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§1. Introduction

In this short note, we study the 1-dimensional Schrédinger operator
H,= —(d/dx)*+u(x), —o0o<x<w®
with the real valued potential u =u(x) which decreases sufficiently rapidly. Through-
out the paper we assume that the potential u(x) is in L}, where

Li:{w(x)lreal valued andSw (1+|x|‘)lw(x)|dx<oo}, 1>0.

We consider the unique selfadjoint extension of H, considered in the space of twice
continuously differentiable functions on (— oo, c0) with compact support and denote
it again by H,. Then, it is well known that H, has purely absolutely continuous
spectrum [0, co) and a finite number of negative discrete eigenvalues. See e.g.,
[2], [3] and [4] for detail.

On the other hand, we say that H, is decomposable if and only if there exists an
absolutely continuous real valued function v(x) € L} such that

1) H,= AA*,
where
A=d[dx+v(x)

and A*= —d/dx+v(x) is the formal adjoint operator of A. This implies that v(x)
solves the Riccati equation

v'(x)+u(x)?=u(x), '=d[dx.

The main purpose of the present paper is to characterize the decomposable
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1-dimensional Schrodinger operator H, in connection with scattering theory. More
precisely, our aim is to prove the following.

Theorem. H,, u€Lj} is decomposable if and only if H, has no discrete eigen-
values and the reflection coefficients r (&) of H, satisfy the condition

[ri (&) <Const. <1, E¢#0.

This problem was first studied by M. J. Ablowitz, M. Kruskal and H. Segur
[1] to examine the range of Miura’s transformation

(x) — v'(x)+ v(x)2.

They studied it in connection with the method of inverse scattering transform for
soliton equations. In this paper, we will study the problem from somewhat different
standpoint of view and by different method.

In §2 we summarize the results from scattering theory for H,. In §3 we prove
Theorem.

Throughout the paper c* denotes the complex conjugate of ¢, if ¢ is a complex
number.

The author wishes to express his hearty thanks to Prof. S. Tanaka.

§2. Scattering data.

Here we summarize results from scattering theory for H,, ue L. We refer to
[2], [3] and [4] for detail.
Consider the differential equation

) H,f=—f"+u(x)f=0f, (=E¢+in,

where ¢ and # are real numbers and i =\/ —1. If #=Im{>0, then there exist
unique solutions f.(x; {) of (2) which behave like exp (4 i{x) as x— =+ co respectively.
The solutions f,(x; {) and f_(x; {) are called the right and left Jost solutions
respectively. Jost solutions f,(x; () are analytic in {, Im{>0. Suppose that
{=C¢1is real. Then one easily verifies

Lf+(x5 &), fo(x; O)*]=—2iE,

where [y, z]=yz'—y’'z is the Wronskian. Thus, f,(x; &) and f,(x; £)* are linearly
independent solutions of (2) for £#0. Hence we have

f-(x5 O =a(@)f+(x; H*+b()f+(x; &), £#0.
This implies
(3 a(Q)=2iE)7[f-(x; &), f+(x; O],



Some Positive Definite 1-dimensional Schrédinger Operators with Rapidly Decaresing Potentials 43

4 b(&)=Qi&)'[f+(x; O*, f-(x; &)]
and
la(O)I? =1+1b(OI*.
By (3), a(¢) is the boundary value of the analytic function a({), Im{>0. Put
r+(§)= 1 b(£)/a(é), £#0.

The functions r,(¢) and r_(&) are called the right and left reflection coefficients
respectively. They are defined for ¢#0 and

lr:(OI<1

are valid for £#0. Jost solutions f,(x; &) are expressed as
+ oo
©®) fars 9=exp (280 {12 |7 Bulx, ) exp (2200}

where B.(x, y) are real valued. By (5), fi(x; &) are meaningful even for {=0.
Moreover f.(x; 0) obey the estimates
+ o
© fax; Ol<£K | u(ldy, 0< tx<oo
respectively, where K is a positive constant (see [2; Lemma 1, p. 130]).

On the other hand, the following integral representations for the scattering
data hold:

™ a(®=1-@iey " |” u()fo(x; O exp (~ iEx)dx
and
® b(EO)=i |7 u(f.(x; & exp (iEx)dx.

Put
y= S: w(x)f(x; O)dx.
Then, by (3), (4), (7) and (8), we obtain
v=—2ifa(8) ;=0 =[f-(x; 0), f+(x; 0)]
and

v=2i¢b(&) lg=0 =[S+ (x; 0)%, f_(x; O)].

The following is shown by P. Deift and E. Trubowitz [2; Theorem 1, p. 147]:

If u(x)e L}, then ri(&) are continuous at £=0. Moreover, if v=0, then the
condition
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I |ri(&)|<Const. <1, £#£0

holds and if v+#0, then the condition
II. re(@)=—14a.é+0(&), as £-0

holds, where o are constants. In particular, the condition I is valid if and only if
f+(x; 0) and f_(x; 0) are linearly dependent.

§3. Proof of Theorem.

In this section, we prove Theorem stated in §1. Our proof is devided into
several steps.

Suppose that H,, ue L} is decomposable, i.e., there exists an absolutely con-
tinuous real valued function v(x) e L! such as

u(x)=0v'(x) + v(x)>2.

0 4
L{ ,
A* 0

where A=d/dx+v(x). Then we have
H, 0
LZ:[ J,
0 H,_

u_(x)=—v'(x)+v(x)?e L},

Put

where u (x)=u(x) and

ie, H,, =AA* and H, =A*A. Let f{*(x; &) and f*)(x; &) be the right and left

Jost solutions of H,, respectively. Moreover, let r{*)(¢) and r{*)(¢) be the right

and left reflection coefficients of H,, respectively. Unless explicitly stated otherwise,

we adopt the following convention: r*)(¢) stand for r'#)(¢) and r(&) for r.(&).
Then the following is obtained by S. Tanaka [5].

Lemma 1. rM(&)= —r)(¢).
Proof. We first assume é#0. Put

(x5 E)=E1Af(x; &)
and
PONx; )= —E1A* P(x; &).

Then we have
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©) A*GD(x; OH=Lf (x5 )
and
(10) ApO(x; = —&f (x5 ).

Hence we obtain

H, ¢®(x; &) =CAf7(x; &) =820 (x; &)

and
H, ¢O(x; &)= —EA¥ (I (x; ) =E29)(x; &).

Consider the asymptotic behaviour of ¢@)(x; &) as x— oo, then, by the uniqueness
of Jost solutions, we have

PE(x; O=if {(x; ).
Hence, from (9) and (10), ‘
AfO(x; =18 fP(x; &)
and
A¥O(x; O = —ilf(x; &)

follow. This implies
LY, (x; O)=ilJY,(x; &),
where Y, (x; &)=1(fP(x; &), f{7(x; &) and J=[(l) __ﬂ Hence we have

LY, (x; O*=—ilJY, (x; &)*
and
LY. (x; &) =—ilJY, (x; &),

where Y. (x; &)*=JY, (x; O)=(f(x; &), —f(x; &). Similarly to the above,
we have

LY_(x; &=—ilJY_(x; &),

where Y_(x; &)='(fM)(x; &), f(x; ). Thus Y*, Y# and Y_ solve the differential
equation

LY=—ilJY.
We have

det (Y, (x; O*, Yi(x; )F=-2,
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since the left hand side of the above is the Wronskian and f{*'(x; &) behave like
exp (i¢x) as x—»oo. Hence Y*¥ and Y% are linearly independent and consequently
there exist ¢;(§) (j=1, 2) such that

Y_(x; O =c (O Y(x; O* + ()Y, (x; O
This implies
FEG5 O=c1(Of (x5 O* 1 en(Of (x5 ).
Thus, we obtain
rE(&)= £ cy(&)c1(8).
This completes the proof. Q.E.D.
Next we have

Lemma 2. If H,, ueL} is decomposable then the reflection coefficient r(&) of
H, satisfies the condition I.

Proof. By the definition, there exists an absolutely continuous real valued
function v(x) € L! such that

u(x)=0'(x)+ v(x)>.
Put
u_(x)=—-v'(x)+v(x)’e L}
and let r()(&) be the reﬁection coefficient of H, . Then, by Lemma 1, we have
roxE)=—r(8),

where r(¢) is the reflection coefficient of H,. Suppose that r(&) satisfies the condition
II. Then we have

rOE)=1—al+0(f), as &— 0.
This cannot occur. Hence r(&) satisfies the condition I. Q.E.D.
Moreover we have

Lemma 3. IfH,, ue L} has no discrete eigenvalues and the reflection coefficient
r(&) of H, satisfies the condition 1 then H, is decomposable.

Proof. As mentioned at the end of the preceding section,

v= {7 w165 0dx =145 0), £-(x; 0] =0

holdé. Hence we have
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Fi(x; 0/ f (x5 0)=FL(x; 0)/f-(x; 0).
Put
u(x)=f1(x; 0)/f(x; 0)
then, by (5), v(x) is real valued and
v'(x)+v(x)® =u(x)

holds. On the other hand, P. Deift and E. Trubowitz [2; Theorem 3, p. 163]
obtained the following: H,, u € L} has no discrete eigenvalues if and only if f,(x; 0)
do not vanish for any x. By virtue of this result, v(x) is absolutely continuous.
Moreover, by (6), we have

+
x

M <CIf 4 O < £K | u(oldy,
since 1/f,(x; 0) are bounded. Then we have the following estimates:

[ 1oGolx <K | dx " iy =K (" yiuldy

and
g°°x|v(x>;dx<z—11< §°°y21u<y)|dy.
0 0

Hence we have

[”a+0pwlax <o,
since u(x) € L}. Similarly to the above, we have

[ a+iimiax<e,

i.e.,, v(x)e L. Thus H, is decomposable. Q.E.D.
Now we can prove Theorem.

Proof of Theorem. First suppose that H, is decomposable. Then, by (1),
H, is positive definite. On the other hand, the discrete eigenvalues of H,, ue L}
are all negative (cf. [2]). Hence H, has no discrete eigenvalues. Moreover, by
Lemma 2, the reflection coefficients r.(&) of H, satisfy the condition I. Furthermore
the converse statement is nothing but Lemma 3. This completes the proof. Q.E.D.
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