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§1. Introduction

There are many studies on the stability of minimal submanifolds in Riemannian
manifolds (see, for example, [1], [2]). In the present paper, we investigate the
stability of spacelike maximal submanifolds in a pseudo-Riemannian manifold.
Let f: M— N be an immersion of a Riemannian manifold into a pseudo-Riemannian
manifold. If fis a maximal immersion, then it represents a critical points for the
area function on the space of all immersions of M into N. To study the stability
of maximal immersions, we need a formula related with the second derivatives of
the area function, the second variational formula.

In §2, we descrive local formulas for immersions into pseudo-Riemannian
manifolds. The second variational formula is given in §3. 1In §4, we will prove
the stability of maximal immersions into pseudo-Riemannian manifolds of non-
positive sectional curvature. We investigate the instability of a compact Riemannian
manifold imbedded into the unit sphere S7*? with index p in the lase section.

§2. Local formulas

Let N be an (n+ p)-dimensional pseudo-Riemannian manifold with index p.
Let M be an m-dimensional Riemannian manifold isometrically immersed in N.
As the pseudo-Riemannian metric of N induces the Riemannian meteric of M, we
must assume that m <n and we may call it the spacelike immersion. We choose a
local field of pseudo-Riemannian orthonormal frames e,, e,,..., €,,, in N such that
at each point of M, ey, e,,..., e,, span the tangent space of M and forms an ortho-
normal frame there. We make use of the following convension on the ranges of
incices if otherwise stated:

1<A,B,C<n+p, 1<i,j,k<m,m+1<a, B, y<n-+p

and we shall agree that repeated indices are summed over the respective ranges.
Let {w,} be the coframe field dual to {e,}. Then the pseudo-Riemannian metric
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of N is given locally by

n n+p

dsg= 2 wi— 2. wi=3 g0,
a=1 s=nt+1
where ¢,=1 for 1<a<n and ¢,=—1 for n+1<s<n+p. The structure equations

of N are given by

dw,=3 egw pAwp, w4 p+wp,=0,

2.1
1
dw,p=7 &c ¢ N Ocp— B} 2 ecepK gpcpc A wp .

We denote by 0, 0,5 the restrictions of w,, w,zto M. Then 0,=0 for m+1<a<
n+p and the Riemannian memetric is given by ds3,=> 6?. We may put

(2.2) 0= X M0

Then h,;; are the components of the second fundamental form of the immersion.
From (2.1), we obtain the structure equations of M

d0;= Y. 0,70,
(2.3)

dgijz 2 Oun Bkj_ —;‘ 2 Rijub A0,
and the Gauss formula

(2.4) Riju=Kiju+ 2 e(hyhyji—hahy i) .

We call H= mi 2 (X h,;) e, the mean curvature normal. In the present paper,

we study an immersion with vanishing mean curvature, that is, H=0. When n=m,
an immersion with vanishing mean curvature is said to be maximal.

§3. Variational formulas

We will follow the method in [3]. Let f: M—N be an immersion as in §2.
If M is compact, possibly with boundary, its total volume is given by the integral

G.1) V=f O, A A0,
M
Let I be the interval — % <t< % . Let F: M xI—-N be a differentiable mapping

such that its restriction to M x¢, tel, is an immersion and that F(m, 0)=f(m),
meM. Put f(m)=F(m,t). We call f, the variation of f. Let {e (m, t)} be a
local frame field over M x I such that for every t e I, e(m, t) are tangent to F(M x t)
and hence e, (M, t) are normal vectors. The forms w,, w,p can be written
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(3.1) (Oi=9i+a,-dl‘, wa=aadl, wia:0ia+aiadt,

where 0,, 0,, are linear differential forms in M with coefficients which may depend
on t. For t=0 they are reduced to the forms with the same notation on M. The
vector Y e,a e, at t=0 is called the deformation vector. The operater d on M x I
is written as

3.2) d=d+dt 7%-.

Using (2.1), we get

(3.3) dlwy A A=Y £,0,92,,

where

3.4 Q== WA AO;_{ Ay AW A AND,,.

i

Substituting (3.1) into (3.3) and considering the coefficient of dt, we get

(3.5) 067(91 Ao A0, =dy S (= 1)1a0, A A  AByy A A D

m

+ 2 £,4,0,
where

(3.6) O,=—2 0, A AO_ ANOLAO A AO

] m*
i

Thus the first variation of volume is written as
(3.7) V’(O)=I S £,4,0, +f S (1) 100, A AO,_ Ay Aeee AD. .
M oM

If the deformation vector is normal to M along the booudary dM, the second
term at the right hand side of (3.5) vanishers. This condition is satisfied if the
boundary 0M remains fixed. The first integral is zero for arbitrary qa, if and only if
the mean curvature normal H vanishes.

To obtain the second variational formula, we also follow Chern (see §8 in [3]).
By exterior differentiation of Q,, we have

(3.8) —dQ,=—3 Y e AW A AD;_{ADpADj A AW AWy A D4 ¢
A Ayt 2 E50p, A Wp+ 2 Ky AW A Ay,

+terms quadratric in ,, wg,

where

(3.9) Kaﬂ = Z KiaiB .
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Substituting (3.1) into (3.4), we get

(3.10) Q,=0,+dt D,

where

(3.11) G,=Y (—Diau 0, A AO_ AOi Ao AO,+ 2 3 (—1)af,
AN AO; g AOj A AO_ AO A A D,

From (3.10), it follows

(3.12) dQ,=dt A 566; —diAdy®,+dy0,.
Substituting (3.1) into (3.8), we have
(3.13) —dQ,=—dt A(Z ggwp, A D+ 4,)+other terms,

where
(314)  A,=-3 gk pas0, A A6,

+ 2 Xeggagd A AO_ AOpAO g A e AO ANOAD A A D,
From (3.12) and (3.13), we obtain

00

(3.15) <

& szQa"I‘Z SBa)ﬂa/\@ﬁ%—Ad.

Taking the exterior derivative of the second equation of (3.1) and using (2.1), we get
(3.16) dya,=— 2 (a0, — ay,0,) — X €pagg, .
Combining (3.15) and (3.16), we have

G L (T6.,0)=Fe, T 0,4+ dy(S 6,0,0)+ T 0.4,

+ Z 8a(ai9ia - aitxoi) A daa .

In the sequel, we assume that f: M— N is an immersion with vanising mean
curvature normal, that is, @,],.,=0. Differentiating (3.5) and setting t=0, we get

, o
V(0)=f—5,-2—(91/\~%9m)|t=o
(3.18) =f <§t—2(—l)i“1aﬂl/\---/\Biki/\ﬂHl/\---/\Gm-l—ZSaaa(Pa>
oM

+J‘ (Z ea(aigiz - aizgi) A (prz + z SaaaAa)'
M
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Moreover assume that the variation vector is normal and the boundary oM is fixed,
that is, a;=0 and a,(m, 0)=0, me dM. Then on M, we have

G,=> (—1)a,0, A AO;_ AO; (A AD,.
and

2 &4, = —( aZB £28p0,05K 5+ 2 €,840,050,5)dM
where dM =0, A--- A0, and
(3.19) Oop= ;Z, haijhpgi; -

Thus we obtain

(3.20) V(0)= j (3,02, — S eepa,a,(Kp+0,5))dM.
From (3.16), we have on M

(3.21) Z aioﬂi:daa-i-z Sﬁal}wﬂa.

Hence a;, are the coefficients of the covariant derivativs of a=3 ¢,a,e,. Its second
covariant derivative is given by

(3.22) 2 apidi=da,+3 a;,0;+ 3 epa,,0p,
and the Laplacian of a

(3.23) da, =3 iy

Hence we have

(3.24) (Y e,a,0:,%0)=(> g,a?,+<4a, ad)dM.
Thus, by putting

(3.25) La,=—A4a,—Y ggay(K,5+0,p),
we obtain
(3.26) P1(0)= f (La, a>dM.

M

The operator introduced in (3.25) is a strongly elliptic operator and has distinct real
eigenvalues A; <A, <--- <A, <--eee — 0. Moreover, the dimension of each eigen-
space is finite. The index of M is the sum of the dimensions of the eigenspaces which
correspond to negative eigenvalues. The nullity to M is the dimension of the null
eigenspace.
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§4. The stability of spacelike maximal immersions

In this section we assume that n=m. Then we havee,= —1for all n+1<a<n
+p. The condition H=0 implies that the immersion is maximal. In this case, the
second variational formula (3.20) is reduced to

@.1) V'(0)= —f(z a4+ Y (ko +0,5)a.a,)dM.
We can put _

(4.2) [h(a)|? =% o,pa,a,

and

(4.3) > Kpa,a,=— 21 K(e;, a)|all?,

where ||la||?=7)_ a2 and each K(e;, a) is the sectional curvature of N for the plane
spanned by e; and a. Now we Let f: M—N be a maximal isometric immersion.
Let D be a domain on M with D compact. Then the domain is called stable if
V5p(0)<0, where V(0) is the second variation for the immersion f|,: D—N, the
restriction of ftoD . The immersion is stable if every such domain is stable. Thus
from (4.1), we have

4.4) p(0)= —fD( ,-Za at, +lh(a)]*— Z; K(e;, a)l|a|*)dM.
Thus we obtain

Proposition 4.1. Let f: M—>N be an maximal isometric immersion of a
Riemannian manifold M into a pseudo-Riemannian manifold with non-positive
sectional curvature. Then the maximal immersion is stable.

Let H;*7(r) be the pseudo-hyperbolic space of radius r(>0) (see, for example,
[4] or [5]). We constructed the maximal isometric immersion of HZ(\/3_) into
H3(1) and the maximal isometric immersion of H™(\/n,/n)x - x Hr+1(\/n . Jn)
into Hy*7(1), where ny+---+n,,,=n. From the above proposition, it is evident
that these immersions are stable. Let M be a compact hyperserface of N, that is,
p=1. In this case, a deformation vector a is written as a=ue,, ,, where €1senes Cpag
is a local orthonormal frame field of N such that on M, e, , , is a timelike normal unit
vector field. Let D be a relative compact domain on M. From (4.4), it follows

(4.5) Vp(0)= —ID (7ul+ (Rl =2 K(es e,41))u?)dM

= |, wdu=(Ihl= 5 K, e, ),
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where 4 is the Laplacian on D. As it is well known, the first eigenvalue 1,(D)
satisfies

f IVuIZszkl(D)j w2dM.
D D
Hence, from (4.5), we obtain

Proposition 4.2. If M is a n-dimensional spacelike maximal hypersurface of a
Lorentzian manifold N. Assume that the sectional curvature is bounded above by
the positive constant c. Let D be a relaive compact domain on M. If the first
eigenvalue of the Laplacian of D satisfies 1,(D)>nc, then D is stable.

Now assume that M is a maximal sapcelike surface immersed in a 3-dimensional
Lorentzian manifold. Then from the Gauss formula (2.4), we get

(4.7) 2R—K(ey, e;))=1lh|?,

where R is the curvature of M. If the sectional curvature of N is bounded above by
a positive constant ¢, we have from (4.6), for a relative compact domain D on M,

(4.8) Vi0)< — L (17l +2(R —2¢))dM.

Thus we obtain

Proposition 4.3. Let M be a maximal spacelike surface immersed in a 3-
dimensional Lorentzian manifold. Assume that the sectional curvature is bounded

above by a positive constnat c. If the curvature of M is bounded below by the
constant 2¢, the immersion is stable.

§5. Compact maximal submanifolds inS7*»

Let N=S;*» be the pseudosphere with index p, that is, Si*P={xeRutr+l:
(X, Xy=x3+-+x5,—X3,— " —X24,+1). Inthis case, Izaﬂ defined by (3.9) are
given by Kaﬁ=nsa5a,,. In this section, if a Riemannian manifold M is immersed in
S»*P with vanishing mean curvature normal, we say that M is immersed maximally in
S»*», though it is an abuse of langage. Now, we consider the standard totally geo-
desic imbedding of S™ into S"*P (m<n). Then the corresponding operater defined
by (3.25) is reduced to

(5.1) La,=—A4a,—na,.
Thus, by using the same argument in the proof of Proposition 5.1.1 in [6], we have

Proposition 5.1. When S™ is regarded as a maximal submanifold of St*», its
index is n+p—m and its nullity is (m+1)}(n+p—m).
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Let {f,} be the frame field on RZ*P*! given by the parallel translation of the
standard base of R:*P*1. It satisfies {f, .+ 1, fu+p+1>=1 and

(5.2) Sas f5o=€4048 &=1 for 0<i<n+p,
g=—1 for n+l1<a<n+p.

Let {6} be the dual coframe field. Then we have

(5.3) 0,(fg)=¢404p for 1<A’, B'<n+p+1.

Take a local frame field {e,.} on S;*7 such that {e,, ep)=¢,0,p and for each
xeSt*P, e, . 1(x)=x. Its dual coframe field {w, } satisfies

(5.4) W (ep)=2640,4p .
Put
n+p+1 ntp+1
(5.5) fa= 3'2:1 Eglqpey, O4p= B’Z::1 Epllypp .

Then we have

(5.6) 2 eptaphpc =40 ¢ -
We can put
(5.7) dx=3 e, wy e, dey,=3 epw pep .

By the exterior differentiation of the first equation at (5.5), we get
ddyp+ 2. echgccp=0.
Using (5.6), we have
(5.8) Wpp=—2 eclhcadicp .
As we have {dx, x)=0, we have w,, ,, ;=0 on S**?. From (5.7), it follows
deyypy1=2 E4Wp114€4= 2 E4D4€4.

Thus we have w, ., ,=w, on S2*?. Hence the second fundamental form H ,, of
+p ; +p+1 iq of
Sp*Pin Rp*P*1is given by

(5.9) H p=2404p.

Let Z=Y e,c,f be a parallel vector field on Ru*r+1l where c4 are constants.
Denote by Z= 3} ¢,z 4e,, the tangential projection onto S%*? of Z. Then we have

(510) ZB=Z EA'CA'ANA/B.

The coefficients of the covariant derivative of Z are given by



On the Stability of Maximal Submanifolds in Pseudo-Riemannian Manifolds 9
(5.11) 2 EgZpaW=AZp+ 2 847 4Wp.
Then, using (5.8), we obtain
(5.12) Za=28404p,

where we put A= —3% €, 4 A puipsiq-

Let M be a comact m-dimensional Riemannian manifold imbedded maximally
in S7*?.  We may assume that the frame field satisfies that e,..., ¢, are tangent to
M. Now put on M

(5.13) ZT=3 zie;,, ZN=3¢,z,e,.

The covariant derivative of ZT is given by

(5.13) 2 zfiwy=dz,+ 3 ez,
From (5.12), it follows
(5.14) zdi=~2 zjhyj-

Similarlly, the covariant derivative of Z7T is given by

(5.15) 2 zhw=dz;+ Y zw;;.

Hence, we have

(5.16) zl;=A0;;+ 20 €2,y -

The second covariant derivative of ZV is also given by

(5.17) >zl wi=dzy+ Y 2N 0+ Y epziwg, .
By a calculation, we get

(5.18) ZY = =2 Zihgaj—Ahyij+ 2 €pZphoihpy;,

where h,,;; are the components of the covariant derivative of the second fundamental
form h of M and satisfy

(5.19) hcxkij = hakija hakij = haikj .

As M is a maximal submanifold, that is, 3 h,;=0, it follows from (5.19) that 3" h;;=
0. Thus we obtain

(5.20) AZ‘Z=Z Zgzvii= -“Z EﬂO'aﬁZﬂ.
The operater L defined (3.25) is reduced to

(5.21) Lz,=—Az,—nz,— 3 €40,525= —Nnz,.
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In other words, we obtain LZ¥= —nZ"¥. Thus we have

Lemma 5.2. Let M be a m-diemnsional compact Riemannian manifold imbed-
ded maximally in Su*P.  Then it holds the index of M >n+p—m.
By the same argument in the proof of Proposition 5.1.6 in [6], we have

Lemma 5.3. Under the same assumption of Lemma 5.2, the index of M is
n+p—m if and only if M is isometric to S", and imbedded in the standard way
as a totally geodesic submanifold.

A Killig vector field X on a pseudo-Riemannian manifold is a vector field for
which the Lie derivative of the metric tensor vanishes. Let X=3 X e, be the
vector field on S7*7.  Then it is a Killing vector field if and only if it is skew-adjoint
relative to the metric, that is,

(5.22) X5+ Xp, =0,

where X, are the componets of the covariant derivative of X (see p. 250 of [5]).
Let X 45c be the components of the covariant derivative of the killing vector field X.
Then they satisfy

(5.23) Xapc—Xacs=2 epXpKpape»

where K pgc=¢pe (0ppdc—04p0pc). Let M be a compact Riemannian manifold
immersed maximally in S#*?. Let XV be the normal vector field on M by normal
projection of a Killing vector field X. Then the componets of the covariant derivative
of XV are given by

(5.24) XYi=X,u—X X;h,;

and the components of its covariant derivative are given by

(5.25) X3ii=Xoij+ 2 s X ophpii+ 2 Xyihi— 2 X o
=2 Xihoaj— 2 epX ghgiha; -

Hence the Laplacian of XV is given by

(5.26) AXP=2 X}i=2 Xu— 2 630,,X,.

On the other hand, we get from (5.22) and (5.23)

(5.27) > Xui=—nX,.

Thus as similarly as (5.21), we obtain

(5.28) LZN =0,

that is, Z" is a Jacobi field on M.
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Lemma 5.4. Let Q denote the vector space of Killing vector fields on Spre.
For any X e Q, XN is a Jacobi field on M.

By using the same arguments in the proofs of Lemmas 5.1.8 and 5.1.9 of [6],
we have

Lemma 5.5. Put QV={X¥: XeQ}. Then dim Q¥>(n+p—m)(n+1). Dim
Q¥=(n+p—m)(n+1) if and only if M is diffeomorphic to S™ and imbedded in
the standard way as a totally geodesic submanifold.

Consecuently, we have an analogue of Theorem 5.1.1 of [6].

Theorem 5.6. Let M be a compact m-dimensional Riemannian manifold
imbedded in Si*P(m<n) such that the mean curvature normal vanishes. Then
the index of M is greater than or equal to n+ p—m, and equality holds only when
M is S™. The nullity of M is greater than or equal to (n+p—m)(m+1) and
equality holds only when M is S™.
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