 2. (a) C is a parabola. The standard
equation of a vertical parabola is y*> = —4az. Here F=(0,a), D: z= —aand A =ia. Let /
be the tangent to C at a point K, which intersects z-axis at P and y-axis at Q. Using (4.1),
we have

— LFKP for a <|z|
4.4) FP 1l ZFQP=
n~-ZFKP for |z|Za.
F =(0, —a)and D': z=aare regarded as the focus and the directix of the parabola . The
standard equation of a horizontal parabola is given by z* = —4ay, where F=(a, 0) and
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D: y= —a. This has the same property as the above.

(b) Cis aellipse. The standard equation of a vertical ellipse with focus F= (0, ea) (resp.,
F =(0, —ea)), directrix D: z=a/e (resp., D': z= —a/e), eccentricity E=e and A=iais
(1—e?)z2—y?=a*(1—e?). For a point K= (y, z) on C, we have

(4.5) KF~KF =2aq for |z| Z a/e, KF+ KF =2a for a<|z|<ale.

Take a line / tangent to C at a point K= (y, z). Through F (resp., F') we draw a line
perpendicular to / intersecting / at Q (resp., Q'). Denote by FQ the oriented length of
FQ, thatis, FQ = || FQ| or — || FQ| according as FQ is positively oriented or negatively
oriented. Now we have

(1—e?)a® for a<|z|<ale,
(4.6) FO-FQ' = [

—(1—e?*)a* for afe<|z|.
By making use of (4.1), we get

ZFKQ for a/e<L|z|,
(4.7) ZFKQ=
n-ZFKQ' for aZ|z|<ale.

The standard equation of the horizontal ellipse with focus F= (eqa, 0) (resp., (— ea, 0)),
directrix D: y=al/e (resp., D': y= —aje) and A=ais (1—e?)y? —z2>=a?(1—e?). This
curve has the properties similar to the above.

(c) Cisa hyperbola. The standard equation of a vertical hyperbola with focus F=(0, ea)
(resp., F' =(0, ea)), directrix D: z=a/e (resp., D': z= —a/e), eccentricity E=e and A =ia
is given by the same equation as one of the ellipse. In this case, we obtain for a point K
=(y, z) on C, we have

(4.8) KF+ KF =2a for |z| Zafe, KF~ KF =2a for a/e<|z|Za.

Let / be the tangent line to C at a point K= (y, z). Through F (resp., F') we draw a line
perpendicular to /, intersecting / at Q (resp., Q’). Then we have

—(1—e*)a®> for ale<|zl<a
(4.9) FO-FQ =
(1—e*)a®> for |zl<ale.
LFKQ for |zl<ale,
(4.10) /FKQ = |
n-LFKQ' for afe<|z|<a.

For horizontal hyperbolas, we have the corresponding facts.

(d) Cis a conic with imaginary eccentricity. The standard equation of the vertical conic
with focus F= (ea, 0) (resp., F = (—ea, 0)), directrix D: y= —a/e (resp., D': y=a/e),
eccentricity E=ie and A=ia is z>— (1 +e?)y?=(1+€?)a’. In the present case, we
obtain for a point K= (y, z) on C
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4.12) KF+ KF =2aq for |y|<afe, KF~ KF =2a for ale<]y|.

Let / be the tangent line to C at a point K= (y, z). Through F (resp., ) we draw a line
perpendicular to /, intersecting / at Q (resp., Q). Then we have

(e2+1)a* for |y|<ale
4.13) FQ-FQ' =
—(e®+1)a®> for |y|>ale ,
{ n—/Q'KF for |y|<ale
/S OKF=
/O KF for |y|>a/e

Horizontal conics with eccentricity E=ie satisfy properties similar to the above.

§5. The differential equations of rolling curves

Let I" be the trace of a focus F=(y, z) of a conic which rolls along a line /in L2
={(»,z)}. We will find a differential equation whose solution gives the curve I', that is,
we will prove Lemma 3.

(a) Cisaparabola.(1)/is the y-axis. At first, Let C be the vertical parabola given
in (a) of §4. Assume that Cis tangent to y-axis at a point K. Let B be the vertex of Cand /'
be the line through B and perpendendicular to the axis of C. Assume that y-axis
intersects /' at P and the axis of C at Q. Let @ be the angle between y-axis and the line
through the focus F= (y, )of C and K. We get from (4.4)/BPF=/PQF=® (or n— ®).
As we have ||FB||,_ = i|FP||L sin @, we may put a =z sin @. Hence from (4.2), it holds a =z
dy/ds, that is,

z=a./1—(dz/dy)?, dS=ds.

Assume next that C is horizontal. Let points K, B, P and Q be taken as similarly as in
the above case. Let @ also the angle between z-axis and the line through the focus Fand
K. Now we have ZFPB=n/2-/BFP=n/2—(/FQP+,/QPF)= —®. Hence, from
HBF]IL = HFPHL sin/ FPB, we get a= — iz sin @. In this case, it should be dS=ids in the
formula (4.2). Thus we obtain a = z(dy/ds), ds* = dz* — dy*. In other word, we show (2.8)
for I'), A=ia and dS=ids.

(2) [/is the z-axis. Let C be the vertical parabola as in (1). Then as similarly as in the
above, we obtain the equation ia =y sin @, where @ is the angle between the z-axis and
the tangent line. From (4.2), we get i(dz/ds) = cos (n — @) = sin ®. thus we obtain (2.8) for
I';, A=ia and dS =ds. For the horizontal C, we have a=y sin @. Hence as we must put
dS=ids in (4.2), we get (2.8) for I',, A=a and dS=ids.

(b) C is an ellipse.
(1) /is the y-axis. Let C be the vertical ellipse given in (b) of §4. Let F= (y,z)and F = (',
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z') be foci of C. The y-line is tangent to C at a point K. Through F(resp., F ), draw a line
perpendicular to y-line and intersecting it at Q (resp., Q'). From (4.6), (4.7) and (4.8), we
get FQ-FQ'=(1—e*)a’, KF+ KF =2a and /Q'KF =n—/QPF. Using (4.2), we have
+z/KF=sin/QKF=dy/dS and +7'/KF =siny/Q KF =ay/dS, where the double sign
is for z, >0 and z, z’ <0, respectively. Thus we obtain (2.9) for I” »E=e(0<e<l), 4
=iaand dS=ds. Assume that Cis horizontal. Take points F, F, 0, ', and K as above.
Then we have KF~ KF =2a, FQ - F Q' = — (1—¢e*)a?, iz/KF = + sin/QKF=dy/dS and
+iz'/KF =sin/Q'KF =dy/dS. Hence, we must put dS=ids and we get z+2' = +2a
dy/ds and zz' = — (1 —e?)a®. Thus we have (2.9) for I',, E=e¢ (0<e<1), A=q and dS
=1ids.
((2) /1s the Z-line. C is vertical. In this case, we have FQ-F Q' = — (1 —e?)a%, KF~KF
=2a,y= + KF(dz/ds)and y' = + KF (dz/ds). Thus we have (2.9)for I, E=e (0<e<1),
A=ia and dS'=ds. Similarly, when C is horizontal, we get (2.9) for I';, E=¢ (0<e<1 ),
A=a and dS=ids.

(c) Cis a hyperbola.
(1) /is thhe y-axis. Let C be vertical. Assume that C is tangent to y-axis at K. Let F=(y,
z)and F' = (y',z’) be the foci of C. Take points Q and Q' as in (1) of (b). Then we have FK
~FK=2a, FQ-FQ' = —(e*—1)a’ z/FQ = +dy/dS and z//F Q' = + dy/dS. Hence we
obtain (2.9) for I',, E=e (1 <e), A=ia and dS=ds. If C is horizontal, it holds that KF
+FK=2a, FQ-FQ'=(e*—1)d?, iz/FK= +dy/dS and iz /F K= +dy/dS. Hence, we
get (29) for I'), A=a, E=e (e>1) and dS=ids.
(2) /is'the Z-axis. If Cis vertical, taking points K, Q and Q' as in (1), we have KF+ KF'
=2a,FQ-FQ'= (e’ —1)a’, y/iKF= +idz/dS and y'[iKF = + idz/dS. Hence we get (2.9)
for I'y, E=e (1<e), A=ia and dS=ids. When C is horizontal, we get KF~ FK=2aq,
FQ-FQ'=—(e*—1)a? y/FK= +idz/dS and y'/F K= + idz/dS. Thus we obtain (2.9)
for I'y, E=e (1<e), A=a and dS=ids.

(d) Cis a conic with imaginary eccentricity.
(1) /is the y-axis. Let C be vertical. Take points K, Q, Q' as above. Then we have KF
+ KF =2a, FK-FK= (1+¢*)a? z/KF= +dy/dS and z//KF = + dy/dS. Hence we have
(29)for Iy, E=ie, A=iaand dS = ids. Similarly, for a horizontal C, we have (2.9) for I" -
E=ie, A=a and dS=ids.
(2) Iis the z-axis. For a vertical C, we have KF ~KF'=2a, yy' = — (1 +¢?)a?, y(iKF) =
+1dz/dS and y'/(iKF) = +idz/dS. Thus we have (2.9) for I',, E=ie, A=ia and dS = ds.
Similarly, for a horizontal C, we get (2.9) for I';, E=ie, A=a and dS=ids.
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