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§0. Introduction.

About ten years ago, Miron, the second author of the present paper, put forward
to study the differential geometry of vector bundles ([6], [7])?). He and his
collaborators investigated it actively and made clear the structure of the modern
Finsler manifolds. Now, in the present paper, we will investigate some structures
defined on dominant vector bundles. Here the dominant vector bundle means a
vector bundle whose dimension of each fiber is greater than or equals to the dimension
of the base manifold. In this case, the theory of f-structures and the classical Konig
connections play an important role.

Now, throughout the paper, we settle to use the indices as follows:

(a, b, c,..., s, t, u run over the range {1, 2, 3,..., n},
x, y and z run over the range {n+1, n+2,..., m},

o, B, ¥s---s A4, U, V,... Tun over the range {1, 2, 3,..., m},

A, B, C,..., P, Q, R,... run over the range {1, 2, 3,...,n; 1, 2, 3,..., m}.

§1. Almost dominant tangent structures and non-linear connections.

Let £=(E, n, M) be a dominant vector bundle ([6], [7]). That is to say, M is
an n-dimensional manifold, E is a vector bundle over M whose fibres are m (=n)-
dimensional vector spaces and = is the natural projection from E to M. Let {U, x}
be any local coordinate neighbourhood of M and (x4)=(x!, y%) is a canonical
coordinate system of n~!(U). Let {U, X!} be another local coordinate neighbour-
hood of M and (X¥4)=(X!, %) is that of z=(U). If Un Ux¢, then,in 7~ 1(U)N
n~1(U), we have X'=Xi(x4) and j*=M ;;()lc)y", where M3 is the function of x‘ alone
and det [Mj| 0. Let us put (M§)~!=(Mg%). The Jacobian matrix is given by

1) Numbers in brackets refer to the references at the end of the paper.
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Let B}0,®dx' be a tensor field on E. This is a tensor field on E if and only if B,
which is defined in each n~!(U), satisfies the relation B0;X™=M2B¢ in n~}(U)n
n~1(U). Here, (B}) is called the composite tensor on M. In the following, to avoid
the confusion of notations, we denote by E(M) the total space E of the dominant
vector bundle &, and call E(M) simply a vector bundle.

In this paper we write the partition of a (m + n)-squared matrix as

mj, mi, mj
A 1 i 1 A m;’ m’l‘
(mg)=| mi, mil, mi| or (mg)= ] E
m= m
— — - J? H
ms, 5, m3

Now we assume that the manifold M admits a composite tensor field (B#) such

that the rank of the matrix (B#) is n. If we put B=(B%) and Q= <%’ 8) then Q

is the matrix of components of the tensor field B9, ®dx’ with respect to the canonical
coordinate (x, y*) and Q satisfies Q>=0 and rank Q=n.

From the analogy of the case of tangent bundles ([2], [4]), we call Q an almost
dominant tangent structure and abbreviate it by a.d.t.str. hereafter. Now Q
gives E(M) a (1, 1)-tensor field. So we may calculate the Nijenhuis tensor Nyo(U, V)
of Q defined by

No(U, V)=[QU, gV]+Q?[U, V1-Q[QU, V1-Q[U, QV],

U and V being arbitrary vector fields in E(M). By using the relations Q2=0, Q(9,)=
Ny(d;, 9,)=0. Hence we obtain

Theorem 1. Let Q= <%’ 8) be an almost dominant tangent structure

assigned on a vector bundle E(M). Then, the structure Q is integrable if and only
if B40,B%—B40,B%=0 holds good. 1If the components of the composite tensor B?
are functions of x' alone, the structure Q is always integrable.

If an a.d.t.str. is integrable, it is called a dominant tangent structure.

Putting Y¥=B?%0, in each n~1(U), we see that the condition Ny=01is equivalent

to [Y*, Y*]1=0. In n~(U)na-Y(0), it is evident that T¥= g;f_ Y* Then the

distribution spanned by {Y¥} is a global n-dimensional distribution on E(M). Thus
we obtain

1) The notations 9, and 9, stand for d/0x' and 9/dy* respectively.
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Corollary. If a vector bundle E(M) admits a dominant tangent structure, the
n-dimensional distribution spanned by {Y¥} is integrable.

Next, let there be given a non-linear connection N on our vector bundle E(M)
([6]). That is to say, E(M) admits the quantities N#(x, y) in each n~(U) which
satisfy 0,XN}=MAiN3—0,M?*y° in n~'({U)n=n~Y(U). In this case we can put
X;=0;—N?0, in each n~}(U), which satisfy X;=0,;x"X,, in each n~Y(U) nn~YD).
Hence the distribution spanned by {X;} is a global n-dimensional distribution, which
we call the horizontal distribution. If we put Y,=0, the distribution spanned by
{Y,} is an m-dimensional distribution and is nothing but a fibre itself and is called
the vertical distribution. Of course, {X;, Y;} becomes a local frame in n~1(U),
which we call the fundamental frame.

Now let us put

a, 0, O
G,=({0, a, b|laeGL(n, R),ceGL(m—n,R), beM
0, 0, ¢/

n,m—n

Then G, is a linear Lie group.

Now, in each 77 }(U), we can choose {Y*}={YZ*,,,..., Y} out of {Y,} such that
{Y¥,..., Yk Yk ..., Yk} forms a local frame of the vertical distribution. Then
{X;, Y%} becomes a local frame in z~!(U), and satisfies, in z=}(U) n n~1(0),

42 _ oxm

i = oxr

m»

Vi= " yr and Tr=bryE4ClyvE
ox! m y

Thus we obtain “A vector bundle which is assigned a composite tensor B} and a
non-linear connection N admits the Gy-structure in the sence of the theory of
G-structures’’. In the next section we shall consider the converse of this fact.

§2. G-structures defined on E(M).

On a vector bundle E(M), the natural frame {4;, 0,} in each local coordinate
neighbourhood satisfies

8/0xi = d,%md|0%m + 0, Miyed[07, 8dy*=M30/dF°

in each z=Y(U) N =n~Y(U). Therefore, if we put

A, 0
G0=
C, B
then we see that G, is a linear Lie group and E(M) admits a G,-structure in the
sense of G-structures and, moreover, the G,-structure is integrable. So we denote

AeGL(n, R), BeGL(m, R), Ce M

mn{ >
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by 2, this integrable Gy-structure and call it the standard G,-structure on E(M).

Now let us consider, on E(M), a G-structure which is a reduction of #,. That
is, let G be a Lie subgroup of G, and let E(M) admit such the G-structure that the
local frame adapted to the G-structure is, at the same time, adapted to the structure
Z,. In the paper [4] we have named these G-structures G-structures depending
on #,. In order that an adapted frame {W ,} to the G-structure under consideration
be depending on &, it is necessary and sufficient that W,=ajd/0x/+ b?d/0y* and
W,=C90/0y° hold good in each n~1(U).

In this paper we treat, for G-structures on E(M), only the G-structures depending
on Z,.

Now we put

0, 0, O E,, 0, O
Qo= E,0, 0|, Py=}{0, —-E, O
0, 0, O 0, 0, —E,_,
The straightforward calculation gives us

Lemma 1. Let P be an element of GL (n+m, R). The conditions PQ,=Q,P
and PPy=P,P are satisfied if and only if Pe G,.

Now, let us assume that E(M) admits a G,-structure depending on £,, which
we denote by £, hereafter. By the definition, the local frame {W ,} adapted to
2, is also adapted to #,. So, {W,} can be written, in each {n~'(U), (x*, y%)},
as W,=®30, where (®8)eG,, that is, W,=y%0;+09, and W,=190,. We put

O=(PB)= <z 2) where y=(y}), o=(6%) and 7=(1%). Then we have & !=

70 9. putting Ep, .= (Er) and Q=000
<—1:_10"y‘1 -1/ Tuting - Eg = { ¢ an Q=0Q,P7!, we see Q=
<'c E'(;) _1 8) Since E(M) admits the G,-structure £;, as is well-known, Q is
independent to the choice of the adapted frame {W ,} and gives E(M) a global (1, 1)-
tensor field. Now we put tE'y"'=B=(B4%). The relation QJ=JQ shows us that
B% is a composite tensor field of rank n. Of course, Q?=0 holds true. Next, let
us put P=@P,®~1. It is evident that P is also a global (1, 1)-tensor field on E(M)

and satisfies P2=E,,,, that is, an almost product structure. Moreover it is easy to

see that P= <2£;‘1 _EO > with respect to the caninical coordinate {n~!(U),

(xi, y)}. And the relation PJ=JP shows us that N=—g¢y~! is a non-linear
connection. Thus, combining these results with the one stated in the last of §1,
we obtain

Theorem 2. In order that a vector bundle E(M) admits a G;-structure depend-
ing on P,, it is necessary and sufficient that E(M) admits an almost dominant
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tangent structure Q (or a composite tensor B) and a non-linear connection Nt
It is clear that the Lie algebra %, of the Lie group G, is given by

p00O
g, =il0pr
00g¢g

Let I be a G-connection relative to the structure 2, denote by 7 the covariant
derivative with respect to the I" and let {W ,} be a local frame adapted to the structure
2,. Then we see that FyW , =IGsW UB where I'{;UPe ¥, for any U=UBW;.
From the last equation, we have I',=T",, I'l,=0, I't,=0, I';,=0, I'j,=0 and

pe 4/(n, R), g€ z/(m—n, R), reM,,,m_,,] .

0 00
rs,=0. Moreover the tensor Q and P have such components as Q= <E,, 0 O>
0 00

and P= <OE" _2: > with respect to any adapted frame {W,}. So, using these

relations, we can easily verify that Q=0 and FP=0 hold true. Hence, I leaves
the vertical distribution parallel and the horizontal distribution, too.

Conversely, let I be a linear connection on E(M) satisfying ¥ Q=0 and V P=0.
Then, first, 7Q=0 leads us to I'i,=0 I'%,=0, I'},=0 and I'},=I}, Moreover
the condition ¥ P=0 leads us to I'',=0. Therefore, I' becomes a G-connection
relative to the structure 22,. Thus we obtain

Theorem 3. Let us assume that a vector bundle E(M) admits a Gy-structure
depending on 2,. A linear connection on E(M) is a G-connection relative to the
G,-structure if and only if Q=0 and ¥V P=0 hold good.

[Remark] The theory of G-structures teaches us that there always exists a
G-connection relative to a G-structure ([10]). So, if E(M) admits the structure 2,
E(M) also admits, at least, a linear connection satisfying ¥ Q=0and FP=0.

§3. Local expressions.

First, let us examine the components I'§¢ of a linear connection I on E(M) with
respect to the fundamental frame {Z,}={X;, Y;} in n~!(U). Of course, VyZp=
I'4cZ,. Inn'(0), also is the relation Vz Zg=I4cZ,. Hence, using the relations
X;=0;%X¢cand Y,=M3Y, in n"'(U)N n~Y(U), we obtain '
I§.0,;xb0,x¢=Im0,%*—0;0,X°
Fe My =I5, Mz~0; M3,
rg.0,;xb0,xc=I9, M2, I't, M30;xm=T15,0,%",

I:go,ajibM;:F?” ahia, f%aaj.-x-bMZ=F§uM%,

Tt MIMi=TI"7,0,%" 't MGM;=I%,M3;.
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These relations, however, have been already shown by Miron ([6]). From these
we see that I'f;(x, y) undergoes the transformation law of a linear connection of a
base manifold, I';;(x, y) undergoes the transformation law of a Kénig connection
(or a dominant affine connection or a hyperconnection ([1], [3], [5], [6], [81, [10])
and the other components are the composite tensors.

The a.d.tstr. Q operates as Q(Y,)=0(3,)=0 and Q(X,)= Q(0,)—N?Q(d,)=
0(0)=B}d,. So Q has the components (%l 8) with respect to the fundamental
frame {X;, ¥,}. Now, calculating the components of /', we have

VXJ-Q?=F§]-B'{, VXjQZ:07

PujQt=X,(BI)+ T4 By ~T'1BY, Py, Qh=— B2,
(

VYiQ?=rgth’ VYtQZ=O’

VYthzyt(B%)_'_rngf_—FmBl VYr ;t=—FZl‘tBr'§1'

T m»

From the fact that the rank of (B?) is n, we obtain

Theorem 4. Let us assume that a vector bundle E(M) admits a non-linear
connection N and an almost dominant tangent structure Q. Let I'4c be the com-
ponents of a linear connection I' on E(M) with respect to the fundamental frame
{Xi, Y,}. Then I satisfies 7Q=0 if and only if rh;=0, r4,=0, X(BH+I*Bi—
I'y;By=0and Y (B})+I%,B:—I'7B4=0 hold good.

By virtue of Theorem 2, the assumption in Theorem 4 means that E(M) admits
a G,-structure depending on 2, which we have denoted by #,. For the inteli-
gibility, however, we call the structure 2, the (N, Q)-structure and the G-connection
relative to the structure 2, the (N, Q)-connection. Of course, according to
Theorem 3, the (N, Q)-connection is a linear connection on E(M) satisfying ¥ Q=0
and FP=0. |

Here, we examine the condition /P=0 with respect to the frame {Z,}={X,,
Y,}. Since P(3;)=0,—2N%0, and P(d,)= —0J,, we see P(Y;)=-Y, and P(X))=X,.
Namely, P has the components <g” _2.") with respect to {Z,}={X, Y}

Now calculating the components of FP, we obtain F,P'=0, F,Pi=—2I",
V P¢=2I't, and V,P5=0 where we put F, =F,. Therefore the condition ¥ P=0
can be written as I'# ,=0 and I'?,=0. Hence we obtain

Theorem 5. Let E(M) be a vector bundle admitting an (N, Q)-structure and
let T'§c be components of a linear connection I' on E(M) with respect to the funda-
mental frame {X;, Y,}. The condition for the I to be an (N, Q)-connection is
given by
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rs=0, ri,=0, ry=0, rg=0,
Xj(B’}) +F§jB'{——I",-”jB,’}1=O,
Y,(BY)+I%,B7—I'7,B;=0.

Concerning composite tensors, for example T%%, we use the following notations:

1Y)
Tiulj

=X (THY+ 5 Tyt + T3, T -1 T — 15 T,

T?;ﬂa= Ya(T?i)'*'Ff;m Tﬂf‘“{_rﬁa T?g"-r?a Tr}r'z,ﬁ—rza Ti,o}:

§4. An f-structure.

In this section we use the notations defined in §2. First, we put
0 -E, 0 a 0 0
Jo=|E, 0 0|, G,=({|0 a O |laeGL(n, R), beGL(m—n, R)
0 0 O 0 0 b
The direct calculation and Lemma 1 lead us to

Lemma 2. Let P be an element of GL (ﬁ+m, R). The conditions PQy=Q,P,
PP,=P,P and PJ,=J,P are satisfied if and only if Pe G,.

Let us suppose that a vector bundle E(M) admits a G,-structure depending on
2, and {W 4} is a local frame adapted to the G,-structure, and put W, =®20,.
Then F=®J,®! is independent to the choice of the local frame {W ,} adapted to
the G,-structure, and F becomes a global (1, 1)-tensor field on E(M). Moreover we
can easily see that F°+ F=0 and rank F=2n. That is, E(M) admits an f-structure
of rank 2n ([8]). Since G,<=G,, if E(M) admits a G,-structure depending on £,
E(M) also admits an (N, Q)-structure. Thus W,=9i0,+06%0,=y.9,— Naymd, =

a m

VoX,, and W,=140,=15Y,. Hence if we put W,=¥5Z, and ¥=(¥%), we see ¥=
(O:‘ TQ) Then, F is written, with respect to the fundamental frame {X,, Y},

4 —yt -1

as F=YJ,¥ 1. And we see F= (rEQ'y'l yt%T ) with respect to {X,,
Y,}. In §2, we have put tE'y"*=B=(B}) and we have seen B? is a composite
tensor. Here let us put y’E't"*=C=(C}). Then rank C=n. Since F is a tensor
field on E(M) and the Jacobian matrix from {X,, ¥,} to {X,, Y,} is given by J=
(aéxl &Q, so relation FJ=JF leads us to CiM$=4,%'C?, that is, Ci is a
composite tensor. From the definition, it follows that CB=y'E't~1tE'y~!=E
that is, C{B5=4". '

Conversely, let there be given a non-linear connection N4 and composite tensors
B} and Cj satisfying CB5=4" and rank (B})=rank (Ci)=n. We define a (1, 1)-

n?
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tensor F by F=(F§)= ( _g'l‘> with respect to the frame {X, Y,} in each

n~1(U). Then F becomes a. global tensor field on E(M) and operates as F(X;)=
B{Y,=Y¥, F(Y)=—C7X,, from which it follows that F3+F=0. Thus F gives
E(M) an f-structure of rank 2n. Now consider the following simultaneous linear
equation Cip*=0. Since the rank of (C}) is n, there exist (m—n) linearly inde-
pendent solutions p2.  On putting Y¥=p2Y,, we can show that {Y¥, Y*} is a local
frame of each vertical distribution. Then {X;, Y}, Y*} is a local frame in {n~1(U),
(x%, y9}. Denoting the local frame in {z=Y(U), (¥, %)} by {X, Y¥ Y*}, we
have, in n~%(U) n n~*(U), that X;=0,3"X,,, Y¥=0,x"Y%. Moreover, from Cip’=0,

-1 -1
we see C;(M7p})=0. Then we have Mjp}=kips for certain k. That is, pi=
M?psks. Then we see

Yi=pi¥,= M‘pgka,l = pek3Y, =k3Y¥,

Namely, X,= %’“_ X,, Y= ‘g’i Y Yi=k:Y¥ and X,=0,— N0, Y*=B,, Y

=p?0, hold. Therefore E(M) admits a G,-structure depending of #,. Thus we
obtain

*
X

Theorem 6. In order that a vector bundle E(M) admits a G,-structure depend-
ing on P,, it is necessary and sufficient that E(M) admits a non-linear connection
Nt and composite tensors B and C} satisfying C.B5=4" and rank (B})=rank(Ci)
=n. In this case, E(M) admits an f-structure of rank 2n.

' For the inteligibility, we call the structure stated in Theorem 6 an (N, Q, F)-
structure hereafter.

For the f-structure F, as is well-known ([9], [11]), ¥ = —F? and .#=E,,,—%
satisfy 2=, #2=M, L M=0, #%=0 and ¥+ #=E,,,. Thatis, ¥ and
# are projection tensors. We denote by D, and D,, the distributions defined by %
and # respectively. Of course, dim D;=2n and dim D,,=m—n and Tp(E(M))=
(D) p®(D,,)p for any point P of E(M).

With respect to {X;, Y,}, F is represented by F= (% ”%) So, ¥ = (O BC>
/0 0

and .# = (0 E—BC)' Now we put U= % (g B%)and B = —%—(__“g gC’)
Then, these satisfy W2 =AU, #?=F, AB =0, ZN=0, U+ F=.. Thus A and #
are also projection tensors. Denoting by D, and D, the distributions defined by
A and F respectively, we have D,®D,=D, and Tp(E(M))=(D,)p®(Dy)p®D(D,)p.

§5. (&, Q, F)-connections.

We consider successively the (N, Q, F)-structure in this section. The f-structure
F defined in the preceding section has the following components with respect to

o (F' FR\_ /0 —Ch
o vy = (5 1) = (3 76%):
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Now, let I' be an (N, Q)-connection on E(M). Calculating 7 F with respect
to this I', we obtain

VXjFli’——:O, VXj Z— Cﬂ|.l’ V F}"_‘Bl“ O, VXJF/2L=O’

VYatF?':O’ VYan=_CZIas VYaF}' BAI —O VYaF =0.

Therefore, on a vector bundle E(M) admitting an (N, Q, F)-structure, a necessary
and suflicient condition for the (N, Q)-connection to satisfy ¥ F=0 is that Ch;i=0
and C!|,=0 hold.

Here we call a linear connection on E(M) satisfying FP=0, FQ=0, FF=0as an
(N, Q, F)-connection. Then, according to Theorem 5 and the above result, we
obtain

Theorem 7. Let E(M) be a vector bundle admitting an (N, Q, F)-structure,
and let I'§c be components of a linear connection I' on E(M) with respect to the
fundamental frame {X,, Y,}. The condition for I to be an (N, Q, F)-connection is
given by

{ Fﬁi:OS F2n=07 F%'=0’ r?u=09
B};=0, B}, =0, C.;=0, Cil|,=0.

[Remark] From the last 4 conditions in Theorem 7, I'#; and I'%; are determined
as follows:

tji

[ I't;=CH(X (Bf)+T7,B3),
'l =ClY,(B:)+1I¢,B;).

§6. Konig structures.

If an (N, Q, F)-structure satisfies, in each n~(U),
Bi=Bj(x), Ci=Ci(x) and Ni=TI%(x)y",

then the structure is said to be a Kdnig structure. That is to say, as for the K6nig
structure, B, C} and I'§; are functions of x' alone and the non-linear connection
is given by N¢=TI%y°. The last condition is globally well-defined. Because,
taking account of I'?,0,%°M¢= —0;M$, we have (I'?,5°)0,x=(I'?;y" )M % —
0;M3y°, that is, I'%;y° is a globally deﬁned non-linear connection. In this case,
%; 1s a so-called K&nig connection ([1], [3], [8], [10]) (or a dominant affine con-
nection). Due to Theorem 1, Corollary and Theorem 6, it follows directly that

Theorem 8. In a vector bundle admitting a Kénig structure, the almost
dominant tangent structure Q is integrable and the distribution spanned by {Y¥}
is also integrable.
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Theorem 9. A vector bundle admitting a Kénig structure admits an f-
structure.

From now on, we call this f-structure the f-structure derived from the Kénig
structure. Now let us examine the integrability conditions of this f-structure F.
The Nijenhuis tensor N of F is given by

NW(U, V)=[FU, FV]+F[U, V]-F[FU, V1-F[U, FV],

U and V being arbitrary vector fields in E(M).

First, the condition for the distribution D,, to be integrable is given by Ng(.# U,
AV)=0([8], [10]). On the other hand, F.# =F(E+F?)=0, #X,=(E+F*X,;=0
and AY,=(E+F?)Y,=Y,—B3C7Y,. So it follows that Ng(#X, .#X;)=0,
Ni(#X;, #Y;)=0 and N(4Y,, #£Y,)=[Y,—B;C?Y,, Y,—BiC,Y,]=0. Hence
we obtain

Theorem 10. The distribution D,, defined by the f-structure derived from a
Kénig structure is always integrable.

Next, the condition for the distribution D, to be integrable is given by .# N (U,
V)=0 ([9], [11]). By means of .#F =0, we can rewrite this condition as .#[FU,
FV]=0. On the other hand, we see [X;, X;]=R%;;y*Y, where

RS, ,=0,I% —o,I%,+1%.I'q,—TI%.I'g;.

This R, is called the curvature tensor of the Koénig connection I'!(x). Now,

aij

direct calculation shows us
M[FX,, FX;]=#[B?Y,, BiY;]1=0,
M[FX;, FY,]=4[B}Y,, —CpX,]
=I5 BiCy +0,BiCy).#(Y,)
= C7(0,B; + B{I5,,) (6; — BIC)Y,,
M[FY,, FYl=#[C2X,, C;X1=CrChM[X,, X/]
=CyChR?,1(05— BLCD)Y, .
Thus we obtain

Theorem 11. The distribution D, defined by the f-structure derived from a
Kénig structure is integrable if and only if

(62— BzCm) (0;B¢+I'¢;BH) =0,
(64— BEC™MRS;; =0,

where RE,; is the curvature tensor of the Kénig connection I'§(x).
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When the distribution D, is integrable and the induced almost complex structure
f' is complex analytic on each integral manifold of D,, we say that the f-structure F
to be partially integrable. And the condition for the f-structure F to be partially
integrable is given by NJ(2U, £V)=0 ([9], [11]). Since F¥=F, we get

N{(LU, 2V)=F[F2U, F2V]+[FU, FV]+F[FU, F*V]+F[F?U, FV].
Then, we see
Ne(ZX;, £X;)={X;(B3)+I%B5—X;(B¥)—TI'%;B{}Cl X, — R§:;BLCRY,,
Ne(ZL X, £Y,)=Ci{X,(B}) +I,B; - BiC}(X;(B)) +T'};Bg) + R, y°} Yo,
NK(L Y., £Y;) = CiCICH X (B) + 585~ Xo(BD) ~ [5 BT} X, + CICh RS Y,

Thus the condition under consideration can be written as

Rgij=0a (1)
Ci{(0;B%+TI?%;B3)—(0;B¢+I%;B?)} =0, +(2)
(0,Bf+TI%;B7)— BiC(0;B%+1T;B%) =0. . 3)

Substituting (2) into (3), we get
(0;Bf +I's;B7)— Br.C7(0,;B +I'; ;B)=0.
Namely, we get
(05— BaCY)(0;BY +175;BY). -(4)

Conversely, the condition (2) and (4) lead us to (3). Hence we obtain

Theorem 12. The f-structure derived from a Konig structure is partially
integrable if and only if

Rgij-:O,
(05— B2Cy)(9,;Bf +I'%,B7) =0,
Cch {(6iB§ + F;';,.Bg.) - (6jB% +ngB;?)} =0.

Finally we look for the condition for F to be integrable. An f-structure F is
said to be integrable when Ny=0. Calculating the components of N, we get

Np(X;, Xj) =—R};;y°CrBLY,
—C4{(0:B5+ B3I'},) — (0;B}+T};B)} X,

NF(Xi’ Yu) = {Czl(ame +Fgthi’) +B;‘:,(61CZ'—FZLC;")} Yoz
—CoRLmy°Cl Xy,



24 Yoshihiro IcEY0 and Radu MIRON
Np(Y;, ¥,) = {CF(0nCh — T Ch) — Ci(0,CE — T'5,CO)} X,
+C4C R,y Y.
Thus, the condition under consideration is given by
R'Zij =0,
Cr(0mCh—I'anCl) — C(0,,C% — I'%,C3) =0,
C1(0,Bs + I3, BY) + B (0,C —I'7,C7) =0,

C4{(0;B%+TI'%;B5) —(0;B}+T%;B?)} =0.

Multiplying the second equation by B}B% and contracting with 4 and u, we get
B¥9o,Ch—T5,,CH—B}0;Ch~T'g;Ct)=0.

Taking account of CiB%=4%, we have
Ch{(0,B5+TI"%,,B3)—(0;B + T} ;B7)} =0,

that is, the second condition includes the fourthe condition. Therefore we obtain

Theorem 13. The f-structure derived from a Kénig structure is integrable if
and only if

RgijEO’
(OnCh =I5 CHCF — (0, Ch—T'5,CHCR =0,
(OB} + 17, BY)C + B1(0,Cp —I'5,C7) =0.

§7. The standard connection.

Let there be given a K&6nig structure on a vector bundle E(M). Then, there exist
a Konig connection I'§;(x) and a non-linear connection N¢=TI§,(x)y*.

Now let I' be a linear connection on E(M) whose components with respect to
the frame {X,, Y,} are I'gc. If we put

g, =I'%(x) (I'ji(x) is the given K6nig connection),
It =C4o;Bi+TI¢;Bj),
the other components vanish.

Due to the fact stated in §3 and Remark shown in §5, this is well-defined. Thus we
can determine one linear connection on E(M). Concerning this linear connection,
we get
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VXinzr?tha VXszZngYﬁ,
VYAXi=0, VY;,YAI,:O'

The linear connection I' thus defined is called the standard connection derived
from a Kénig structure. For the standard connection, we get

B%lj———'aJBf‘}‘Fﬁ]Bg—Frlnleh
=(8;—B,Cy)(0;Bf +I'¢;BY),
B%|u=0a

=9,Ch—TI ,Ch+CrCh0,;B;, + CnCH B,
= (85— Br.Ci)(0;C5 —I'g;C),
Ct],=0.

Therefore, with respect to the standard connection, we can rewrite Theorem 4, 7, 11
and 12 as follows:

Theorem 14. The standard connection derived from a Kénig structure is an
(N, Q)-connection if and only if

(64— B4LC™)(3,;B7 +I'5;BY)=0.

Theorem 15. The standard connection derived from a Konig structure is an
(N, Q, F)-connection if and only if
(531—3,'}10:) (ajB?'i_FZjB‘i‘):Oa

(65— Bg,Cm)(0;,CL—T5;,CH=0.

Theorem 16. If the distribution D, defined by the f-structure derived from a
Kdénig structure is integrable, the standard connection is an (N, Q)-connection.

Theorem 17. In order that the f-structure derived from a Kénig structure be
partially integrable, it is necessary and sufficient that the standard connection
satisfies

Rgij=09

(95— BxCp) (0,8} +1I'5;B7)=0.
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