J. Math. Tokushima Univ.
Vol. 21 (1987), 13-26

On the Darboux Transformation of the 1-dimensional
Schrodinger Operator and Levinson’s Theorem

By

Mayumi OHMIYA
(Received September 10, 1987)

In the preceding paper [6], the present author studied the Darboux transfor-
mation of the 2-nd order ordinary differential operator of Fuchsian type. In this
paper, we investigate the Darboux transformation of the 1-dimensional Schrédinger
operator

H,=—-024+u(x), 0,=d/dx, —oo<x<o0.
Throughout the paper, we assume that potential u(x) belongs to L} unless explicitly
stated otherwise, where

Li= {w(x) | real valued, continuous andfoo (14+1]x]M)w(x)|dx < oo} , A=0.
~0

We consider the unique selfadjoint extension of H, defined in the space of twice
continuously differentiable functions on (— o0, c0) with compact support and denote
it again by H,. In this paper, we study the problem only in case of ¢,(H,)=0, where
o,(*) denotes the set of point spectrum. The Darboux transformation of H, is
defined as follows: Let g=g(x) be a non-trivial real valued solution of the homo-
geneous equation

(1) H,y=—y"+u(x)y=0, ’'=d/dx.
Put

Ay=g(x)"10,g(x)=0,+g'(x)/g9(x),
then

(2 H,=A4,43

follows, where A} = —g(x)0,g(x)~! is the adjoint operator of A,. By exchanging
the role of 4, and A} in (2), we obtain the operator

©) f,,=A%4,.

We call I:Iu,g the Darboux transformation of H, by the solution g(x). Put
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v(x)=g'(x)/g(x),
then we have '
4 u(x)=v'(x)+v(x)>2.
Moreover, put
) fy(x)= —v'(x) +v(x)?,
then one verifies easily
H,,=-02+ i, (x).

In this paper, we require that #,(x) is continuous together with u(x). This implies
that it suffices to investigate the Darboux transformation H g DY the positive solution
g(x).

On the other hand, our result is deeply related to the commutation relation

(6) a(PP*)\{0} =a(P*P)\{0},

where P is a densely defined linear operator on the Hilbert space and o(*) denotes
spectrum. As for the commutation relation (6), we refer to [2] and [3].

Some preliminary consideration related to the commutation relation has been
already done in case of fi,e L} by the present author in [5]. If i, € L} then,
according to [5], spectral property of Hu’g turns out to be very similar to that of H,;

O-(Hu) = a(ﬁu,g) .

However, the new potential 4, does not necessarily belong to L}. The main purpose
of the present work is to clarify spectral property of H, , in case of fi,¢ L} in con-
nection with the scattering theory.

On the other hand, by classical Levinson’s theorem, it is well known that the
potential in L} without bound states is uniquely determined by its reflection coeffi-
cient. On the contrary, by applying the method of the Darboux transformation,
we can show that the uniqueness of the potential corresponding to the reflection
coefficient does not hold in general for the potential in L{\L! even without bound
states. Thus, it turns out that the assumption of Levinson’s theorem such that
the potential u(x) is in L} and o,(H,)=% is the best possible one. As for Levinson’s
theorem, we refer to [3; Corollary, p. 208]. _

In section 1, we briefly state about the reflection coefficients of H,. In section 2,
we investigate the positive solutions of the equation (1). In section 3, we study the
integrability of 4,. In section 4, the spectrum of ﬁu,g is investigated and the related
matter to Levinson’s theorem is discussed.

Finally, the author wishes to express his hearty thanks to Prof. S. Tanaka and
Prof. H. Kaneta for their useful advices.
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1. Reflection coefficients

In this section, we briefly sketch the definition and properties of the reflection
coefficients of H,. We refer to [1], [3], [4] and [7] for detail.

First, we assume that the potential u(x) is in L§. Let us consider the integral
equation

(1.1) g(x, &)=exp (ifx)+ f’ &1 sin &y —)u(»g(y, H)dy

for £e R\{0}. Put gy(x, &)=exp (ix) and

0. O= | &7t sin &y xu(r)ga- 1, Oy
Then we have
(12) 9.5 Ot ([ weiay ) mt
Hence, one verifies immediately that the series Y12, g,(x, &) converges to the solution
f+(x, &) of
(1.3) H,f=¢f, {eR\{0}.
By (1.2), we have
| f+(x, &) —exp (i€x)| =[] 'n(x) exp (|¢]~n(x)),

where
n= | uwidy.

Hence f,(x, ) behaves like exp (i{x) as x—oo. Similarly to the above, we can
construct the solution f_(x, &) of (1.3) which behaves like exp (—ifx) as x— — 0.
In view of (1.1), it turns out that the complex conjugate f,.(x, &) also solves the
equation (1.3) and

f+(x, O=fi(x, =)

holds. For &e R\{0}, f.(x, £) and f,(x, —¢&) are linearly independent, so there
exist a(&; u) and b(; u) such that

f-(x, O=a(l; wfi(x, =) +bE; wfi(x, E).
We have
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a(&; w)=QRi&)W(f-(x, &), f+(x, O)),
b(&; wy=Qi&)W(f(x, —&), f-(x, O)
and
la(&; w)I>=1+1[b(Z; wI?,
where W(f, g)=fg'—f'g is the Wronskian. The functions
re(&; w)=1b(+&; w)fa(€; u), e R\{0}
are called right and left reflection coefficients. We have
Ire (& wl<l, CeR\{0}.

If the potential u(x) is in L} then f.(x, &) are meaningful even at {=0. Moreover,
the functions f’.(x, 0) obey the estimates

(14 e O £K | uidy

for + x>0 respectively, where K is a positive constant (cf. [3; lemma 1, p. 103].).
For convenience, we will sometimes adopt the following conventions; f,, stand for
f+(x, 0) respectively.

On the other hand, while r,(&; u) are defined only for £#£0, if the potential
u(x) is in L} then r,(&; u) are continuous even at £=0. Moreover, provided u(x)e
L}, the following is shown by P. Deift and E. Trubowitz [3; Theorem 1, p. 147]:
If f.(x, 0) and f_(x, 0) are linearly dependent, then,

(L.5) Ire(; w)|20<1

hold for some 6>0, otherwise, i.e., if f,(x, 0) and f_(x, 0) are linearly independent
then

(1.6) ro(0; u)=—1

hold. This fact plays crucial role in what follows.

If the potential u(x) is in L} and o, (H,)=%, u(x) can be reconstructed uniquely
from r.(¢; u) by the Gelfand-Levitan-Marchenko procedure (cf. [1], [3] and [4].).
Now, according to the classification of the reflection coefficient stated above, we
classify H, itself such as u(x)e L} and o,(H,)=9.

Definition. (1) We say that H, is of type L if and only if u(x)e L}, o (H,)=0
and the condition (1.5) is valid.

(2) We say that H, is of type 11 if and only if u(x)e L}, o,(H,)=0 and the
condition (1.6) is valid.
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2. Positive solutions of (1).

In this section, we investigate the positive solutions of the equation (1).

The following is shown by Deift-Trubowitz [3; Theorem 3, p. 163]: Let u(x) €
Li. Then, fi(x, 0)>0 for any xe R if and only if 6,(H,)=9. Thus, provided
o,(H,)=0, the equation (1) possesses actually positive solutions Kf.(x, 0) (K>0).
Let S, (u) be the totality of positive solutions of the equation (1). We introduce the
equivalent relation ~ to S ,(u) as follows: For f(x), g(x) € S, (u),

J(x)~g(x)

if and only if the ratio f(x)/g(x) is a positive constant. We investigate the quotient
set 5, (u)=S.(u)/~.

The following lemma plays important role to investigate the asymptotic behavior
of f,(x, 0) as x— F oo respectively.

Lemma 2.1. Let u(x)e L} and o,(H,)=9. Then

e Fo(x, 0= £3£25, 0 [ £, 02y + s f(x, 0)

are valid, where v=W(f . (x, 0), f_(x, 0)) and c.=f+(0, 0)/f.(0, 0).

PrROOF. By the assumption, f,(x, 0) do not vanish for any x. Hence, if v=0,

ie., fi(x, 0) and f_(x, 0) are linearly dependent, (2.1) is obviously valid. Next
suppose v#0. Put

B)=F1(5 0 [ 110, 0)72dy

then f,(x, 0) and ¢(x) are linearly independent. Hence there exist ¢; (j=1, 2) such
that

f-(x, 0)=c;P(x)+c, f1(x, 0).
We have

v=W(fi(x, 0), f-(x, 0))=c, W(f+(x, 0), p(x))=cy .

Thus we have
F-(x, 0)=1vf,4(x, 0) f £, 02y + 6o f (5, 0).

Hence f_(0, 0)=c,f.(0, 0), i.e., c,=c, follows. Similarly to the above, we can
show

£.6x, 0)= —vf_(x, 0) f: f-(y, 0)2dy+c_f(x, 0). Q.E.D.
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Corollary 2.2. v=W(f.(x, 0), f_(x, 0))=0.

Proor. Assume v<0. Since

(. 0)f:f+ (7, 0)2dy — o0

and f,.(x, 0)—1 as x— o0, from (2.1), f_(x, 0)— — oo follows. This is contradiction,
because f_(x, 0)>0 for any x. Q.E.D.

From Deift-Trubowitz’s theorem mentioned above, #S_ (u#)>1 follows, where
# denotes cardinal. More precisely, we have

Theorem 2.3. (1) H, is of type 1 if and only if u(x)eL}, o,(H,)=@0 and
5, w=1. |

(2) H, is of type 11 if and only if u(x)eL}, o,(H,)=9 and there exists a
bijective mapping

u: S;+(M)“‘_’ R. =R, U {0},
where R, =[0, o0).

Proor. First suppose that H, is of type I. Then, f,(x, 0) and f_(x, 0) are
linearly dependent. Note that f,(x, 0) are positive solutions of the equation (1),
because o,(H,)=@. Hence K=f,(x,0)/f_(x,0) is the positive real number.
Therefore

fi(x,0)—> 1, x— o0,
f+(x9 0)'—’K, X— =0

follow. Put

S =f4(x, 0)f’;f+(y, 0)-2dy

then we have W(f,(x, 0), ¢(x))=1, i.e., f,(x, 0) and @(x) form a fundamental system
of solutions of (1). From (2.2),

x+0(), x— o0
P(x)=
K'x+0(1), x— —0
follow, especially, ¢(x) tends to — oo as x——oo0. Hence
g(x)=k, f.(x, 0)+k,p(x)
belongs to S, (u) if and only if k, >0 and k,=0. Thus

S (w)={kf.(x, 0)| ke R, \{0}},
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ie., #5,(u)=1 follows. Next suppose that H, is of type II. Then, f,(x, 0) and
f-(x, 0) are positive and linearly independent. Consider the linear combination

gxX) =k, fi(x, 0)+k,f_(x,0).

Suppose k; <0. Then, by lemma 2.1 and corollary 2.2, f,(x, 0) tends to — o0 as
x— —oo. Hence g(x)¢ S, (u)follows. Similarly, if k, <0 then g(x) ¢ S, (u) follows.
Thus we have

Si()={kif(x, 0)+k, f_(x, 0)i(ky, kz) € RF\{(0, 0)}}.
Put

f+(x9 0)+ocf_(x, 0): aE R+ ’
(2.3) 9u(x)=
f-(x,0), a=oc0.

If a#p then g, and g, are linearly independent. Hence the mapping u from )
to R, corresponding the equivalent class §,={kg,|k>0}eS . (u) to a € R, is bijective.
This completes the proof. Q.E.D.

In this paper, as stated in the introduction, we consider only the Darboux
transformation by positive solutions. Hence, provided that u(x) e L} and o (H,)=0,
the Darboux transformation of H, turns out to be as follows: If H, is of type I then
the Darboux transformation of H, is nothing but A, 405> Otherwise, if H, 1s of type II
then the Darboux transformation of H,, is the 1-parameter family IAI,M,“ parametrized
by «e R, where g, is defined by (2.3). More precisely, we have

Lemma 24. H, is of type Il if and only if u(x)e L}, o (H,)=9 and
iy, (%) #f1y,(x)
for any a, e R, (x#p).
PrOOF. Suppose o, f# 00 and a# . By direct calculation, we have
fly,(x) = f15,(x) =2{(go(x)/9.(x))* — (9 5(x)/95(x))*}
=2(B—a)W(f+0, f-0) (1/g(x)gp(x))".
Hence, provided that H,, is of type II,
Gy, (x)—1,,(x)=0
if and only if
1/g.(x)g5(x)=c,

where ¢ is a constant. This implies
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W(gos 1/9.)=cW(g,, gg)=c(B—0)W(f10,f-0)-
Put

k=—c(B—)W(f10,f-0)2
then we have
9(X)/g(x)=k.

Hence, by (4), we have u(x)=k2?. On the other hand, since u(x)e L}, k=0, i.e.,
u(x)=0 follows. However, H,= — 02 is obviously of type I. This is contradiction.
A proof in case of a% oo, f=o00 is similar to the above. Q.E.D.

3. Integrability of i, (x).

First we investigate 4, (x) (0<a <o) in case of type II. By lemma 2.1, we have

0.00=1(x, 0)(1+ac. +av [ f.(v, 02dy)

and

9:0=4(x, 0)(1+ac, + owf:.ﬁ(y, 0)"2dy )+ f ,(x, 0.

Suppose x =0 then, by (1.2), we have

LG, 0>f:f+<y, 0)-2dy| gKlff lu(z)dz f "f.(7, 0y 2dy
<K, f " ucz) f S0, 0 2dydz
<K, | zlu)ldz

ngf:O (14 22) |u(2)|dz.
Hence,
3.1 go(x) — av, x—
and
golx)=ovx+0(1), x — 0

follow. Thus (g,(x)/g9.(x))? behaves like x~2 as x—oo. Similarly to the above,
we can show that (g.(x)/g,(x))?> behaves like x~2 as x— —o0. Therefore (g.(x)/
g.(x))? turns out to belong to L§\L}. Since
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g, ()= —u(x)+2g.(x)/g.(x))?

and u(x)e LicL{, o, (x) also belongs to L§. On the other hand, if we assume
fi, (x) e Li, then

2(go(x)/gu(x))* =u(x)+1,,(x) € L]
follows. This is contradiction, i.e., @i, (x) e L§\L}.
Next we consider fi,(x). Since go(x)=f(x, 0), by (1.2), one verifies
|7 togotorax <k [ uoiax
Hence

r’ 1, (0)ldx < o0
(4]

follows. On the other hand, by lemma 2.1, (f,(x, 0)/f,(x, 0))? turns out to behave
like x™2 as x—»—oo0. This implies that @, (x) belongs to L§\L]. Similarly to the
above, we can show that @,_(x) also belongs to L§\L}. Thus we have proved

Theorem 3.1. If H, is of type 1l then #,(x) belongs to L§{\Li for any
aeR,.

Next we consider H, of type I. We have

Theorem 3.2. If H, is of type 1 then fi; (x) belongs to L. Conversely,
if u(x)e L}, o,(H,)=0 and 0,(x) e L} for some g(x) € S, (u) then H, is of type |
and g(x)=Kf,(x, 0) holds for some positive constant.

Proor. Since 1/f,(x, 0) is bounded and

g, ()= —u(x)+2(f1(x, 0)/f+(x, 0))3,
we have

f_o (1+x2) |1, (x)ldx

< f i (1+x2)|u(x)|dx+1<1f°_° (1+x2)f(x, 0)2dx.

Since H, is of type I, f,(x, 0) and f_(x, 0) are linearly dependent. Hence, by (1.2),
we have

" v oparsid [Taea( [ wway) ax

[* ([ oy ) s

<K, <J":) ¢! +x2)|u(x)|dx>2 <o0.
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Thus, 4, (x)e L} follows.

Conversely, suppose that u(x)e L}, o,(H,)=@ and #,(x) e L} for some g(x) e S, (u).
Then, by Theorem 3.1, H, turns out to be of type I. Moreover, since H, is of type I,
by Theorem 2.3, there exists K>0 such that g(x)=Kf_ (x, 0). Q.E.D.

By the above, we can refine on the result obtained in [5]. We have

Theorem 3.3. If H, is of type 1, then there exists uniquely v(x)e LinC,
where C, is the totality of absolutely continuous functions, such that

(3.2) H,=(0,+v(x)) (=0, +v(x))

holds. Conversely, if there exists v(x)e L1 n C, such that (3.2) is valid, then H,
is of type I. Moreover, existence of such v(x) is unique.

Proor. First assume that H, is of type I. Then, by [5; Theorem], there
exists v(x) e L1 n C, such that (3.2) is valid. If we assume that there exists another
w(x) € L} n C, such that (3.2) is valid. Put

g=exp( " w)dy)

and
h(x)=exp (f_m w( y)dy>.

Then, both g(x) and h(x) belong to S,(u). Since H, is of type I, by Theorem 2.3,
there exists K >0 such that h(x)=Kg(x). This implies v(x)=w(x). Thus we have
proved that such a v(x) as (3.2) exists uniquely.

Next assume that there exists v(x)e L} n C, such that (3.2) is valid. Then,
by [5; Theorem], H, is of type I. Hence, unique existence of v(x) e L! n C, follows
from the first half of this theorem. ' Q.E.D.

Moreover, we have
Theorem 3.4. If H,is of type 1 then ﬁu,fw is also of type 1.

Proor. By Theorem 3.2, , /. is non-negative definite. On the other hand,
it is well known that the non-negative 1-dimensional Schrédinger operator with
the L}-potential has a purely absolutely continuous spectrum and no bound states.
Thus, ol,(ﬁu’ 7.)=0 follows. On the other hand, by [5; lemma 1],

re(&u)=—rs(& a,,,)
are valid. Therefore

lr(&s by, JISd<1

hold. Thus, ﬁu,ho is of type I. Q.E.D.
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4. Spectrum of I}u,g“.

As is mentioned in the proof of Theorem 3.4, if H, is of type I, then the spectrum
of ﬁu’ 140 consists of only purely absolutely continuous spectrum [0, c0). In this
section, we investigate the spectrum of I—AIMG precisely when H, is of type II.

First of all, by the commutation relation (6), we have immediately

(0, 0)co (H,,,)
and
ap(ﬁu,g“) n (_ 0, 0) = 03

where ¢.(*) denotes the continuous spectrum. Thus, it suffices to consider which
of the following three cases is valid;

(i) Oep(l,,),
(i) Oeol(H,,,),
(i) Oeo,(H,,.),
where p(x) denotes the resolvent set. First, we have

Theorem 4.1. If H, is of type 11, then (i) is valid for any a €(0, o).
Proor. Put
P(x; a)=1/g(x),
Then ¢(x; o) solves the equation
ﬁu,g1y=0.
If H, is of type 11, then, by lemma 2.1, we have
f-(x,00=x+0(1), x— ©
and
fi(x, 0)=1+0(1), x— o0.

Hence, if 0<a< oo then ¢(x; ) behaves like 1/ax as x—o0. Similarly, it turns out
that ¢(x; «) behaves like 1/x as x—» —oo. Thus, ¢(x; ) is square integrable for
any ae(0, ). This implies that O is the eigenvalue of H,,, . Q.E.D.

On the other hand, one verifies that ¢,(x)=1/f,(x, 0) and

$2(x)=b; () j 42y

are the fundamental system of solutions of
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4.1 I:Iu,goy=0.
We have
4.2) ¢ (x)=140(1), x— o0,

P,(x)=x+0(1), x —> oo.

Hence, the equation (4.1) has no square integrable solution, i.e., O¢ap(ﬁu’go).
Similarly to the above, we can show 0¢ o-p(ﬁu,gw)' More precisely, we have

Theorem 4.2. If H, is of type 11 then 0 belongs to the continuous spectrum
o(H,,,) for n=0, .

PrOOF. We prove the statement in case of u=0. Put

Ro) == [ 6008001y = [ 6,008,005y

for a infinitely differentiable function f with the compact support. Then, by straight
forward calculation, we have

Hu,goROf= Roﬁu,g0f=f'

Let y(x) be the infinitely differentiable function such that y(x)>0 on the interval
I=(a, b) and Y(x)=0 on the complement I¢. Then if x>b,

(Ro¥) (x)= — K¢,(x)

holds, where

K= [ 6.0y

is the positive constant. Hence, from (4.2),
Ro¥)(x)=—Kx+0(1), x— o0

follows. Therefore, the operator R, is not bounded, i.e., 0 does not belong to the
resolvent set p(H,,,). Since 0 is not an eigenvalue of A, ,, 0 turns out to belong to
the continuous spectrum oc(ﬁu,go). The proof in case of u=o0 is complete parallel
to the above. Q.E.D.

On the other hand, as for the reflection coefficient of ﬁu,h, we have the following.

Theorem 4.3. (Tanaka’s lemma). The identities

(4.3) re(8s ) =—r.(C;u)

are valid for any o e R .
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Proor. 1If H, is of type I, the proof has been already given in [5; pp. 44-46].
On the other hand, if we take the argument in §3 into consideration, the proof in
case of type II turns out to be completely parallel to [5; pp. 44-46]. Q.E.D.

We have immediately

Corollary. There exist the potentials u,(x) (u=0, c0) in L{\L! such that
uop(x) #uo(x), 0,(H,)=0,(H, )= and

(4.4) re(C5 ug)=r4(&; uy).
PrROOF. Suppose that H, is of type II. Put

u,(x)= f,(x), u=0, co.

Then, from lemma 2.4, uo(x)#u.(x) follows. By Theorem 3.2, u,(x) (u=0, o0)
belong to L§\L!. Moreover, by Theorem 4.2, we have

O.p(Huu)zg’ ,LL:O’ 0.
On the other hand, by Theorem 4.3,

re(S;u)=—ru(&u), p=0, 00
hold. Therefore, (4.4) follows. Q.E.D.

Thus, it turns out that if the potential is in L{\L! then the reflection coefficient does
not determine the potential uniquely in general even though without bound states.
This implies that Levinson’s theorem [3; Corollary, p. 208] does not hold in the
class of potentials in L}\L! any more.
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