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§1. Introduction

We shall consider resolution of singularities arising from bifurcations of periodic
solutions of a parameter-dependent nonlinear periodic system

(1.1) 94X _f, %, ) (5,10t % HER", 2€R)
whose right member f(t, x, 1) satisfies the condition
12 f(z+ 27“ Px, A>=Pf(t, x, 1) for xeR", 1,AcR

for a real n x n matrix P satisfying the condition
(1.3) P#I, (nx n unit matrix) and P"=1, for a positive even integer m (>2),

where A is a parameter, and f is a mapping from R"*2 to R" and periodic in ¢ of
period 27 and (k+2) times continuously differentiable with respect to (x, 1) in
R"*2, and f(t, x, A) and its first, second,..., (k+2)-th partial derivatives with respect
to (x, ) are all continuous on R"*2.

Let o(t, xo)=o(t, x(0), 1) (where x,=(x(0), 1) e R**') be a solution of (1.1)
at a given A through x(0)e R* at t=0. Then, for a given A, finding a 2n-periodic
solution of (1.1) amounts to finding a vector x(0) satisfying the equation

(1.4) F(x,)=F(x(0), )=x(0)— (27, x4)=0.

In fact, when X,=(x(0), 1) is a solution of (1.4), then ¢(t, x,) becomes a 2zn-periodic
solution of (1.1) at A=1. From the assumption on f(¢, x, A), F is a C*¥*2 mapping
from R"*1 to R".

It follows from (1.2) and (1.3) that when %,=(X(0), 1) R**! is a solution of
the equation

(1.5) E(x0)=E(x(0), })=Px(0)— (1, x0) =0,
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x, also becomes a solution of (1.4), where t, =2n/m. E is also a C*¥*2 mapping
from R**1 to R".
In this paper, we consider &, =(%(0), 1) € R**! such that

(C1) E(x,)=0, (C2) rank E(xy)=n, (C3) rank F(x,)=n-—1.

Then by the implicit function theorem there exists only one branch of solutions
of (1.5) in a neighborhood of x, and this branch also becomes a branch of solutions
of (1.4) there. We call this branch a branch of (1.5). If there exist two or more
different branches of solutions of (1.4) which intersect at x,, then one of them
coincides with the above branch and the others do not become branches of solutions
of (1.5) due to the implicit function theorem. ‘Bifurcations of periodic solutions’’
mentioned in the beginning of this section actually mean this case.

In fact, if the condition (3.13) is satisfied, then two different branches of solutions
of (1.4) intersect at x4 and if the condition (4.9) is satisfied, three different branches
intersect at x¥, and moreover, if the condition (4.18) is satisfied, four different
branches intersect at x,. In each case, one of them is a branch of (1.5) and the
others are not.

In this paper, we propose a method for computing x, with high accuracy.
Our method is as follows: When we consider an augmented system of nonlinear
equations which contains the equation (1.5) and additional equations, then the
system has an isolated solution containing x, if a specific condition is satisfied.
This is called resolution of the singularity. Then we can compute the isolated
solution with high accuracy and therefore we can also obtain a desired approximation
to X,. Our method can also be applied to computing some kinds of singular
points among which x, exists, and therefore we describe the method as that for
computing such singular points. Here x,=(%(0), 1)e Rrt1 is called a singular
point of (1.4) if

(1.6a) F(xy)=0

(1.6b) rank F (x,)=rank (F(X,), F,(xy)=n—1

(cf. Brezzi et al. [1]). As shown in §3, for the above x,, we obtain
(1.7) rank (F(x,), F(xy)=n—1.

Hence x, becomes a singular point of (1.4).

From a viewpoint of bifurcation theory, we formulate this singular point x,
more precisely. In order to simplify the following arguments, we assume without
loss of generality that

(AD) rank F (x,)=rank Fo=n—1,

where F, denotes the n x (n—1) matrix obtained from F (%,) by deleting the first
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column vector. Then the equation
(1.8) F(%o)h,=0, hi—1=0 (where hy=(h}, h3,..., h})T € R")

has only one solution h, € R*, where (---)T denotes the transposed vector of a vector
(---). This means that &, is an eigenvector corresponding to the eigenvalue zero of
F(%,). Concerning h,; we assume that

(A2) h, ¢ V,=Range F (%,).
Setting V, =Ker F (%,)={{h,}}, we have from (A1) and (A2)
(1.9) Rr=V,®V,,

and so F (%,) becomes an isomorphism from V, to V,, where Ker F,(x,) denotes
the kernel of F(x,), and {{A,}} denotes the vector space spanned by hy,and V,®V,
denotes the direct sum of ¥; and V,. Then from (1.7) the equation

(1.10) Fx(io)hz +Fl(£0)=0 (Where hz € V2)

has only one solution h, € V,.
From (A1) and (A2) there exists a vector ¢, € R” such that

(1.11) Fx(io)Téoz()’ <1711, I‘I§0>Edsgﬁ1=1a

where F,(x,)T denotes the transposed matrix of F (x,)and yT denotes the transposed
vector of yeR". By the use of ¢, we can write V, in the form

(1.12) V,=Range F.(xo)={y € R"; <y, o> =0}.
Let us define the projection operator Q: R*—V, by
Ow=w—<w, ¢oOh; (where weR").
Then the equation (1.4) is equivalent to the system
(1.13) QF(x0)=0, <F(xo), ¢o)>=0.

According to Brezzi et al. [1], there exist two positive constants o, {, and a unique
C**2 mapping v:[ — oy, %] X [—{o, {o]1— V> such that

QF(£(0)+ah, +v(a, O), A+ =0, v(0, 0)=0.

Hence, solving the equation (1.4) in a neighborhood of the singular point x,, —(x(O)
) amounts to solving the bifurcation equation

(1.14) g, = CFR(O0)+ahy +0(w, £), 2+0), o> =0
in a neighborhood of the origin. By elementary calculations, we easily obtain

9(0, 0)=g,(0, 0)=g,0, 0)=0.
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When we set
Ao =940, 0), BOEgaC(O, 0), Cofgcg((): 0),

Aoy, B, and C, can be written in the form
Ao= <Fxx(-’2o)ﬁ1fl1’ (Igo% By= <Fxx(37o)ﬁ1 Ez +sz(£o)ﬁ1, $0> >

(1.15) o o ) R
Co=CF(X0)hsh, +2F jJ(x0)h, +F;,(X0), o)

respectively. Then the singular point %,=(£(0), 1) is called a simple bifurcation
point of (1.4) if

(1.16) B3—A4,Cy>0

(cf. Brezzi et al. [1]). In this case, two different branches of solutions of (1.4)
intersect at the simple bifurcation point.

In fact, obviously 4,=0 and if the condition (3.13) is satisfied, then B,#0,
and therefore the above-mentioned singular point x, becomes a simple bifurcation
point. This bifurcation point is also called a pitchfork bifurcation point of (1.4)
(cf. Kawakami et al. [3, 4, 5] and Werner et al. [7]).

In particular, in [8], when m=2 and P= —1I,, we have already considered such
a simple bifurcation point and have proposed a method for computing it with high
accuracy. Therefore the results of this paper are the generalization of those of [8].

Concerning methods for computing simple bifurcation points, besides our
method, Kawakami et al. [3, 4, 5] have proposed another method. The difference
between their method and ours is that theirs is based on the use of the proper equation
of F.(x,), while ours is based on the use of an eigenvector corresponding to the
eigenvalue zero of F (x,).

However, if the condition (3.13) is not satisfied, then B,=C,=0. That is, all
the second partial derivatives of g vanish at the origin. In this case, we call the
singular point x, a singular point with a higher singularity. Among such singular
points, there exist bifurcation points at which three or more different branches of
solutions of (1.4) intersect. For example, if the condition (4.9) is satisfied, three
different branches intersect at x,, while if the condition (4.18) is satisfied, four
different branches intersect at x,. In each case, one of them is a branch of (1.5)
and the others are not.

Hence, in this paper, we consider singular points with a higher singularity and
propose a method for computing them with high accuracy. This paper is based on
the preceding result [12], but the latter is devoted only to the study of methods for
computing singular points and we did not describe in detail about bifurcation theory.
As for the problems different from what we discuss in this paper, see Cliffe et al.
[2] and Yamamoto [10, 11], where methods for computing singular points with a
higher singularity are given.
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Generally, in the case of assuming no conditions, as shown in Weber [6] and
Yamamoto [9], we consider a (3n+2)-dimensional equation in order to compute a
simple bifurcation point. In the case of assuming the condition (1.2), however,
we have only to consider a (2n+ 1)-dimensional equation. Furthermore, when we
compute a singular point with a higher singularity, in the former, as shown in [8],
we consider a (6n+ 6)-dimensional equation but, in the latter, we have only to
consider a (4n+ 2)-dimensional equation.

In §2 basic lemmas used in the following sections are given and in §3 simple
bifurcation points are considered. In §4 singular points with a higher singularity
are considered and a method for computing them with high accuracy is proposed.

§2. Preliminaries

In this section, we give the notations and the basic lemmas used in the following
sections. Throughout this section, we assume that f(t, x, A) is sufficiently smooth.
We denote by f.(t, x, A)=0df(t, x, A)/0x, f(t, x, )=0f(t, x, N[04, f,.(t, x, L)=0*f(,
x, A)[0x2, fo(t, x, A)=0%f(t, x, )[0Adx, f,.(t, x, A)=0*f(¢, x, A)[0A?,... the corre-
sponding partial derivatives.

In the following, we consider a variational equation of (1.1), and moreover its
variational equation and moreover its variational equation...successively. In order
to express these variational equations simply, we introduce the following notations.
For f(t, x, A) we define n x n matrices Y(9’s (¢ >1) and ¥V ® e R*(r > 1) inductively by

. J s
YO =f(t,x, 4, Y@=} ; C;_ YE24Vhy,

i=1

. J o : .
Y Qit) = ,;1 - lci—lY;21_21+1)h2i+ Yfl“—l) (=1
and

o s
VO =fi(t, x, ), VE= .21 j=1Cio VRT3 DRy,

‘ j . : .
V@it = ;1j—lci—1V;21_2l+l)h2i+Vazj—l) (]21)

respectively, where each ;C; denotes the binomial coefficient, and each h;e R" is an
arbitrary vector. Then we have the following lemma.

Lemma 1 (Yamamoto [10]).

i . . . . .
> - lcj— 1(Y(21+2—2])hzj_|_ Y(21+1-—21)h2j+ 1)+ | 74¢2))

Jj=1

it1
— 2 icj_ly(2i+3—2j)h2j_1 (i>1).

Jj=1
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Now we set
Ki={¢(t)eR"; PIp(t)=¢(t+jt,) for teR, jeZ},
K_;={¢(®)eR"; PIp()=(—1)/¢(t+jt,) for teR, jeZ},
where Z denotes the set of all integers. Then we get the following lemma.

Lemma 2 (Yamamoto [12]). For x(t)e K; and hy;_(t)e K_, and h,(t)e K,
(i>1)

(1) V@D@neK, VehneK_ , (j=1),

) Y@rv(ng(eK,, YCHnpeK_;  for ¢(HeK,
. i>1),
1i YD eK_y, YeXn(eK, for WHekK_, (j=1)

where V(1) and Y9(t) (q<2j) denote the values of V@ and Y@ at x=x(1)
and h,=h/(t) (1<r<q—1), respectively.

For each positive integer i let (o(t, xo), @1(t, X;), @2(t, X3)seees @pi-1(t, X5;_ 1),
©,i(t, X3;), 0;_4(t, x,;))T € RZi+2)m be a solution of the system

dh, _

dx dh, =YDOh,+ VO
t b

T = L1 -y
dt f(t> X, )“)9 dl Y hla

. , i—1 oA . . .
dhdztl_l - ’Zl i—2C; - 1(Y@Im2Dhy 4 YRIZ1=2D) Y4 Y2i=2)
=

i . .
— Z i_lcj_lY(21+1 Zj)hzj_l,

J=1

dhy 4 " N
dZZE — jgli—lcj—ly(zlﬂ 2Dy 4+ V@D,

dy — Y ! C._ . Y@i+2-2)} &l C._  Y@i+1-2i)p

ar y+ ]Zzlli-l j-1 2; jz=:1i—1 j-1 2j+1

. i . .
+Yen=ymy 4 f;l iCj— YEH372Dh, o

such that (¢(0, x,), ¢1(0, x1), 920, x5),..., @, 1(0, X3;_1), 240, x3,), 6, 1(0,x,))T=
(x(0), hy(0), hyx0),..., hy;—1(0), h,(0), 0)T, where x(0)e R”, x,=(x(0), 1)e Rr*1,
h(0)=(h%(0), h%(0),..., h*(0))Te R (1<j<2i) and x,=(x(0), hy(0),..., h0), DHTe
Ra+Dn+1 (1 <g<2i). Then we set

Px(0) — (1, xo)

( Phi(0) +¢,(11, x1) )
Phy(0) — @5(24, X5)

< Ph3(0) +5(t1, x3) >
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Si(xpi-y) = E € R2in,
( Phy;_5(0) —@a;_5(t1, X5;-2) >
Phyi 1(0)+ @2;—1(24, X25-1)
Si(x2i-1)

Ti(xy;)= (
: Ph,;(0) — @,:(21, x3;)

>GR(2i+l)n,

and also set vectors
EW =(b], b,..., bj;, b+ )Te R (1< j<i—1) such that
bii=0,_,(t;, x,;) and bi=0eR" (q+#2j) respectively.
Then from Lemma 2 we easily get the following lemma.

Lemma 3. If there exists a vector X,;=(%(0), h,(0), h,(0),..., h5;_,(0),
EZi(O), 1)Te R@i+1n+1 satisfying the equation

T((x,:)=0,
then ¢o(t, xo) € K, and
@rj-1(t, X3;-)€K_ and @, x,)e K, (1<j<i),

where %,=(%(0), 1) and x,=(%(0), h(0),..., h,(0), DT (1 <q <2i).
For each positive integer i (>2) we define

Yi(x2i-1)=(hi(0)— 1, h3(0), h3(0),..., h3;-1(0)T e RE.

§3. Simple Bifurcation Points

In this section, we show that X,=(%(0), 1) satisfying (C1)-(C3) becomes a
simple bifurcation point if the condition (3.13) is satisfied, and we propose a method
for computing %, with high accuracy. This method is essentially the same as that
proposed in [8].

Due to (1.2), (1.3) and (C1), we have

(3.1 () =9(t, x5)e K, .
When &,(f) (n x n matrix) is a solution of the system

dz, _

77 f(t, %(t), Dz, (where z, is an n x n matrix)

such that &,(0)=1,, then we can write E (%,) and F (%) in the form

(3.2 E(%0)=P—®,(t;) and F(%o)=1,—®,(2n)
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respectively. Moreover, for &, (t), we have from (1.2) and (3.1)

(3.3) &,(t+jt,)=Pid, () {P~1®(t,))})  for teR, jeZ
Assuming t=0 and j=m in (3.3), we have

(3.4 ’ &,(2n)=0m (where U=P~19,(1})),

from which it follows that

(3.5) 1,-®,2Qm)=[I,+01L=L[1,+01=[1,- 01M=M[I,- U],

where

m—1

L="% (—1)0i=1,—0+02—- 4+ Om2- 01,

m=1 _ . ~ A ~ A
M=% Oi=1,+ 0+0%+ ...+ Om240m1.

i=0
By (C2) and (C3) we see that
(3.6) rank [[,—0]=n and rank M=n-—1.
Concerning the solution k,; of (1.8) we have the following lemma.

Lemma 4.
(3.7) h,eKer[I,+0].

ProOF. From (3.4) we easily have

[1,—&,2n)]0h, =0[1,— &,(2n)]h, =0,
which implies
(3.8) Uh,=oah, (whereaeR)
because Ker [I,—®,(2n)]={{h,}}. Since i, =®&,(2n)h,, we have by (3.4) and (3.8)
hy=0mh,=omh, .
Since h, is not a zero vector, we have
om—1=0,

and therefore «=1 or a=—1. Due to (C2), «=—1. That is, h, e Ker [I,+U].
Q.E.D.

Due to (C3), (3.5) and (3.7), we easily get
(3.9) rank [I,+ 0]=rank Dy=n—1 and rank L=n,
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where D, denotes the n x (n—1) matrix obtained from I,+ 0 by deleting the first
column vector. In fact, F,=L D,.

Now we prove (1.7). When &,(f) € R" is a solution of the system

Lot 1 20, D&+ 50, D)
such that £,(0)=0¢€ R", then we have
(3.10) : Fy(xy)=—-&,(2n).
By (1.2) and (3.1) we readily see that
(3.11) E2m)=MP1E(1),

which, by (3.5) and (3.6), implies (1.7). Hence x, becomes a singular point of (1.4).
When we set h,(t)=®,(1)h,, then fi,(f) becomes a 2n-periodic solution of the
system

dh| — )
L =10, 30, Dh,

and also, by (3.7), satisfies
Pfl1(0)+ﬁ1(t1)=0,

which, by Lemma 3, implies /i,(f)e K_,. Moreover, h}(0)=1 because h,(0)=Ah,.
Hence, in order to obtain the singular point x,, we consider the equation

Si(xy) )
h1(0)— 1

(3.12) G,(x,)= <

As noted above, the equation (3.12) certainly has a solution %, =(%(0), /,(0), N)T.

In fact, h;(1)=0,(t, £,). We denote by G;(x,) the Jacobian matrix of G,(x,) with
respect to x;.

When Y0)(¢) and V0)(t) (i=1, 2) denote the values of Y and V® at x=2%(t),
hy=h,(¢) and =1, respectively, and &,(f) (n x n matrix) is a solution of the system

% =YW(t)z, + ?‘”(t)@l(t) (where z, is an n x n matrix)
such that @,(0)=0 (n x n zero matrix), and &,(f) e R* is a solution of the system

D2 = PO(0E,+ PO+ PO

such that &,(0)=0e R, then the matrix G)(x,) has the form
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P—&,(1) o —51(l1)
Gi(x,)= ®,(t)) P+P,(1y) &,(ty)
00 --- 0 10 --- 0 0

Concerning the regularity of the matrix Gj(x,) we have the following theorem.
Theorem 1. The matrix Gi(x,) is nonsingular if and only if
(3.13) rank (D, 6,)=n,

where D (=PD,) is the n x (n—1) matrix obtained from P+ ®(t,) by deleting the
first column vector, and

(3.14) 8, =®,(t)h, +&,(1,) (eR").
Here h, € R" is a solution of the equation
(3.15) [P—®,(t)]h,—&,(t)=0 (where h,eR").
Proor. For (u,, u,, p)T € R?>**! we consider the equation
[P— @101)]“1 —p51(11)=0,
(3.16) R R .
Dyt )uy +[P+Py(t)Juy +pSy(t)=0, u3=0,

where u;=(u!l, u?,...,u)TeR" (i=1, 2).
When p =0, we get u, =0 from the first of (3.16) because det [P—&,(¢,)]=det P
xdet [I,—U]#0. Letting p=0 and u, =0 in the second of (3.16), we have

[P+ @1(11)]112 =0, u3;=0,

from which follows u,=0. Thus we obtain a zero solution (0, 0, 0)T € R2"*1 of
(3.16).

When p#0, we set p=1 without loss of generality. Then we get u, =h, from
the first of (3.16). Letting p=1 and u, =h, in the second of (3.16), we have

(3.17) [P+@1(t1)]u2+@2(t1)ﬁz+82(t1)=[P+9§1(t1)]”2+51=05 u3=0.

It follows from (3.17) that if rank (D, §,)=n, then the equation (3.16) has a zero
solution only and so det G;(x,) #0, and conversely if det Gj(x,)#0, then the equation
(3.16) has a zero solution only and so rank (D, §,)=n. Q.E.D.

In particular, when m=2 and P= —1,, Theorem 1 is the same as that mentioned
in Case (I) in 3.2 of [8].

Due to Theorem 1, if the condition (3.13) is satisfied, then the equation (3.12)
has an isolated solution x,; containing the singular point x, —this means that
resolution of the singularity is realized— and therefore we can compute x, with
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high accuracy by applying the Newton method to the equation (3.12).
Now we show that if the condition (3.13) is satisfied, then the singular point x,
becomes a simple bifurcation point. By elementary calculations, we obtain

9, =F (Z)h hy=—B,2m)h; = — M{P~13,(t,)h,},
D, =F (X iy + F o y(X0)h, = — &,(2m)h, — E,(2n)
=L [P Y®,(t)h,+E,(t)}1=L P15,
from which, by (3.5), (3.6) and (3.9), it follows that
(3.18) rank [I,— &,(2n), 9;]1=n—1,
(3.19) rank [I,— &,(27), 9,]=rank [I,+ U, P~15,]
=rank [P+ ®,(t,), §,]=rank (D, §,).
Hence by (1.12), (1.15) and (3.18)
(3.20) Ao=<by, $o>=0.
From (3.2), (3.5), (3.10) and (3.11) we can write the equation (1.10) in the form
M{[I,—O0]h,—P~1¢,(t,)}=0 (where hyeV,),
from which it follows that there exists a constant ¢ € R such that
(3.21) [I,—01h,—P & (t)=2th,
because Ker M= {{h,}}. Since [I,— Uh,; =2k, due to (3.7), we obtain by (3.21)

(3.22) 1, 01(Fy— S0y ) - P18, =0,

The equation (3.15) is equivalent to the equation

(3.23) [I,—Ulh,—P~1¢ (t,)=0 (where h,eR"),

and /1, is only one solution of (3.23), and therefore by (3.22)

(3.24) hy,=h,—dh, (whered=¢[2).

Then from (1.15), (3.20) and (3.24) we have

(3.25) Bo=C92, $o>+d<91, $o> =<9z, bo>.

Therefore, if the condition (3.13) is satisfied, then we have by (1.12), (3.19) and (3.25)
(3.26) B,#0,

which, by (3.20), implies
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(3.27) B%3—A,C,=B3>0.

Hence the singular point x, becomes a simple bifurcation point.
Next we consider in what form C, can be written. When we set fi,(f)= &,()h, +
&,(?), then h,() becomes a solution of the system

A2~ 900y + PO(0)

and also satisfies
Phy(0)—hy(t,)=0,

which, by Lemma 3, implies /,(f)e K,. When Y3)(¢t) and 7 3)(¢) denote the values
of Y® and V® at x=21(t), h,=h,(t) and A= 1, respectively, and &5(f) (n x n matrix)
is a solution of the system

—%Zti =YDz, + YO)D,(1) (where z5 is an n x n matrix)
such that &,(0)=0 (n x n zero matrix), and £,(f) € R" is a solution of the system
s = Y008+ PO )+ D)
such that £,(0)=0¢& R", then by elementary calculations we obtain
(3.28) 93 = Fy(X0)hoh; +2F  (X0)hy + Fy(%0) = — B3(2n)h, — E5(2m)
= — M[P~H{&4(t,)h, + &1 )}],
which, by (1.15), (3.5) and (3.6), implies
rank [I,—®,(2n), $;]1=n—1,

and therefore by (1.12)
(3:29) (93, o> =0.
By (1.15) and (3.24) we readily see that

Co=<P3, o> +2d0y, Go) + (0, do)
so that by (3.20), (3.25) and (3.29)
(3.30) Co=2dB,.

§4. Singular Points with a Higher Singularity

In this section, we consider the case rank (D, §;)=n—1. Then B,=0 due to
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(1.12), (3.19) and (3.25), and so by (3.30) C,=0. Hence we consider singular points
with a higher singularity. Among such singular points, there exist bifurcation
points at which three or more different branches of solutions of (1.4) intersect.
For instance, if the condition (4.9) is satisfied, three different branches intersect,
while if the condition (4.18) is satisfied, four different branches intersect.

As is well known, there exists a positive integer j, (1< j, <n) such that

4.1) rank (P+&,(t,), e;)=rank (D, ¢;))=n,

where e, =(g;, €3,..., &,)T €R" is a vector such that gj,=1 and =0 (i#j,). For
this vector e;, and each positive integer i (>2) we set vectors

0 =(af, ai,..., aj)Te R¥" (1<j<i—1) such that ajj=e;, and
aj=0€R" (q#2j) respectively.
Due to rank (D, §,)=n—1, the equation
[P+ &,(t,)]hs+8, =[P+ &,(t)1hs + $,(t ), + E5(t,) =0,
hi=0 (where hy=(hi, h3,..., k)T e R")
has only one solution fi; € R*. When we set
hy()=B,(Dhs+ Bs()hy =B, (Dhs+ B,(Dh, +E(D),

then h,(f) becomes a solution of the system
Aha — (ks + T OWhi(1)= T OWhs + T OOR)+P (D)

and also satisfies
Phy(0)+ hy(t;) =0,

which, by Lemma 3, implies /i;(f)e K_,. Moreover, h(0)=0 because h;(0)=h;.
Hence, in order to obtain the singular point %, with a higher singularity, we
introduce another parameter B, € R and consider the equation

Sy(x3)— .3199) )
Yo(xs3)

where y,=(x5, §;)T € R4"*2, As noted above, the equation (4.2) has a solution
7, =(20), h,(0), h,(0), h50), 4, 0)T, where h(0)=h, (1<i<3). In fact, h(t)=
oft, #) (1<i<3), where %;=(2(0), h;(0),..., h(0), )T (1<i<3). We denote by
G5(y,) the Jacobian matrix of G,(y,) with respect to y,.

When ¥®)(t) and 7 #)(¢) denote the values of Y® and V® at x=X(1), h;=ht)
(1<i<3) and A=1, respectively, and @,(¢) (n x n matrix) is a solution of the system

(4.2) Gy(y,)= <
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% == ?(1)(t)z4+ 17(2)(t)(133(t)+ ?(3)(t)€f72(t)+ 17(4)(t)ff51(t)

(where z4 is an n x n matrix)

such that @,(0)=0 (n x n zero matrix), and &,(f)e R is a solution of the system

Los _FOWE,+TOOED) + TG+ TODED)+ P ()

such that £,(0)=0€ R", and h, € R" is a solution of the equation
[P—®,(t)]hy—B3(t)h,—E5(t;)=0 (where h, e R"),
then we set
8= B4 (t)hy+ B3t Vs + By (1)h, +E4(1) (eR7).
Concerning the regularity of the matrix G4(y,) we have the following theorem.
Theorem 2. The matrix G5(y,) is nonsingular if and only if
(4.3) rank (D, 6,)=n.

The proof is done in a similar way to that of Theorem 1 and will be omitted.
Due to Theorem 2, if the condition (4.3) is satisfied, then the equation (4.2) has an
isolated solution p, containing the singular point X, —this means that resolution
of the singularity is realized— and therefore we can compute %, with high accuracy
by applying the Newton method to the equation (4.2).

We show that, in addition to (4.3), if the condition (4.9) is satisfied, then three
different branches of solutions of (1.4) actually intersect at the singular point %,.
Of course, one of the three is a branch of (1.5) and the other two are not.

When we set

(4.4) o= —B,2n)h, — B;2n)h, — B,(2n)h, — E,(27)
=L[PY{B,(t)h,+ B3(t)hs+ By(t)hy + Eu(t)}]=L P15,
and
R=(D4s G0,
then by careful calculations we obtain
(4.5) 900, 0)=0g,55(0, 0), g,(0, 0)=~R +d?g,,,(0, 0)
and g, (0, 0)=3d% +d3g,,,(0, 0),

and therefore we can write the bifurcation equation (1.14) in the form
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(4.6) 900, )= 37 [+ A0) {Gaan0, )+ 02+ 3R]+ h.o.t. =0,

By (3.5), (3.9) and (4.4) we see that

4.7 rank [I,— &,(2n), 9,]=rank [I,+ U, P~15,]
=rank [P+ ®,(t,), 6,]=rank (D, §,),

and therefore by (1.12) and (4.3)

(4.8) R#0.

Hence, by (4.6), if the condition

(4.9) 920, 0) X k<0

is satisfied, then three different branches of solutions of (1.4) intersect at the singular
point X,.

Next we consider singular points where the condition rank (D, §,)=n—1 is
satisfied.

Assume that there exists a vector (R, fiy, fgye.., fyp—q, A)T € R2¥7*1 such that
the following three assumptions (I)~(III) are satisfied (k>2):

(I) %,=(%0, A) € R"*! is a singular point of (1.4) satisfying (C1)~(C3).
When (£(2), h,(2), hy(0),..., by 1(D))T € R?%" is a solution of the system

dh,
dt

=YWh,, % =

— =/ (6 x4, YR, + VO,

k=1 )
k-2 = zlk—zcj~1Y(2k_1_2”h2j+ Y (2k-3)
=
dhy—1 _ kil C yQ@k-2i)p y@k-1-27)}, )V (@2k2)
di - k2 i-1( 2;t 2j+1)T

k ) .
= j§=:1 k1Co YORH1=2Dp,

at =1 such that (£(0), ~,(0), A,(0),..., Az 1 (ONT=(Rg, Py, Figyerrs Bigp_ )T, and
Y(f) and PO(1) (1<i<2k) denote the values of Y and V) at x=%(1), h;=h(t)
(1<j<i—1) and A=A, respectively, and (&,(2), ®5(1),..., DPax_ 1 (), Po()T (2knx n
matrix) is a solution of the system ‘

dz,
dt

dz,

=YW (0)z,, =YW ()z,+ TP (1)zy,
(where each z; is an n X n matrix)

k N . .
dzy-y _ > ko1Cio YERI20(D)z, 5y,
j=1

dt
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dz k P ~2j 4 ~2j
7dt2k - jz=:1 k—1Cj—1(Y(2k+1 2])(t)22j+Y(2k+2 21)(0221'—1)

such that (,(0), $,(0),..., $,,_,(0), $,(0)T=(I,, O0,..., 0, O)T (O is an nx n zero
matrix), and (€,(t), &,(1),..., - 1(1), E:1(1))T € R?** is a solution of the system

Lr —pong + P00, L2 = gn)g+ 7002, + PO,

: ) ) )
d%’;—l = 2 1 G YORHIZ2D(E, . 4+ V(1)
=

d K o o R
S;k = jzzllk—1cj—1(Y(2k+1 28, + Y @Rr2720()E, )+ V (20)(1)

such that (&,(0), &,(0),..., &,,_(0), &,,(0)T=(0, 0...., 0, 0)T € R2*_ and

. i R R i1 . R .
0;= 2 i 1Ci 1Paipa_2(t)hy; + 1;1 i-1C5-1Paiv 12/ (D21 + Eaity)

=1
(1<i<k),
then
[P+‘§1(t1)]ﬁ1=0, hi—1=0, [P_é1(t1)]ﬁz_51(11)=0>
[P'_"@1(t1)]ﬁ3+51=0» hy=0, [P—&,(t;)]hs—4(t)h,—Ex(t,)=0,
(ID) T . k=2 . o
[P—D,(t)]hsg-2— j;lk—zcj—1¢2k—2j—1(t1)h2j"fzk—s(t1)=0,
[P+@1(t1)]52k—1+5k—1=0, fl%k~1=0
and

(IID) rank [P+ ®,(ty), §,]=rank (D, §,)=n—1

are satisfied, where D is the n x (n—1) matrix obtained from P+ &,(t,) by deleting
the first column vector, and h,, € R" is a solution of the equation

- k-1 - “ -
[P—D,(t)]hy— jglk—lcj-1¢2k+1—2j(t1)h2j_62k—1(t1):0 (h € R™).

Due to (I), £(t)=¢(t, xo,)€ K,. Then, for &,(t) and h,, we also obtain (3.2)-
(3.7) and (3.9). Since (h,(2), hiy(?),..., h—,(1)T can be written in the form

i_

~ - ~ ~ 1 -~ ~ -
hi(®)=D,(Dh;, hyi (D= Jél 1-2C 1D 1 —2j(Dhy;+ & 5(1),

i—-1

hoi— (1) = > i—zcj—1(@2i—2j(t)ﬁzj+@2i—1—2j(t)ﬁzj+ D)+E5i ()

Jj=1
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=X i—1Cj—1‘§2i+1—2j(t)f12j—1 (2<i<k),

j=1
we obtain by (II)
Phy ((0)+hy_(1)=0 (1<i<k) and Ph{0)—h,[(t)=0 (1<j<k-1),
respectively. Then from Lemma 3 we have
hy_(eK_, (1<i<k) and hy(H)eK, (1<j<k-1).

Moreover, i1(0)=1 and ﬁ;i:1(02=0 (2<i<k) because oy ((O)=hy;—y (1< j<k).

When we set p,=(%o, iy, Npyovs hox_ 15 4, 0)T € R¥¥#Hk (§ e R¥71; a zero vector)
for the above-mentioned (£¢, Ay, As,..., fipy_1, )T € R2xn+1 . § becomes a solution of
the equation

b

Si(X20m1) — B10F — B0 — oo — B, 0%, )
Vi(X2x-1)

where ;€ R (1<i<k—1) are parameters and y, =(x5,_1, By, Base-es Pr—1)T € RZHE
In fact, h()=04t, x)) (1<i<2k—1), where x;=(Ro, fy,..., by HT (1<i<2k—1).
We denote by Gy (y,) the Jacobian matrix of G,(y,) with respect to y,. For the
solution y,, the matrix Gi(p,) is singular, that is, det G;(y,)=0 due to (III).

We have already described the procedure for resolving the singularity and we
use this procedure for the equation (4.10). In this case, the equation (4.10) plays the
role of the equation (3.12) in such a procedure. Hence, if we consider an equation
corresponding to the equation (4.2) in that procedure, that is, an augmented system
of nonlinear equations which contains the equation (4.10) and additional equations,
then the singularity is resolved. Hence we have only to consider this augmented
system.

When we set

(4.10) Gi(yi) = (

R k - . .
hy(t)= j;l k=1Cj—1Por+1-2/(ODha;+E2- (1),

then f1,,(t) becomes a solution of the system

dh & k-1 S . |

Aot 9yt T, 4o 1Cioa T2y (1) + POFD()

=1
and also satisfies
Phy(0)— hy(t,) =0,

which, by Lemma 3, implies k,,(f) € K;.
Due to (III), the equation
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[P+®,(t)]hyes 1+ 6x=0, hlis1=0
(where hyp i1 =(h4ss 15 Pois1seens M3 1)T €RY)

has only one solution f,,,, € R*. When we set

~ k ~ ~ - ~ N
hors ()= ng k=1Ci o 1(Pops2—2f (D2 Py —2 /(DN 4 1)+ (),
then £, (1) becomes a solution of the system

- k N A
st Oy + 3 ke1Cjot 2200 1)
i=1

k-1 . .
+ X k~1cj—1Y(Z"“"Zj)(t)hzjﬂ(t)-{— P i)
Jj=1

and also satisfies
Phy,1(0)+ EZk+ 1(21)=0,

which, by Lemma 3, implies h,,.,(f)e K_,. Moreover, h},,(0)=0 because

E2k+1(0):ﬁ2k+1-
From what we have discussed above, the equation

Sie1(X2k41) = B1OFTY — B0%FD — . — B QK+ D >

Yis1(X2x41)

has a solution J,.,=(%(0), 1,(0), f5(0),..., Ayt ,(0), A, 0)T € R2*+Dntk+1 where
p;e R (1<i<k) are parameters, y.,;=(X2141> B1> B2s--., Pi)T € R2KF)ntk+1 " apnd
2(0)=%, and h(0)=h, (1<i<2k+1), and ) e R* is a zero vector. In fact, h(t)=
oft, ;) (i=2k, 2k+1), where x;=(%(0), h,(0),..., h(0), )T (i=2k, 2k+1). We
denote by G, (¥, ) the Jacobian matrix of G, . (¥, () With respect to y, . ;.

When Y)(¢) and V(¢) (i=2k+1, 2k+2) denote the values of Y and V&
at x=2(1), h;=h(t) (1<j<i—1) and A=1, respectively, and (P4 (1), D4 2(1))T
(2n x n matrix) is a solution of the system

=0

(4.11) Gri(Pis) = (

N k -~ . +

‘dzczi% =YD(O)zp4 1+ 2 kcj—1Y(2k+3_2”(t)@2j— 10
=1

d_Zdz%iz_ = PO()zy00 2+ TOD 2004 4

k N A N s
+ X2 G ((YERE3=20)(1)D, (1) + Y CR+4=20(1)D, ;_ 1(1))
j=1

(where z;’s (i=2k+1, 2k +2) are n x n matrices)

such that (B, ,,(0), 5.4 (0)T=(0, 0)T (O is an n x n zero matrix), and (&, 1(?),
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&,.+,()T € R2" is a solution of the system

2 k ES -
o = PO+ X 4Cymr T2 1(0)+ P (),
ji=1

déj:n = VOO a+ TOOE sy + i kcj_1(?(2k+3—2j)(t)82j(t)
j=1

F PR, )+ V(D)
such that (&4 1(0), &34 2(0)T=(0, 0)T € R?", and R, 4,€R® is a solution of the

equation

-~ k ~ N N
[P=D,(t)Vhogs2— 2 kcj—1¢2k+3—2j(t1)hzj—§2k+1(t1)=0 (hak+2€R"),

Jj=1

then we set

Sii1= jZ: Ci- 1@2k+4—2j(t1)ﬁ2j+ él kcj—1§2k+3—2j(tl)E2j+1+ Exira(ty).-
Then, concerning the regularity of the matrix Gj.y(Px+), We have the following
theorem.
Theorem 3. The matrix Gj,(P,. 1) is nonsingular if and only if
(4.12) rank (D, 6,4 {)=n.

The proof is done in a similar way to that of Theorem 1 and will be omitted.
Due to Theorem 3, if the condition (4.12) is satisfied, then the equation (4.11) hasan
isolated solution y, ., containing the singular point %, —this means that resolution
of the singularity is realized— and therefore we can compute X, with high accuracy by
applying the Newton method to the equation (4.11).

Now we consider another method which need not look for the vector e;, satisfying
the condition (4.1).

When we set

~ k+1 N ~ PS
ho ()= JZ‘& kCi-1Pak+3—-2/Oh2;+ Eak41(1),
then A, +,(t) becomes a solution of the system
dh2k+2 —_ ?(1) h & D @k+3-2))\h {7 (2k+1)
—d (Ohogsr+ ng Ci-1Y Ohy;O+V ®

and also satisfies

Phy 5(0)— hyges () =0,

which, by Lemma 3, implies i, ,(t) € K.
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Then the equation

Tyi1(Xgp42) — B1EFTV — B,EH+D ... ~/3k5,(c"+1)> .

l//k+1(xzk+1)

has a solution Z; , ; =(%254 5, )T =(£(0), £(0), 1(0),..., Ay 4 2(0), £, ))Te RCk+3)n+i+1
where 2y 4 1 =(X242, B1s Base o> Br)T€ REEFHWHE+1n fact, Ay, 5()=@ors o(t, Xans ).
Hence, when we consider the equation (4.13) instead of (4.11), we need not look for
the vector e;, satisfying the condition (4.1). We denote by H}_,(z,. ) the Jacobian
matrix of Hy, (3,4 ) with respect to z,, ;. Concerning the regularity of the matrix
H}.1(Z,+1) we have the following corollary.

(4.13) Hi1(2x41) = (

Corollary. The matrix Hy.(24+4) is nonsingular if and only if the condition
(4.12) is satisfied.

Remark. If g,,,(0, 0)=0 and rank (D, 6,)=n—1, then g,,,(0, 0)=g,,(0, 0)=
940, 0)=g,,(0, 0)=0 due to (4.5) and (4.7). In this case, when we set

(4.14) V5= —Bs(2n)h, — Bs2n)h; — 2B ,21)h, + B5(27)hs) — ®&,2n)h—E4(27)
=LIPHB(1)hs+ Bs(t)hs +2By(t,)hy + B3(1)hs) + ®,(t,)hs
+&6(t)}1=L P15,
and A=<{9s, ), then by careful calculations we obtain
(4.15)  Goaa(0, 0)=0, g0, 0)=2dg,,,(0, 0),
9uze(0, 0)=A+3d20,,,(0, 0) and gy (0, 0)=4d[1+4d3g,,,(0, 0),

and therefore we can write the bifurcation equation (1.14) in the form
(4.16)  g(x, )= 117 [40(2+ A1) {Gauar(0; O+ AL+ L2} + huo.1. =O.

By (3.5), (3.9) and (4.14) we see that
(4.17) rank [I,—®,(2n), 9s]=rank [I,+ 0, P-18,]
=rank [P+ ®,(t,), ;] =rank (D, 45).
Therefore, if rank (D, §;)=n, then #0. Hence, by (4.16), if the condition
(4.18) 9aat(0, 0) X 1 <0

is satisfied, then four different branches of solutions of (1.4) intersect at the singular
point Xx,.



Resolution of Singularities Arising from Bifurcations of Periodic Solutions 81

Acknowledgement

The author would like to express his deep gratitude to Professor Seiiti Huzino

of Kyushu University for his polite guidance and very helpful suggestions throughout
this work.

[1]
[2]
(3]

[4]

(5]

[6]
(7]
(8]
[9]
[10]
[11]

(12]

Department of Applied Mathematics
Faculty of Engineering
Tokushima University

References

F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear
problems. Part III: Simple bifurcation points, Numer. Math., 38 (1981), 1-30.

K. A. Cliffe and A. Spence, The calculation of high order singularities in the finite Taylor
problem, Internat. Ser. Numer. Math., 70 (1984), 129-144.

Y. Katsuta, Tajigen hisenkeikei no teiseiteki kenkyu (Qualitative study on finite dimensional
nonlinear systems), Master’s Thesis in Electronics, Tokushima Univ., (1982) (in Japanese).
Y. Katsuta, H. Kawakami and N. Kawaguchi, Taishyosei o motsu jiritsukei ni okeru
shyukikai no bunki (Bifurcations of periodic solutions of autonomous systems with a sym-
metric condition), National Convention Record, IECE Japan, (1982), Part I-1, p. 9 (in
Japanese).

H. Kawakami, Bifurcation of periodic responses in forced dynamic nonlinear circuits:
Computation of bifurcation values of the system parameters, IEEE Trans. Circuits and
Systems, 31 (1984), 248-260.

H. Weber, On the numerical approximation of secondary bifurcation problems, Lecture
Notes in Math., 878 (1981), 407-425.

B. Werner and A. Spence, The computation of symmetry-breaking bifurcation points,
SIAM J. Numer. Anal., 21 (1984), 388-399.

N. Yamamoto, Newton’s method for singular problems and its application to boundary
value problems, J. Math. Tokushima Univ., 17 (1983), 27-88.

N. Yamamoto, A method for computing singular points of nonlinear equations involving
parameters, J. Inform. Process., 7 (1984), 75-80.

N. Yamamoto, An analysis of bifurcation points of nonlinear equations satisfying a
condition, J. Math. Tokushima Univ., 19 (1985), 63-99.

N. Yamamoto, An analysis of bifurcations of periodic solutions of nonlinear periodic
differential systems satisfying some condition. I, RMC 59-11 (1984), Kyushu University.

N. Yamamoto, An analysis of bifurcations of periodic solutions of nonlinear periodic
differential systems satisfying some condition. II, RMC 59-12 (1984), Kyushu University.



