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By

Yoshinori KAMETAKA and Matu-Tarow NopA
(Received September 11, 1986)

In our previous paper [1] we considered the simplest power series solution of
the Painlevé-1 equation which is regular at the origin. This note is a sequel to it.
Here we consider another simplest Laurent series solution which is singular at
the origin. Important feature of this solution is the location of the singularities.
The location of the nearest singularity from the origin is given by the radius S of
convergence of this Laurent series. The value of S is calculated numerically by the
same method as in [1]. We obtained S=2.56.... Various theoretical bounds for
S are also obtained.

The mathematical part of this work was done by Kametaka and the numerical
part by Noda.

1. Introduction

In this note we treat the Painlevé-I (P-I) equation
(1.1) vV'=602+z (‘=dldz, v=1(2)).

Painlevé observed a two parameter (z, and h) family of Laurent series solutions:

S 1
(1.2) v=(z-20) 2~ 18- (2=20)* — ¢ (2~ 20)°
2
+ h(z=zo)*+ s (2= 20)°+ -

which has a moving double pole z=2z, [2]. Here we consider the simplest case
zo=0 and h=0. That is we treat a special Laurent series solution
1

(1.3) v=z"2%- 6 z3 4

N S S | 5 84 ...
264 2° ~ 19008 T 7683984 %t

which satisfies the initial conditions

(14 @oDlao =1, (-5 2)]zo=0.
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The solution (1.3) has a positive finite radius S of convergence. The location of the
nearest singularity from the origin is given by S. The numerical value of S is obtained
by the same method as in [1].

(L.5) S=2.56...

2. Comparison with a Jacobi elliptic function tn2(z; k)

Inserting the expansion

@.1) v=z2- L2y glr 120(—1)1‘8,-25”8 (2 < S)

into the equation (1.1) we obtain the recurrence relation

(2.2) By,=1, B,=1/72,

Bjra= (j+2.8)1(j+4.2) { 15 izio BiBj-i+ 725‘“31’“}’
j=0,1,2,...
On the other hand the function
(2.3) 1(z)=1tn*(z; k)=(sn(z; k)jen(z; k))* (0<k<1).

has a power series expansion:
X .
(2.4) Hz)= ) t;z%9*2,
j=0
whose radius of convergence is K(k) where

1
(2.5) K(k)= g {(1—=x)(1—k2x?)}~12dx
0
is the complete elliptic integral of the first kind. Since #(z) satisfies a differential
equation:
(2.6) . "=6(1—kH12+4(2—k?)t+2,

the coefficients ¢; satisfy the recurrence relation:

Q) =1, t,=Q-k)J3,

_ 1 31—-k%) o 2V
zj+2_‘ (]+2'5)(,]+3) { 2 iz--:o tit_]—l+(2 k )t1+1}

j=0,1,2,...
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Notice that B; and ¢, are strictly positive. Comparing (2.2) with (2.7) we can show
the inequalities:

(2.8) c)(k)~it;<B;<cy(k)77t;, j=0,1,2,...
where positive valued functions ¢,(k) and c,(k) are given by

(2.9) ¢,(K)=Min {25(2— k?)/2, 5{66(1—k?)}!/2}

25(2—k?)[2 (0<k2<k?),
{5{66(1-—k2)}1/2 (ki<k?<1),
where k?=2(,/2706 —41)/25=0.8815...,
(2.10) ¢,(k)=Max {{12936(1 —k2)/5}1/2, 24(2 — k?)}
{12936(1—k2)/5}1/2  (0<k2<k3),
- [ 24(2—k2) (k3<k2<1),

where k3=(,/9145 —59)/48=0.76311...

c=c,(k) satisfies (2—k2)/3¢>1/72, 3(1—k?)/2¢2>1/1100 and (2—k?)/c>2/25.
On the other hand c=c,(k) satisfies (2—k?)/3c<1/72, (196/125)3(1—k?)/2c*<
1/1100 and (196/125)(2—k?)/c<2/25. These inequalities and comparison (2.2)
with (2.7) assures (2.8). We omit further discussion because the similar process
discussed in detail in [1].

Since
2.11) }i_rgB;l/5f=S, lim 1717 =K,
it follows from (2.8)
Theorem 2.1
(2.12) (c,(K)K2(k))1/5 < S <(c,(k)K* (k)5 (0<k<1).

The maximal value of the left side and the minimal value of the right side of
(2.12) are obtained numerically.

Theorem 2.2
(2.13) 2.44449... <S5 <2.59522...

3. Differential inequalities and elliptic integrals

The function
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[e o]
3.1) b(z)= X B;z*/*2 (|z]<S%/?)
Jj=0
satisfies the differential equation:
(3.2) b"+3z71b"—(24/25)z72b =(b?+88b + 1936)/275.
Since B; are positive, in the interval 0 <z < S5/2 we have

(3.3) b” <(b?+88b+550)/275,
(3.4) b” > (b2 +88b +1056)/528.

Multiply both sides of these inequalities by b’ (>0) and integrate on the interval
(0, z) we have

(3.5) b2 <(2/825)(b3+132b%+1650b),
(3.6) b'2>(b3+132b%+3168b)/792.

It follows

3.7 (825/2)1/2(b3+132b%+1650b)1/2b' <1,
(3.8) 792V/2(b3 +132b2 +3168b)~1/2b" > 1.

Integrating these inequalities on the interval (0, S5/2) we have

(3'9) Jl SSS/ZSJZ
where
(3.10) J1=(5,/66/2) Sw (b3+132b2+1650b)~1/2db,
0
(3.11) Jy=/192| " (b3+ 13262 + 3168b)1 2,
0

By the change of variable b=/1650 x2 (b=/3168 x2)

(3.12) J, =566 g: (x4 +(24/66 /5)x2 + 1)~1/2dx,

(3.13) 1, =235 S: (x*+ (Y22 2)x2 + 1)~1/2dx.

By further change of variable x={(\/66 —./41)/5}/2 tan (6) (x={(,/22 —./6)/4}1/2
tan (0)) under the sign of integration the elliptic integral J, (J,) takes its canonical
form.

(3.14) Jy=cK(ky),
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¢, ={66—./2706}1/2=3.7390872...,
k?=2(,/2706 —41)/25=0.8815382....

(3.15) Jy=c,K(k,),
c,={6(11—./33)}1/2=5.6153917...,
k3=(/33 —3)/4=0.6861407....

By the numerical table of K. Hayashi and S. Moriguchi [3] we have
K(,/0.882)=2.5004844, K(,/0.881)=2.4965426,
K(,/0.687)=2.0566350, K(,/0.686)=2.0552292.

By the linear interpolation we have

K(k,)=2.4986640, K(k,)=2.0554269.

Using these values we have

Theorem 3.1
(3.16) J35=2.444...<S<J3/5=2.66....

4. Method of E. Hille
The method used in this section is due to E. Hille [4]. The function

(4.1) m@=§;mﬁﬁ80ﬂ<$,

satisfies the differential equation:

4.2) w'=w2[44 4 (122724 223)w+ 4426,
Since B; are positive, in the interval 0<z<S we have
(4.3) | W' w2/44;

after integration, ,

(4.4) w'2 > w3/66.
Integrating the inequality

.5) (—w-12) > 12,/66,

which follows from (4.4), on the interval (z, S) and using the fact lim w~1/2(z)=0,
) z-»S—-0
we have:
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(4.6) w™U2(z) > (S ~2)/2,/66.

So we have the inequality:

4.7 w(z)<264(S—2)"%, (0<z<9),
especially

4.8) B;z3i*8<264(S—2)2, (0<z<S), j=0,1,2,...

Putting z=Sx, we have
4.9) S <(264f(x)/B,)!/(5+10),
(0<x<1), j=0,1,2,...

where f(x)=(1—x)"2x~(/*8),  The minimal value of f,(x) is attained at x=(5j +8)/
(5/+10). Inserting this value of x into x we finally have

Theorem 4.1
(4.10) S<S,, j=0,1,2,..
where
(4.11) S;={(5j+10)/(5] +8)} {66(5] +8)?/B;} 1/(51+10),

By (2.11) and (4.10) we have

Theorem 4.2
4.12) S=i_nij

j=k

for any fixed k=0, 1, 2,....

5. Cauchy-Hadamard and d’Alembert’s method
Define C; and D; by

(5.1) C;=B;1/(5i+10),
(5.2) D;=(B;/B;,)'5, j=0,1,2,...
we have
(5.3) S=lim C; (Cauchy-Hadamard),
Jj—=©
54 S=lim D; (d’Alembert).
j—oo

d’Alembert’s formula is valid only when the right side has meaning. We can not -
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Numerical behaviour of C; (Cauchy-Hadamard), D; (d’Alembert)
and S; (modified Cauchy-Hadamard).

prove the existence of the limit value. But numerically, as shown in the next figure,
C; and D; converges slowly.

In the figure 5.1 the behaviour of §; is also indicated. As a conclusion of
this numerical calculation and the theorem 4.1 we obtain

Theorem 5.1
(5.5) » SS Mln SJ=SIOOO=2‘56374"’

0<7<1000

6. Numerical calculation of S by Briot-Bouquet equation

The functions:

1 2, .
(6.1) «(2)= g0 =, Bz,
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1 < ;
P(2)= 13300° 2 U+2Bz72, (121 <5%).
satisfies the system of differential equations:

{ za' =2p,
zB’ =3a%+ f+(z + 3)a/25+ 22/7500.

(6.2)

As stated in the section 2, z=3S is a double pole of v(z). So z=S85=z, is a double
pole of a(z). Since «(z) is strictly increasing on the interval (0, S%), its inverse
function a~!(x) is also strictly increasing on the interval (0, ). Using this inverse
function a~'(x), we introduce new functions:

[ (&) =loga~'(¢7?),
n(Q)=&Pla(¢72) 1.
By (6.2) these functions satisfy

(6.3)

{=—(l+n),
(6.4) EL+n) =1+ {31 +n)> =3~ (1 +n)¢
—(e"+3)£2/25 — e21£4[7500} ,
where ‘=d/d¢.  Since

(6.5) Iim o(z)=+ o0,
z-zo~0
we have
(6.6) lim #(&)=logz,=t,.
E->+0

Moreover we can show (see [1])

Lemma 6.1
(6.7) im «3(2)/B(z)=1.

This means that
(6.8) lim 5(&)=0.

E>+0

The function #(&) can be expressed as a Taylor series
(6.9) to— 1) =¢— /10— (2+ exp (£())¢3/300+ -+
which converges for sufficiently small £. For sufficiently small £ we have an estimate

(6.10) [to —(t(&) + £ —£2/10)| < const. [¢[3
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where const. denotes a suitable positive constant. The value of #(£)+¢&—¢£2/10 for
sufficiently small £ is a good approximation to t,.

To calculate the values of #&¢) we need to solve numerically the system of
differential equations (6.4). We explain how to choose suitable initial “time’’
and how to settle initial conditions.

(i) Choose relatively small z, which satisfies 0<z, <z, (ii)) Calculate approx-
imate values of a(z,) and B(z,) by

— 1 N Jj+2
(6.11) z,)= WEOBJ.ZI s

D S j+2
A= 3300 %, U+ DB

taking a sufficiently large N. (iii) Settle the initial time by
(6.12) Ei=az) V2
(iv) The initial conditions are

(6.13) t&)=logz,, 1+n(&)=2E3B(zy).

Finally the algorithm calculating S is as follows.
(i) Solve the system of differential equations (6.4) under the initial conditions
(6.13) by the Runge-Kutta method.
(ii) Choose sufficiently small £, and determine #¢,).
(iii) Put to=1&5)+ &, —E3/10.
(iv) S=exp(t,/5) is what we wanted.
By means of the above algorithm we calculated for several values of z; and &,.
The conclusion is as follows:

Numerical result

(6.14) §=2.5599...

7. Relation between R and S

In [1] we obtained a numerical value of the radius R of convergence of a special
power series solution:

(7.1) u=-Lz34 % go A;z5%%  (|z| <R)

of the Painlevé-I equation. The coefficients A4; satisfy



58 Yoshinori KAMETAKA and Matu-Tarow Noba

(12) Ag=1, A,=1/78,

B 1 _
2= G¥34)(+3.6) {1400 Z A+ 5 f+1} J=0,1,2,...

Comparing (2.2) with (7.2) it follows

(7‘3) A_]éBJs J=Oa 1’ 21,
(7.4) S<R.

For a positive constant ¢

(7.5) A;=ciA;
satisfy

(7.6) A,=1, A,=c/78,

- 1 2 J oo
A= GrsmG 3 {Taoo B A
Putting ¢=.,/102/77, we have

(7-7) IZO=BO’ Z1 §B1a
3 I
-
A2 G138 (7F4) {110

using an inequality:
(j+3.4)(j+3.6)<(51/49)(j+2.8)(j +4.2).
Comparering (2.2) with (7.7) we obtain
(7.8) B;<A;=cid4;, j=0,1,2,..;
(7.9) R=Z 158,
We obtained
Theorem 7.1
(7.10) ¢;RES=R=c,S,
¢, =(77/102)1/10=0.972...,
¢, =(102/77)1/1©=1.0285....
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