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We consider bifurcation points of a parameter-dependent nonlinear
equation F(x, B)=0 whose left member F(x, B) satisfies the condition
F(Sx, B)=SF(x, B) for a matrix S which has eigenvalues +1. If the
x-component £ of a bifurcation point (%, B) is an eigenvector corre-
sponding to the eigenvalue 1 (or —1) of the matrix S, then we can compute
(%, B) with high accuracy in a way using an augmented system of nonlinear
equations which contains the equation F(x, B)=0. Moreover we also give
a necessary and sufficient condition for guaranteeing the isolatedness
of such a bifurcation point.

§1. Introduction

We consider a bifurcation point (%, B) of a parameter-dependent nonlinear
equation

(1.1) F(x, B) =0

whose left member satisfies a condition, where B € R is a parameter, x, F(x, B) € R",
and F is a C¥*2 mapping from R**! to R". Here we call a point (X, B) satisfying
the equation (1.1) a “bifurcation point of the equation (1.1)’ if the conditions

(1.2) rank F (%, B)=rank (F (%, B), Fy(%, B))=n—1

are satisfied, where F,(x, B) denotes the Jacobian matrix of F(x, B) with respect to
x and Fy(x, B) denotes the partial derivative of F(x, B) with respect to B.
In this paper, we consider the case where the mapping F satisfies the condition

(1.3) F(Sx, B)=SF(x, B) for xeR", BeR,
where S is a real n x n nonsingular matrix such that

S+#E, (n x n unit matrix), and either all the eigenvalues of S
(1.4) are equal to +1 or all the real eigenvalues of S are equal to
+1 and the remaining eigenvalues are all imaginary numbers.
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For this matrix S we set

(1‘5) Xlz{xeR”;Sx:x}z{XERn;S—lx:x}
and
(1.6) Xv1={xERn; Sx:-.x}:{xeRn;S—lx:_x}.

In the paper [4], B. Werner and A. Spence have shown that it is sufficient to
consider only the equation

F(x, B)
(1.7) G(x)=| F.(x, B)h | =0  (where x=(x, A, B)T)
hTh—1

in order to obtain £=(X, h, B)T (where (%, B) is a bifurcation point of the equation
(1.1)) when S2=E, and (8, h)Te X, x X_, because the mapping G defined by the
equality (1.7) is a mapping from M =X, x X_; xR to M and the mapping G'() is
an isomorphism from M to M if a specific condition is satisfied, where hT and (---)T
denote the transposed vectors of & and a vector (---), respectively, and h(hATh—1=0)
is an eigenvector corresponding to the eigenvalue zero of the matrix F (%, B), and
G'(x) denotes the Jacobian matrix of G(x) with respect to x. But, if the specific
condition above is not satisfied, then G'(%) is not an isomorphism from M to M.
Hence it seems that they can not compute the bifurcation point (£, B) with high
accuracy. ‘

In this paper, on the other hand, we show that, in such a case, we can compute
the bifurcation point (%, B) with high accuracy if we introduce another parameter
into the equation (1.7). Moreover we discuss the case € X _;. Concerning this
case, in addition to the above-mentioned condition (1.3), we must assume some
additional conditions. But these conditions seem to be reasonable for such a case.
Then, for this case, we have results similar to those obtained in the case £ € X,.

In §2 we discuss the case X € X; and in §3 the case £e X_,. In §4, in order to
illustrate our theory and method, we present an example. '

§2. The Case £€ X,
First we define n x n matrices Y»’s and n-dimensional vectors V(2’s by
YN =F (x, B),

7 J . . .
(2.1) YOD= 3 5 Gy YRI 2 hy,y, (j>1)

. J . .
Y@2itD = 'le_qlci_lyizj 2'+1)h2i+ Y},ZJ 1)
i=
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and
V(l) =FB(x’ B)a
i j s Iy .
(2.2) Veh=% ; (Ci (VFH 2 Dhy, (j=1)

i=1

j .
yeith =3y - (Ci_ V224D, L Y 2i-1)

i=1

respectively, where each ;C; denotes the binomial coefficient, and Y and V{
denote the derivatives of Y® and V(@ with respect to x, respectively, and Y¥ and
VP denote the partial derivatives of Y® and V@ with respect to B, respectively,
and each h; is an arbitrary n-dimensional vector. From (2.1) and (2.2) we have
the following lemma.

Lemma 1.

23) (1) Vim=YgY (m>1).
. m+1 X
(2.4) (i) 12'1 mcj—- 1 Y(2m+3—2’)h2j— 1
= B e oYM 2Dy g YOIy ) £ VW (2 1),

Proor. (i) From (2.1) and (2.2) we easily get
(2.5) V= Fp(x, B)=Fp(x, B)=Y}"
and
V=V 0hy = Fpoo(x, Bty = Fruglx, By =Y,
(2.6) VO =VLh,+V§)=Fp, (X, B)h,+ Fpp(x, B)
= Foup(x, B)1y+ Fopp(x, B)=Y§.
Assume that the equality (2.3) holds up to 2/—1, that is,
2.7 vihO=Y{ (j=1,2,3,...,21-1).
It follows from (2.7) that

I
20) — (21+1-2i
V:(c D= 21 1-1Ci-1Via l>h2i—1
2

M-

1-1Ci— Y@ 1720h,, = YD,

i

1

l .
‘V;21+1) — 21 l—lCi—lVgc%tl+1_21)h2i+ V%Zx’ 1)
i=

(2.8)

L ] B
= Z i oo V0l YR = YR,
=1
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These imply that the equality (2.3) holds for 2/ and 2/+1. Hence the equality (2.3)
holds for all m>1.

m
(ii) A= '21 nz—le—IY(2m+2_2”th
i=
m ~J+1 X .
= Zlm—lcj—l( Zl ;n—jci—lY:(CZ(m_]+l) Z'H)hzi—l)hzj
o

. ;
= Z( 2 m~lcj—1'm—jCi—1Y§c2(m_l+1)_21+l)h2j)h2i—1

...
]
—
.
It
—

Then we have

m m—i+1 . .
A1+V(2m)= Z m~1ci—1( 21 m—iCj—IYJ(CZ(m_l+1)_21+1)h2j
j=

i=1

. B m .
+Y§32(m—1+1) 1))h2i—1= z m_lci_ly(Z(m ¢+1)+1)h2i_1,

On the other hand, we have

m m+1
— +1-2j — -
AZ_ng m—-lcj—IY(zm ! 2J)th+1_ 12‘42 m—lcl—ZY(z(m H-1)‘,-1)}121--1'

Hence we have
the right member of the equality (2.4)=A,+ A, + V@™

m . m+1 .
=j21 m_lcj_1y(2(m—1+1)+1)h2j_1_|_ Zzm_lcj_ZY(Z(m—j+l)+l)h2j_1
= j=
m
=Y(2m+1)h1+ _22 (m~1Cj—1+m~ICj—Z)Y(Z(m_J+1)+1)h2j—1+Y(l)h2m+1
i=
m
=Y(2m+l)h1+ngmchlY(2(m—1+1)+1)h2j_1+Y(l)h2m+1
mil 2(m—j+1)+1
= ng ij_IY( (m—j+1) )hzj_1

=the left member of the equality (2.4). Q.E.D.
From the condition (1.3) we have

0°F,,
oxP

oPF,,
OxP

(2.9) (Sx, B)Sr{Sr;---Sr,=S (x, Byryry--r, (m>0, p>1)

for arbitrary vectors x, ry, 7,,...,7,€R", where Fy(x, B)=F(x, B), F(x, B)=
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0'F(x, B)/0B! (i>1), and 0PF,(x, B)/0x? denotes the p-th derivative of F,(x, B)
with respect to x. For the sake of simplicity, we set fZ(x, B)=0PF,(x, B)/0xP.
From (2.9) we have the following lemma.

Lemma 2.
For xe X, and r; (eithere X, ore X _,) (i>1)

(2.10) (i) fE2(x, B)ryr,---r, belongs to the set X_, if and only if the number of
vectors r;€ X _, is an odd number,

(2.11) (i) f5(x, B)ryry---r, belongs to the set X, if and only if either all r;s
belong to the set X, or the number of vectors r;€ X _, is an even number.

The proof of Lemma 2 is straightforward and will be omitted. From (2.1),
(2.2) and Lemma 2 we have the following lemma.

Lemma 3.
For xeX,and hy;_,€X_q, h;e X (i>1)

(2.12) (i) V@i-veXx, VeheX_, (j=1),

YCi-DpeX,, YPpeX_, for ¢eX,
(2.13) (i1) (G=1.
YeIDyeX |, YehyeX, for YeX.,

Proor. (i) From the definition (2.2), V(21 can be written in the form of a
linear combination of vectors F,(x, B)’s and (f5(x, B)r,r,---r,)’s, and V2J) can be
written in the form of a linear combination of vectors (f5(x, B)ryr,---r,)’s.  Since
x € Xy, all F(x, B)’s belong to X;. Moreover, in each term f7(x, B)r r,--r, which
V@i=1 contains, all r;’s belong to X, because each r; is equal to h,,, for a positive
integer k; (< j—1) from the definition (2.2). Hence f(x, B)ryr,--:r,€ X due to
Lemma 2-(ii). This implies V?/~DeX,. On the other hand, in each term
f2(x, B)ryr,---r, which V() contains, one of vectors r;’s is equal to hy,_, for a
positive integer k, (< j) and each r, of the remaining (p— 1) vectors is equal to h,,,
for a positive integer k, (< j—1) from the definition (2.2). Since hy,,—; € X_; and
hy, €Xy, we have fh(x, Byr;ry---r,eX_; due to Lemma 2-(i). This implies
VeheX_,.

(i) From the definition (2.1), Y@/=Dh (he R") can be written in the form
of a linear combination of vectors (f5(x, B)ry---r,_;h)’s. For ¢ € X, in each term
f&(x, B)ry---r,1¢ which Y2/"D¢ contains, all r;’s belong to Xy, so f7(x, B)ry--
rp-1¢ € X, due to Lemma 2(ii). This implies Y?/"D¢ e X;. On the other hand,
for y € X _, every term f2(x, B)r,---r,_ % which Y(2/=1y contains belongs to X _,
due to Lemma 2-(i), because all r;’s belong to X,. This implies Y@/ "DyeX_,.
From the definition (2.1) Y2)h (he R") can also be written in the form of a linear
combination of vectors (fZ(x, B)ry---r,_1h)’s. For ¢eX, in each term
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fo(x, Byry---r,_y¢ which Y2)¢ contains, one of vectors r;’s belongs to X_; and
the remaining (p—2) vectors all belong to X, so f5(x, B)ry---r,_ ¢p€ X _ due to
Lemma 2—(i). This implies Y2)¢ e X _;. On the other hand, for Y € X_,, every
term f7(x, B)ry---r,_ 4 which Y2Dy contains belongs to X; due to Lemma 2—(ii),
because one of vectors r;’s belongs to X_, and the remaining (p—2) vectors all
belong to X ;. This implies YCDyY € X,. Q.E.D.

In order to simplify the following argument, we assume without loss of generality
that

(2.14) rank F_ (%, B)=rank (F_,(%, B), Fy%, B)=n—1,

where F_ (&, B) denotes the n x (n— 1) matrix obtained from F (£, B) by deleting the
first column vector. Then the equation

F (%, B)h, =0,
(2.15)

hi—1=0

has only one solution f,, where h, =(h!, h2,..., h")T. We owe to Brezzi et al. the
following lemma concerning this solution /.

Lemma 4 ([1]).

If $€ X, then either h, € X, or hy € X _, holds.

First we study the case fi; € X_;. Then, from Lemma 3, we easily get the
following lemma.

Lemma 5.
(2.16) (i) F.(&, B) is an isomorphism from X, to X .
(2.17) (i) Fy&, B) is a mapping from X _, into X _,, so F (&, B(X_peXx_,,
where
(2.18) F (%, BY(X_)={y; y=F (&, B)z, ze X _,}.

Since h;eX_,, we have F (&, B)h,h, e X, due to Lemma 2-(ii). Hence,
from Lemma 5-(i), we have

(2.19) rank (F (%, B), F (%, B)h,h,)=n—1.
Now, to obtain the bifurcation point (£, B)e X, x R, we consider the equation
F(x, B)
(2.20) G(x)=| F.(x, B)h, | =0,
hl—1
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where x=(xy, X3,..., X,)T, hy=(h}, h},..., k)T, x=(x, hy, B)T. As is seen from the
above argument, the equation (2.20) has a solution ¥=(%, h,, B)Te M, where
(%, Bye X, xR is of course the above-mentioned bifurcation point and hyeX_,
is a solution of the equation (2.15). Due to Lemma 3, the mapping G defined by the
equality (2.20) is a mapping from M to M. We denote by G'(x) the Jacobian matrix
of G(x) with respect to x. Then, due to Lemma 3, for the solution X, G'(x) is also
a mapping from M to M. For the mapping G'(x¥) we have the following theorem.

Theorem 1.
G'(%) is an isomorphism from M to M if and only if

(2.21) e YO(X_)=F(% B)(X-)),
where
(2.22) 1 =Y®h,=Y®h,+ VO ={F, (%, Bh,+Fx3%, B)}h,.

Here h,e X, is a solution of the equation
(2.23) F (%, B)h, + Fy(%, B)=0 (h,eX,)

and Y@ (p=1, 2, 3) and V@ (q=1, 2) denote the values of Y and V(@ at x=2%,
h;=h;(i=1, 2) and B=B, respectively.

PrROOE. G'(x) has the form

F.(%,B) 0 Fy(%, B)
(2.24) G'(£)=| Fo(%, B)h;,  F.%,B)  F.p(%, B)h;
00---0 10---0 0
Y 0 17488
=| Y® ym y@

For (uy, u,, )T € M we consider the following equation:
?(1)111 +)u‘7(1)=0,
(2.25) R . R
YOu, + YOu,+ AV =0, uj=0,

where u;=(u}l, u?,..., u)T (i=1, 2).

When 2=0, we have u, =0 from the first of the equation (2.25) because Y=
F(%, B) is an isomorphism from X, to X,. Substituting 2=0 and u,;=0 into the
second of (2.25), we have

(2.26) YWu,=0, ul=0,
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This implies u,=0. Thus we obtain a zero solution (0, 0, 0)"e M of the equation
(2.25).

When A#0, we set A=1 without loss of generality. Then we have u,=h,
from the first of (2.25). Substituting A=1 and u,=Ah, into the second of (2.25),
we have

(2.27) YOu, + Y@h, + V@O =YWy, 41, =0, u}=0.

It follows from (2.27) that if 7,¢ P((X_,), then the equation (2.25) has a
zero solution only and so G'(X) is an isomorphism from M to M, and conversely if
G'(X) is an isomorphism from M to M, then the equation (2.25) has a zero solution
only and so ;& Y()(X _)). Q.E.D.

Due to Theorem 1, if the condition (2.21) is satisfied, then we can compute the
bifurcation point (£, B) € X; x R with high accuracy by applying the Newton method
to the equation (2.20) when we consider the mapping G defined by the equality (2.20)
as a mapping from M to M.

In particular, when S?=E,, Theorem 1 is the same result that B. Werner and
A. Spence [4] obtained.

Next, we consider the case I, e Y((X_,). B. Werner and A. Spence did not
describe anything about such a case in the paper [4]. Since I, € Y()(X_,), the
equation

YOhy+1,=F(&, B)hs+1,=0,
hi=0 (where hy=(h}, h3,..., )T e X_,)

(2.28)

has only one solution h;€ X_,. From Lemma 3 we have
(2.29) Y®Oh,+7P®eXx,,

where V3 denotes the value of V® at x=2%, h;=h;(i=1, 2) and B=B. Since Y™
=F (%, B) is an isomorphism from X, to X, the equation

(2.30) YOh + Y®Oh,+V® =0 (h,eX,)

has only one solution h,e X,. Thus we introduce another parameter f, and

consider the equation
F(x, B)
< Y®h, — By, >
YWh, 4 v
(2.31) Hi(z,) = < YDhy+1, >

0,
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YOh,+Y®h,+ V3
hl—1
h3

where x=(X{, X5..., X,) T, By=(h}, h3,..., KT (1 <i<4), 2, =(x, hy, hy, hsy, hy, B, BT
and L=2Y®hy+ YOh, =Y ®h,+ Y®Ohy,+ YPOh,+ V@, As noted above, the
equation (2.31) has a solution Z,=(%, fy, hiy, b3, hy, B, 0)Te Ny =W2x X x R?,
where W=X,x X_, and W2=Wx W. Due to Lemma 3, the mapping H, defined
by the equality (2.31) is a mapping from N, to N,. We denote by Hi(z,)
the Jacobian matrix of H,(z,) with respect to z,. For the solution z,, Hi(Z;) has
the form

7 0 0 0 0O vm 0
Y@ Y 0 0 0 pe -1,
@ 0 Y 0 0 7®» 0
(232 HiZ)= 4G ) 4E)) T@ Y 0 p@ 0 |,
Y® 0 2V 0 Yoo pe 0
00---0 10---0 00---0 00---0 00---0 O 0
00.--0 00---0 00---0 10---0 00---0 O 0

where ¥®, V® (1 <p<5) and 1, denote the values of Y@, V® and [, at x=2%,
h;=h; (1<i<4) and B=B, respectively. Due to Lemma 3, H'(z,) is a mapping
from N, to N,. For the mapping H/(Z,) we have the following theorem.

Theorem 2.
H'(%,) is an isomorphism from Ny to N, if and only if

(2.33) L TU(X_)=F(% B)(X_,).

PROOF. For (uq, U,, Us, Uy, Us, A, 4)T€N, we consider the following
equation:

YWy, + 2,V =0,
YOu, 4+ ¥ Ou, + 4, V@ —1,1,=0, u}=0,
(2.34) Y®u, + Y Wuy+ 4,7V =0,
TOu + ¥ Ou, + ¥®u,+ ¥ Ou,+ 4, 7@ =0, u}=0,

PO +29®uy+ T Oug+ 4,7 =0,
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where u;=(ul, u?, .., un)T (1<i<?).

First we prove that if 1,¢& Y()(X _,), then H|(Z,)is an isomorphism from N, to
Ny. When 4; =0, we have u, =0 from the first of the equation (2.34). Substituting
41=0and u, =0 into both the second and the third of the equation (2.34), we have

(2.35) [ YOu,—2,1,=0, ul=0,

(2.36) Py, =0,

Since 1, Y(O(X_,), we have 1,=0 from (2.35). Hence u,=0. We also have
u3=0 from (2.36). Substituting A, =0 and u;=0 (1 <i< 3) into both the fourth and
the fifth of (2.34), we have

Y®u, =0, ul=0,
(2.37)

YWy =0,

from which follow u,=0 and us;=0. Consequently, we obtain a zero solution of
the equation (2.34). When 1,50, we set 1, =1 without loss of generality. Then
we have u, =/, from the first of (2.34). Substituting 1, =1 and u,=h, into both
the second and the third of (2.34), we have

(2.38) [ ?(1)u2+?(2)22+1‘7(2)_}.222=?(1)u2+‘l\1—j~272=0, u%=0,

239) | $0uy+ 9Ok, + PO =0,

Since I, = Y@h,+ V@ e $(X _)) and 1, YO(X_,), we have 1,=0 from (2.38).
Then we have u, =h; from (2.38). We also have uy=h, from (2.39). Substituting
Ay=1and u;=h,,, (1<i<3) into both the fourth and the fifth of (2.34), we have

(2.40) ’ YOu,+ YOh,+ PR+ T@hy 4+ VO = YOy, +1,=0, ul=0,

(2.41) YDu+2Y®h, + YR, + P =0.

Since 1,¢£ Y((X _,), the equation (2.40) has no solution. Therefore the equation
(2.34) has a zero solution only. This implies that H}(%,) is an isomorphism from
N, to N;.

Next, we prove the converse. To do this, we prove its contraposition, that is,
if ,€ YO(X _)), then H}(,) is not an isomorphism from N, to N;. For J; and 4,
we have the following three cases: (i) 4,=2,=0, (ii) 4, #0, 1, =0, (iii) the others.
First we consider the case (i). In this case, similarly to the case 1, =0 in the above-
mentioned proof, we have a zero solution of the equation (2.34). Secondly, in the
case (ii), we set 4; =1 without loss of generality. Then, similarly to the case Ay #0
in the above-mentioned proof, we easily have u;=h;,, (1 <i<3) and also
the equations (2.40) and (2.41). Since 1, € YW(X _,), the equation (2.40) has only
one solution u4=fz5 € X_,. Moreover the equation (2.41) has only one solution



An Analysis of Bifurcation Points of Nonlinear Equations Satisfying a Condition 73
us=he e X, because
(2.42) 2Y®h, + YOh,+V® e X,

due to Lemma 3. Thus the equation (2.34) has a non-zero solution (h,,
hs, by, his, hg, 1,0)TeN,. Therefore H{(z,) is not an isomorphism from N,
to N,. Q.E.D.

Next, we consider a more general case which contains the case I, Y(O(X _)).
We define n-dimensional vectors /,,’s by

m
(2.43) lm= ng ij_IY(2m+3_2‘l)h2j_1
S 2m+2-2j KSh 2mt1-2]
= Zlm—lcj—ly( " J)th+ '21 m—lcj—lY( " J)h2j+1
/= =

+Vem (m>1),

where each h; is an arbitrary n-dimensional vector.

Assume that there exists a vector (£, fiy, fay..., hyp_ 2> Ba_1, BT € WEX R such
that the following two assumptions (I) and (II) are satisfied (k>2), where (X, B)
satisfies both the equation (1.1) and the condition (1.2):

() ey =@ hyy Aoy Bogets haio B,O)TeN,_,=Wtx X, xRk (0 is the
(k—1)-dimensional zero vector) is a solution of the equation

( F(x, B) )

YMhy—Bili
YO hy+ V) >

( Yy 41— Bl

k=2 :
y2k=3-2j)), (2k—5)
(2.44)  H,_ (241 = < ng k-3C;1Y J h2J+ V > —0,

YOhy s+ Lz —Prili

k=1 ,
( Jg} keaCy YO 172D, 4 P (2K=3) >
YOhyy+ iy

k i _
j;l k—le—IY(2k+1_2])h2j+ V(Zk 1)

Yi-1(2k-1)

where W* denotes the direct product set Wx Wx --- x W, and B;’s are parameters,

k times
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x=(x1, x2,..., x,,)T, hj=(h;, h%,..., h";)T (ISjSZk), zk_1=(x, hl’ hz,..., h2k—‘1’ h2k’
B, B1, Baseoos By Wioi(zp—)=(hi—1, hi, hi,.., hy, )T, and hyeX, is a
solution of the equation

- k=1 - S ~
(2.45) Y(l)h2k+ Z k_ICj_1Y(2k+l—2])h2j+ V(lk_1)=0 (hzkeXI)-
=

Here Y® and P® (1< p<2k—1) denote the values of Y and V® at x=%8, h;=h,
(1<i<?2k—2) and B=B, respectively.
(ID) Le YO(X_)=F, (%, B)(X_)),

where 1, denotes the value of I, at x=2%, h;=h, (1 <i<2k) and B= B, that is,

S

(2.46) A

V(2k+3-25) 1,
lij—lY( ’)hzj—l
J

Il
I

N o~ k=1 - o
o 1Cjo P@R222DF, Zlk—lcj—lY(2k+l 2Dfy; 44
i=

+ V@b,

Here Y@ and V@ (q =2k, 2k+1) denote the values of Y@ and V@ at x=£%, h;=h,
(1<i<?2k) and B=B, respectively.

Due to Lemma 3, the mapping H, _, defined by the equality (2.44) is a mapping
from N,_; to N;_;. We denote by H;_,(z,_,) the Jacobian matrix of H,_,(z,_;)
with respect to z,_;. Due to Lemma 3, H)_,(%,_,) is also a mapping from N, _,
to N,_;. For the mapping H;_,(2,_,) we have the following theorem.

Theorem 3.
The mapping Hy_,(Z,_,) is not an isomorphism from N,_, to N,_,.

PROOF. For (uy, us,..., Uyt (s A1s Azs-.os )T € Ny, we consider the following
equation:

YOu, +1, 70 =0,
?(z)ul"*‘?(l)uz"}"ilv(z)—/{z?k:(), u5=0,
?(3)111 + ?(l)ua,'f'/ll 17(3)=0,

P@u, + TOuy + Y Duy+ POug+ 4, PO 2,1, =0, ul=0,

k=1 : N .
2.47) S e 2Cio Y@k 1m2iy 4 PR3 =)
PSR J

k=1 . ‘ ~ . R
2 k—2C; - (YR 2Duy;  + YOKI720y, 4+ 2, VD)
=1

_’lkik=0a Up-2=0,
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k R _ o
Zlk_ICj_IY(zkH—ZJ)qu_l+,11V(2k H=0,

]:

- ¥ i P4 —_n: ~
.Zlk‘lci—l{Y(ZHZ'z”“zj—t‘*'Y(2k+1 Duy 342,V =0, uj=0,
i=

k+1

ij— L Y(2k+3—2j)u2j_ + /11 P @kt = 0,

il
-

where u;=(u!, u?,...,u)T (1<i<2k+1).

For 4; (1 <i<k) we have the following three cases: (i) 4;=0(1 <i<k), (i) A, #0,
;=0 (2<i<k), (iii) the others. In the case (i), we have a zero solution of the
equation (2.47). In the case (ii), we set A; =1 without loss of generality. Then we
have u, =h, from the first of (2.47). Substituting 2, =1, 1, =0 and u, =/, into both
the second and the third of (2.47), we have

YOu,+ Y®h,+ PO =YWy, 4+1,=0, ui=0,
(2.48) R o

YOu,+ Y®h,+ V®=0.
We readily have u,=h, and u;=h, from (2.48). In the same way, we have u;=
into both the 2k-th and the (2k+ 1)-th of (2.47), we have

& 2k+2-2) ],
Y(l)u2k+(ngk_1Cj_l?( Dh,;

(2.49) k=1 . , . .
+ .21 k—1Cj—1Y(2k+1_2”H2j+ DHVEO =YWy, +7,=0, ul,=0,
=

~ k ~ PN ~
(2.50) YOuy,+ ,Z=:1 kCj- YCK372Dhy 4+ 2EFD =0.

Since 1, € Y((X_,) due to the assumption (II), the equation (2.49) has only one
solution u,,=h,,.,€X_;. Moreover the equation (2.50) has only one solution
u2k+1=fl2k+2 EXI because

k - A N
(2.51) zl ij— . Y(2k+3_2‘])}121‘+ peky e x|
j=

due to Lemma 3. Thus the equation (2.47) has a non-zero solution (h,, As,..., Rors s
Paprs 1,0TeN,_,. Hence H,_,(,_,) is not an isomorphism from N,_; to
N Q.E.D.

In the case I, € Y()(X _,), we introduce another parameter f, and consider the
equation
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( F(x, B) )
Y(l)hl_ﬂ]lk-H
YOh, + Y
( Y(l)h3+11—ﬁzlk+1 >
k—1

(2.52) Hy(zy) = ( J; k2 G Y1200y 4 Y CR79) > =0,
YDhy 1+ leer = Bidias

j=

( i ko1 Gy YCRHI=2DD )y k=) )

Y(l)h2k+1 + lk
i 2k+3-2j 2k+1
4Gy YRy 4 YD

¥ (z1)

where s are parameters, x=(xy, X,,..., X,)7, A;=(h}, h3,..., k)T (1<j<2k+2),
=X, hy, hayoors hopi1s hogrzs By Bis Boseos BT and Yi(z)=(hi—1, f’%,
hi,..., h3+1)T. As noted above, the equation (2.52) has-a solution z,=(%, h,,
Baseois Rags 15 Rags s B, 0)T€e Ny= W+ x X | x R¥*1, where O is the k-dimensional
zero vector. Due to Lemma 3, the mapping H, defined by the equality (2.52) is a
mapping from N, to N,. We denote by Hj(z,) the Jacobian matrix of H,(z,) with
respect to z,. Due to Lemma 3, H)(z,) is also a mapping from N, to N,. For the
mapping H,(z,) we have the following theorem.

Theorem 4.
H(zy) is an isomorphism from N, to N, if and only if
(2.53) 2k+1$?(1)(X—1)=Fx(5€’ B)(X—1)’

where 1, | denotes the value of I, .., at x=2%, h,=h, (1<i<2k+2) and B=B, that is,
o V(2k+5-25)],
(2~54) 2k+1=J§1 k+1cj—1Y( J)h2j~1
K V(2k+4—27)]; : V(2k+3-2j) ], [7(2k+2
= Zl ij—'IY( J)h21+ Zl ij—IY( 1)h2j+1+V( ).
Jj= j=

Here Y® and V@ (1< p<2k+3)denote the values of Y and V® at x=2%, hi=ﬁ,-
(1<i<2k+2) and B=B, respectively.

PROOF. For (Uq, Usyeoes Upprzs Usgs3s A1s Aasees As 1) € N we consider the
following equation: '
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Py, 42,V =0,
P@u, + P0u, 42, PO 1, =0, ui=0,
YOu, 4+ TWuy 41, PO =0,

k R . o
2.55) '21 ko1 G Y@RF1=20y, 4 ) V@D =,
j=
3 P (2k+2-2)) {(2k+1-2j 52k
.Zlk_lcj"l{Y( J u2j—1+Y( J)qu}+)VIV( )
=

= 1=
_ik+12k+1—0’ u=0,

k+1 R , N

-21 «Ci Y(2k+3—21)u2j_ L+ A VERHD =0,
=

el U (2k+4-2j U (2k+3-2j {7 (2k+2 1

'Zl Cj-{Y¢ Dupj 1+ ¥¢ Dy + 4 VD=0, ujy,,=0,
J= 1.

ki2 V(2k+5-2j (7 (2k+3

Zlk+lcj—1Y( j)qu—1+j~1V( )=0,

=

where u;=(ul, u?,..., unHT (1<i<2k+3).

First we prove that if 1, ;& Y™ (X _,), then H/(z,) is an isomorphism from N,
to N,. When 1,=0, we have u; =0 from the first of the equation (2.55). Substi-
tuting 4; =0 and u, =0 into both the second and the third of (2.55), we have

(2.56) [ ?(1)U2_127k+1=0, u%=0,
(2.57) YWy, =0.

Since 1., YM(X_,), we have 1,=0 from (2.56). Hence u,=0. We also have
u,=0 from (2.57). In the same way, we have ,=0(2<i<k+1)and u;=0(1<j<
2k+1). Substituting ;=0 (1<i<k+1) and u;=0 (1<j<2k+1) into both the

(2k+2)-th and the (2k+ 3)-th of (2.55), we have
YOuy =0, ul,=0,
YOu,,, 3=0,

(2.58)

from which follow u,, ,,=0and u,,, ;=0. Consequently, we obtain a zero solution
of the equation (2.55). When 4, #0, we set 4, =1 without loss of generality. Then
we have u, =/, from the first of (2.55). Substituting 1, =1 and u; =h, into both the
second and the third of (2.55), we have

(2.59) [Y(”u2+Y(2)52+I7(2)—127k+1=)7(1)u2+71—/127k+1=0, ul=0,

(2.60) YOu,+ Y®h, + 73 =0.
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Since I; € YM(X _)and 1, ;& YO(X _,), we have A, =0 from (2.59). Then we have
u,=h, from (2.59). We also have u,=h, from (2.60). In the same way, we have
2;=0 2<i<k+1) and uj=fzj+1 (1<j<2k+1). Substituting 4,=1, ,,=02<i<
k+1) and uj=ﬁj+1 (1<j<2k+1) into both the (2k+2)-th and the (2k +3)-th of
(2.55), we have

. k+1 N .k I
YMuy,n+ > kG YR, 4 2 kG YERI2Dh,
(2.61) = =
+P@HD=F Dy o +1,,=0, ub,,=0,
. k+1 ~ RPN A~
(2.62) YOuy s+ .Zlk+ 1€ YORI3=2D ], 4 V@R =,
=

Since 1, , & Y((X _,), the equation (2.61) has no solution. Therefore the equation
(2.55) has a zero solution only. This implies that H)(z,) is an isomorphism from
N, to N,.

Next, we prove the converse. To do this, we prove its contraposition, that is,
if Tippe YO(X_)), then Hi(%,) is not an isomorphism from N, to N,. For 4
(1<i<k+1) we have the following three cases: (i) 4,=0 (1<i<k+1), (i) 1, #0,
4;=0 (2<i<k+1), (iii) the others. First we consider the case (i). In this case,
similarly to the case A,=0 in the above-mentioned proof, we have again a zero
solution of the equation (2.55). Secondly, in the case (ii), we set 1, =1 without loss
of generality. Then, similarly to the case 4,0 in the above-mentioned proof, we
easily have u;=h,,, (1<i<2k+1) and also the equations (2.61) and (2.62). Since
L € YO(X_,), the equation (2.61) has only one solution uy,,=hy,z€X_;.
Moreover the equation (2.62) has only one solution u; ., 3=/, .4, € X, because

k+1

(2.63) -21 ki1Cj g YOHHS"20], 4 PR3 ¢ X |
=

due to Lemma 3. Thus the equation (2.55) has a non-zero solution (i, fis,..., Ay s 3,
Baesar 1,00TeN,. Hence Hi(Z,)isnotan isomorphism from N, to N,. Q.E.D.

In particular, we consider the case where

(2.64) S#E, and S?’=E, for a positive integer p.
We set

(2.65) X,={xeR"; h(S)x=0},

where

(2.66) h(S)= pj: S =F, 4+ S+ 54+ .+ S22,

Then we have the following lemma.
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Lemma 6.
(2.67) R=X,®X_,0X,,
where X, ®X _,®X,, denotes the direct sum of X, X_, and X,,.

ProoF. It is clear that R"> X, ®X_,®X,. For an arbitrary x € R* we can
write x in the form

f(S) _9(S) 4 _h(S)
(2.68) T {E : }x,

where

2 -
f(9)="% Si=E+S+S4 45071,
i=0
(2.69)
2p—-1
g(S):_ Z (_l)i-i—lsi.____En+S_S2+,,,_SZp—2+S2p—1.
i=0
Since f(S)x/2pe Xy, —g(S)x/2pe X _; and {E,—h(S)/p}x € X,,, we have xe X, ®

X_,®X,. Thisimplies R"cX;@X_ DX, Q.E.D.
As an immediate consequence of Lemma 6, we have the following lemma.

Lemma 7.
There exists a positive integer j' (1< j'<n) such that

(2.70) b= —gz(pi) e, £ YO(X_)=F (% B)(X_,) and beX_,,

_ 1 2 T . . j/_ i . o
where e; =(al., a%.,..., a}.)T € R" is a unit vector such that al.=1 and a’, =0(i#j").

Proor. From Lemma 5-(ii), there exists a vector d=(dy, ds,..., d)TeX_,
such that dec YOO(X _,). Setting x=e¢; in (2.68), we have

2.71) e_i@e gé—i)ei+{E,,——;%S)}ei (1<i<n),

where each e;=(al, a%,...,a®)TeR" is a unit vector such that aj=1 and a}'=0
(m#1i). Then we have

_ n _ n f ) g(_S) . n . _@ .
@7 d=$de=3d e 3 a0 et § d{E, -,

Since de X_,, 3 d.f(S)e2pe X, and Y, di{E,—h(S)/p}e;€ X,,, We have
i=1 i=1
(273) $ 4l S)e=0 and ¥ d,{E,~"e0
i=1 2]7 i=1 p

Hence
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(2.74) d=— idi%—sieiex_l.
i=1 14
It follows from (2.74) that there exists a positive integer j* (1 < j’<n) such that
S -
(2.75) -—%ﬁb—) ey TO(X_))
because deg YO(X_,). Q.E.D.

From Lemma 7, in the case I, € Y(U(X_,), we may consider the equation

F(x, B) >
< Y(l)hf'ﬁlb

YOh,+ VO
(2.76) Gy(x,) = ( > =0
YOhy+1,

hi—1

h3

in place of the equation (2.31), where 8, is a parameter, x=(X;, X,,..., X,)T, h;=
(hi, h?,..., hHT (1<i<3) and x,=(x, hy, h,, hs, B, B;)T. Then the equation
(2.76) has a solution £,=(&, h;, h,, h;, B, 0)Te M;=W2xR2 Due to Lemma 3,
the mapping G, defined by the equality (2.76) is a mapping from M, to M. We
denote by G}(x,) the Jacobian matrix of G,(x,) with respect to x,. Due to Lemma 3,
for the solution x,, G{(x,) is also a mapping from M, to M,. For the mapping
G'(x,) we easily get the following theorem.

Theorem 5.
G(x,) is an isomorphism from M, to M, if and only if

2.77) LEYO(X_)=F(% B(X-y),

where 1, is the vector referred to in Theorem 2.
Next, in the case where there exists a vector (£, hy, h,,..., hy_y, B)T€e WExR
satisfying the assumptions (I) and (II), we may consider the equation

F(x, B) )
( YOhy—Byb

YO h,+ VO
( YMDhs+1—f,b >




An Analysis of Bifurcation Points of Nonlinear Equations Satisfying a Condition 81

k—1
(2.78) Gi(x,) = ( S 2Ci Y @R1m2D0 ]y, e 2k3) ) -0

Jj=1
YWhy 1+ l-y—Bid

k .
( j‘él k—lcj-1Y(2k+1_21)/l2j+ Y (2k—1) >
YDhy+1,

di(xy)

instead of the equation (2.52), where f;s are parameters, x=(Xy, Xa,..., X,)7,
hy=(h, h3,..., k)T (1<j<2k+1), x,=(x, hy, hy,eoos Bogi1s B, Bys Baserrs B)T and
du(x)=(ht—1, h}, hl,..., hi,,)T. Then the equation (2.78) has a solution X,=
(%, hy, By, Bags 1, B, 0)T € M= W¥+1x Rk+1 where iy € X, is a solution of the
equation (2.45) and fi,,, ; € X _ is a solution of the equation (2.49). Due to Lemma
3, the mapping G, defined by the equality (2.78) is a mapping from M, to M,. We
denote by Gj(x,) the Jacobian matrix of G,(x,) with respect to x;,. Due to Lemma 3,
G(%,) is also a mapping from M, to M,. For the mapping G;(%,) we easily get the
following theorem.

Theorem 6.
Gi(X,) is an isomorphism from M, to M, if and only if

(2.79) L1 € YO(X _)=F(%, B)(X_,),

where 1, . is the vector referred to in Theorem 4.
Next, we consider the case where

(2.80) S#E, and S™=E, for a positive integer m

and the solution ki, of the equation (2.15) belongs to X ;. In this case, it is clear that

(2.81) R'=X,®X,,
where
(2.82) X,={xeR"; K(S)x=0}

and X, ® X, denotes the direct sum of X; and X,. Here
m—1
K(S)= % Si=En+S+SZ+...+Sm—1_
i=0

Moreover we have the following lemmas.

Lemma 8.
Forxe X, and hje X, (i>1)

(2.83) (i) VPeX, (=D,
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(2.84) (i) YYpeX, for ¢peX, (j=1).
Lemma 9.
(2.85) Y=F (%, B) is a mapping from X, into X,, so F(%, B)(X))&X,,
where
(2.86) F(% BY(X))={y; y=F(%, B)z, ze X,}.
Lemma 10.
There exists a positive integer j, (1< jo<n) such that

(2.87) p= %ﬁebg?m(xl)ﬂx@, B)Y(X,) and veX,.

Proor. From Lemma 9, there exists a vector w=(w,, w,,..., w,)T € X, such
that wet YO(X,). Then

(2.88) W= i w;e; = i: K(S) e;+ Z w;L(S)e;,
=1 i=1

where L(S)=E,—K(S)/m={(m—1)E,—(S+S*+---+S" 1)}/m. Since K(S)e/me
X and L(S)e;e X, (1<i<n), we have

(2.89) 3 w,L(S)e;=0.
i=1

Hence

(2.90) w=3 w,ES) e x,.
i=1 m

Since we Y((X,), there exists a positive integer j, (1< Jjo<n) such that

(2.91) K(S)

e, & YOO(X)). Q.E.D.

In this case, the equation (2.20) has a solution £=(%, f;, B)Te Q=X, x X, xR,
and the mapping G defined by the equality (2.20) is a mapping from Q to Q due to
Lemma 8. For the solution ¥, due to Lemma 8, G'(%) is also a mapping from Q to Q.
But G'(%) is not an isomorphism from Q to Q. Hence we need to introduce another
parameter  and consider the equation which contains the equation (2.20) and some
additional equations, That is, we consider the equation
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F(x, B)y—pv
F.(x, B)h,
(2.92) J(y)=| Fu(x, B)hy+ Fy(x, B) | =0,
hl—1

h}

Where x=(x1’ x2>"'> xn)Ta hl=(h11: h%,"'a h:')T (l=1, 2) and y=(xa hl? h2’ Ba B)T'
From (2.14) the equation

F (%, B)h, + Fyx(%, B)=0,
(2.93)

hi=0 (where h,=(h3, h3,..., h)Te X,)

has only one solution /i, € X,, so the equation (2.92) has a solution p=(%, h,, h,,
B,0)TeQ,=X,xX,;xX,xR2 Obviously, the mapping J defined by the equality
(2.92) is a mapping from Q, to Q,. We denote by J'(p) the Jacobian matrix of J(y)
with respect to y. For the solution y, J'(p) has the form

ym 0 0 P -0

Y@ Y 0 14%) 0
(2.94) J()=| y@ 0 7o PG o |,

00---0 10---0  00---0 0 0

00---0 00---0 10---0 0 0

where Y® and V® (1<p<3) denote the values of Y@ and V® at x=%, h;=h;
(i=1, 2) and B=B, respectively. Due to Lemma 8, J'(p) is also a mapping from
Q1 t0 Q.

Now, concerning the mapping J'(p), we discuss whether J'(y) is an isomorphism
from Q; to Q, or not. To do this, for (u, u,, us, 4;, ,)T€Q, we consider the
equation

?(1)'“1 +A,1 17(1) —)»2U=0,
(2.95) POu, + ¥ Ou, + 4, 7@ =0, ui=0,
?(3)u1+?’(1)u3+1117(3)=0, u%:o

where u;=(ul, u?,...,u)T (1<i<3). Since VW =Fy&, B)e Y()(X,) and ve&
YW(X,), we have 1,=0 from the first of the equation (2.95), so u; =A,h,+ch,,
where ¢ is an arbitrary constant. Substituting u, =1k, 4+ ch, into both the second
and the third of (2.95), we have
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(2.96) YOu,+ 2.0, +cfi,=0, u3=0,
(2.97) YOus+ 203+ cf; =0, ul=0,
where

f=YDh,+ VO =Y,

(2.98) f,=Y@h,,
fy= T Oh,+ P,
Then, for the mapping J'(y), we have the following theorems from (2.96) and (2.97).

Theorem 7.
If i, & W”(Xl) and f[ie W”(Xl), then J'(p) is an isomorphism from Q, to Q.

PrROOF. Since 2, & Y(X,), we have 4, =0 from (2.96). Hence the equation
(2.97) becomes

(2.99) YWy, +cf, =0, ul=0.

Since fi; & Y()(X,), we have ¢=0 from (2.99). Then u;=0, and the equation (2.96)
becomes

(2.100) TWu, =0, ul=0,

from which follows u,=0. Moreover, u;=4,h,+ch,;=0. Thus the equation (2.95)
has a zero solution only. This implies that J'(p) is an isomorphism from Q, to

Q. Q.E.D.

Theorem 8.
If i, e YO(X ) and fi,¢& YO(X,), then J'(§) is an isomorphism from Q4 to Q,
if and only if

(2.101) flaeg YOO(X,).

PROOF. Since fi,& YU)(X,), we have ¢=0 from (2.96). Then the equation
(2.97) becomes

(2.102) YOuy+2,8;=0, ul=0.

This shows that if iy Y(1)(X ), then we have A, =0, and so u3=0. Since A, =c=0,
we have u, =0 and the equation (2.96) becomes

(2.103) YWy, =0, ul=0,

from which follows u,=0. Thus the equation (2.95) has a zero solution only.
This implies that J'(p) is an isomorphism from Q, to Q,. Conversely, if J'(y) is an
isomorphism from Q, to Q,, then the equation (2.95) has a zero solution only.
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It follows from (2.102) that ;& Y(O(X ). Q.E.D.

Theorem 9.
If f, & f’“’(Xl) and i, & ?U)(Xl), then J'(p)is an isomorphism from Q, to Q,
if and only if

(2.104) SEYD(X)),
where
(2.105) S=fs+Ah; (eX,).

Here #) is the n-component of the solution ({, )€ X, x R of the equation
[ Fx(je, 3)C+ﬁ1 +}1/j2=09
{1=0  (where {=((y, (..., ()T € XY).

PROOF. Since 1+dim Y)(X,)=dim X, and f,, fi, € X, the equation (2.106)
certainly has only one solution ({, f) € X; x R, where dim X denotes the dimension
of a linear space X. Then the solution (u,, ¢) of the equation (2.96) can be written
in the form

(2.106)

(2.107) u,=2,{ and c=A1..
Then the equation (2.97) becomes
(2.108) YOu,+A,(As+Af)=YDu;+1,6=0, u}=0.

Since fi,, fi;€ X, due to Lemma 8, we have de X,. Therefore, if ¢ Y((X)),
then we have A, =0 from (2.108), and so u;=0. Then we also have u,=0 and ¢=0
from (2.107). Since A, =¢=0, we have u; =A.fi,+ch,=0. Thus the equation (2.95)
has a zero solution only. This implies that J'(y) is an isomorphism from Q, to Q;.
Conversely, if J'(p) is an isomorphism from Q, to @, then the equation (2.95) has a
zero solution only. Hence, by (2.108), we have 6¢& Y()(X ). Q.E.D.

Remark 1.

Theorems 7-9 are essentially the same as Theorems 4-6 stated in the paper [7].
In the case where i, € Y()(X,) and i, € Y()(X,), J'() is not an isomorphism from
Q, to Q,. Hence we need to introduce another parameter and consider another
equation which contains the equation (2.92).

Remark 2.
In the case /i, & Y((X,), when we consider the equation
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F(x, B)— By,
Fyu(x, B)h,
(2.109) W(y)=| F.x, BYh,+ Fg(x, B) | =0
hi-1

h;

instead of the equation (2.92), we need not look for the vector v=K(S)e; /m satisfying
the condition (2.87), where u; =Y®h,+ V@ ={F, (x, B)h,+ Fp(x, B)}h,. Simi-
larly, in the case f,& Y()(X,), we may consider the equation

F(X, B) _ﬁ:uZ

Fx(x9 B)hl
(2.110) W(y)=| F.x, B)h, + Fy(x, B) | =0
h—1

h;

instead of the equation (2.92), where u,=Y®h,=F, (x, B)h;h;. Then we have
results similar to Theorems 7-9.

§3. The Case £€ X_,

As is mentioned in §1, in addition to the conditions (1.3) and (1.4), we assume
that for xe X_, and w;e X_, (i>1)

F,(—x, B)= —F,(x, B), %fcm(—x, B)= %’;m (x, B)
3.1) | and

£,
axp (_xs B)WIWZ'“Wp— 1 =(_ l)p—l Ox? (X, B)WIWZ'“WP—I
(m>0, p>2),
where Fo(x, B)=F(x, B) and F(x, B)=0'F(x, B)/0B! (i>1). From (2.9) and (3.1)
we have the following lemma.

Lemma 11. ,
Forx,yeX_,,weX_,(i>1)and peX,

(.2 (1) fulx, BpeX,, fu(x,BeX_,,
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. Sulx, B)wywyew,_ e X,y
(3.3) (i) (p=2),
So(x, Bywywy-w,_eX_
where fi(x, B)=0/F,(x, B)/ox (j>1).

Proor. (i) S7Uf(x, B)p=S"'f1(S(—x), B)S¢p=f,(—x, B)p=f,(x, B)o. |
Hence f1(x, B)¢p € X;. On the other hand,

ST Lx, B =S L(S(=x), B)(—SY)= —SIf4(S(~x), BYSY
= —f1(=x, B= —fi(x, BY.
Hence f1(x, By e X _,. '
(i) SUP(x, B)w,wyw,_1¢
= S712(S(—x), B)(—Swy)(—Swy)-(—Sw,_,)(S$)
=(=1)P"1S7f2(S(—x), B)Sw Swy-+-Sw,_ S¢
= (=P (=X, BWy Wy, 1
= (= 1P (= 1P f5(x, Bywywyeew,— 1
= 12(x, BWywyw,- 1.
Hence fi(x, B)w;w,---w,_1¢ € X;. On the other hand,
ST P(x, Byw wy-w,_ ¥
= STUE(S(=x), B)(—=Sw,) (= Sw,)-+(—Sw,_ ) (—SP)
=(—1)PS7If2(S(—x), B)Sw Sw,---Sw,_ Sy
— (=P fE( =%, Bwywar W, s
= (= D7 (= P 2%, Bywywarwy— g
= —f2(%, Bywywyeew,_ .
Hence f2(x, B)wlwz---wp_lt//eX_l. ‘ Q.E.D.

From (2.1), (2.2) and Lemma 11, we have the following lemma similar
to Lemma 3.

Lemma 12.
ForxeX_,and hy;_,€X, hy;e X_, (i>1)

(3.4) (i) Vv@DeX_,, VeheX, (j=1),
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Y@i-LDpe X, for ¢$eX,
(3.5) (i) ‘ _ (j=1).
Y@I~DyeX_,, YChyjeX, for YeX_,

ProoF. We prove that Y@y e X, for ye X_;. From the definition (2.1)
Y@y can be written in the form of a linear combination of vectors (fZ(x, B)r;---
rp—1¥)’s. In each term ff(x, B)r;---r,_ ¢y which Y@y contains, one of vectors
r;’s belongs to X, and the remaining (p—2) vectors all belong to X_,. Since
Yy eX_y, we have fi(x, B)r;---r,_; € X; due to Lemma 11. This implies Y2y e
X,. The proofs for the other cases are similar. Thus we leave them to the reader.

Q.E.D.

Analogously to Lemma 4, we have the following lemma.

Lemma 13.
For the bifurcation point (%, B)e X_, xR the only one solution h, of
the equation (2.15) belongs to either X, or X _;.

First we consider the case i; € X;. Then we readily get the following lemma
from Lemma 12.

Lemma 14.

(3.6) (i) FJ%, B) is an isomorphism from X _, to X _,.

(3.7) (ii) F.X, B) is a mapping from X, into X, so F(%, B\X)=X,,
where
(38) Fx()%a E)(X1)={y: y=Fx(5ea B)ZaZEXI}'

In this case, when we consider the equation (2.20) in §2, the mapping G defined
by the equality (2.20) is a mapping from L=X_, X X; x R to L due to Lemma 12.
As noted above, the equation (2.20) has a solution £=(&, k,, B)T e L and for the
solution X, G'(%) is also a mapping from L to L due to Lemma 12. For the mapping
G'(x) we have the following theorem similar to Theorem 1.

Theorem 10.
Under the assumption (3.1), G'(x) is an isomorphism from L to L if and only if

(3.9 LeEYO(X)=F (% B)(X)),
where
(3.10) 1L, =Y@h,+ VO ={(F,_(%, B)h,+Fy (%, B)}h,.

Here hye X _, is a solution of the equation
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(3.11) F. (&, B)h,+Fy(%, B)=0  (h,eX_))

and Y® and V® (p=1, 2) denote the values of Y® and VP at x=2%, h,=h, and
B=B, respectively.
When 1, e Y(U(X), the equation
YO, 41, =F (%, B)hs+1,=0,

(3.12)
hi=0 (where hy=(h}, h3,..., )T e X,)

has only one solution fi; € X,. Moreover, since

(3.13) Y®h,+7V®eXx_,

due to Lemma 12, the equation

(3.14) YOh, + YO, +P®=0  (h,eX_))

has only one solution fi,e X _,, where Y® and V' denote the values of Y and V)
at x=2%, h,=h; (i=1, 2) and B=B, respectively. Hence we consider the equation
(2.31). The mapping H, defined by the equality (2.31) is a mapping from L, =Z%x
X_,xR?to L, due to Lemma 12, where Z=X_, x X, and Z*=ZxZ. As noted
above, the equation (2.31) has a solution %, =(%, hy, hy, hs, by, B,0)T€L,. For
the solution z,, H|(%,) is also a mapping from L, to L, due to Lemma12. For
the mapping H}(Z,) we have the following theorem.

Theorem 11.
Under the assumption (3.1), Hi(%,) is an isomorphism from L, to L, if and

only if

(3-15) 7255 ?(1)(X1)=Fx(5éa B) (Xl) ’
where
(3.16) 1, =29+ YOh, = TY®h, + TRy + PO, + V@,

Here Y® and V@ (1<p<5) denote the values of Y® and V¥ at x=£%, h,=h,
(1<i<4) and B=B, respectively.

Next, we consider a more general case which contains the case 1,e YOO(X)).
Assume that there exists a vector (£, fig, fa,..., Rax—2s Rze—1, B)T € Z¥x R such that
the following two assumptions (1) and (2) are satisfied (k>2), where (£, B) satisfies
both the equation (1.1) and the condition (1.2):

(1) 2’(-1 =(.£, ﬁl’ ﬁz,..., EZk—l? EZk’ B, 6)T € Lk—l =Zk X X—l X Rk iS a So-
lution of the equation (2.44), where Z* denotes the direct product set
ZxZx--xZ,and h,. e X_, is a solution of the equation

S —_
k times
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N k—1 ~ o~ ~
(3.17) YOh, + Y k_leﬁlY(z"+1‘21)h2j+ Y k-1)=( (theX_l).
j=t

Here Y@ and V® (1< p<2k—1) denote the values of Y and V®
at x=2%, h;=h; (1<i<2k—2) and B=B, respectively.
(3.18) () lLe¥YO(X\)=F(% B)(X,),
where 1, denotes the value of I, at x=%, h;=h, (1<i<?2k) and B=B,
that is,
k

(3.19) 7k= Z ij_l?(2k+3_2‘i)i\12j_<1

Jj=1

: O 2k+2-2/)f s Dek+1-2) 2k
= z] k__lcj-_lY( J)th+ Zl k—le—IY( J)h2j+1+ V( ).

j= Jj=

Here Y@ and V@ (q=2k, 2k+1) denote the values of Y@ and V@
at x=%, h;=h; (1<i<2k) and B=B, respectively.

Due to Lemma 12, both H,_; and H}_((%,_,) are mappings from L,_, to
Ly_y. But Hj_y(%,_;) is not an isomorphism from L,_, to L,_, because
lie YO(X ). In the case |, e Y(X,), the equation

YO hyy +1,=0,
(3.20) ,
hiks1=0 (where hyy oy =(hiy 4, iy, s h3)TeXy)

has only one solution f,,, € X 1~ Moreover the equation
- k o o ~
(21 T Ohass+ 3 Oy y PRS2 4 PEED=0 (e X))
has only one solution h,,,,€ X_, because
k &5 ™ A
(3.22) Jz,l kCio g YORH322D) L P e x|

due to Lemma 12. Therefore, to obtain the bifurcation point (%, B)e X -1 X R with
high accuracy, we consider the equation (2.52). As noted above, the equation
(2.52) has a solution £, =(&, hy, Ay, Ay gy gz B, 0)T € L, =241 x X _, x R¥*1,
Both H and H,(%,) are mappings from L, to L, due to Lemma 12. For the mapping
H(z,) we have the following theorem.

Theorem 12.
Under the assumption (3.1), Hi(%,) is an isomorphism from L, to L, if and
only if

(323) b EYOX)=F & B) (X)),



An Analysis of Bifurcation Points of Nonlinear Equations Satisfying a Condition 91
where 1, | denotes the value of I, ., at x=2%, h,=h, (1<i<2k+2) and B=B.

Next, in particular, we consider the case where S is a matrix satisfying the
condition (2.64). From Lemma 14—(ii) we have the following lemma.

Lemma 18.
There exists a positive integer ky (1 <k, <n) such that

(3.24) b =i%)eko$ POX)=F(% B)(X,) and beX,.
In this case, when 1, € Y (X,), we may consider the equation
F(x, B)

P

YOh, + VO
(3.25) Ay (x,) = < ) =0
YOhy +1,

hi—1

hs

in place of the equation (2.31), where B, is a parameter, x=(x{, Xp,..., X,)T, h;=
(hi, h2,..., )T (1<i<3) and x,=(x, hy, h,, h3, B, B;)T. Obviously, the equation
(3.25) has a solution £, =&, i, h,, 3, B, 0)Te U;=Z2%x R?. Due to Lemma 12,
the mapping A, defined by the equality (3.25) is a mapping from U, to U;. We
denote by A/(x,) the Jacobian matrix of A4,(x,) with respect to x,. For the solution
%, Ai(£,) is also a mapping from U, to U, due to Lemma 12. For the mapping
Aj(£,) we easily get the following theorem.

Theorem 13.
Under the assumption (3.1), A{(x;) is an isomorphism from U, to U, if and
only if

(3.26) 1L,& YO(X )=F(*, B)(X,),

where 1, is the vector referred to in Theorem 11.
Next, in the case where there exists a vector (%, hy, hy,..., hyr—y, B)T€Z*¥Xx R
satisfying the assumptions (1) and (2), we may consider the equation
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F(x, B)
[ von-1 )
YOhy + VO
( YOhy+1; — Brb >
(3.27) A (x)= 5 e Y(Zk_llzj)hzﬁ I
< - YOhy +1y—Bib )

k

( Y G YERHI2D, Y 2k=D) )
=1
YOhypeq+1

Gi(xy)

instead of the equation (2.52), where B;’s are parameters, x=(x,, x,,..., x,)7, h;j=
(h}, h3,.., k)T (1<j<2k+1), x,=(x, hy, hyyeory hoyyry, B, By, Bayen., BT and
du(x)=(hi—1, b}, hi,..., h},.;)T. Then the equation (3.27) has a solution #,=
(%, by, hay.oy By q, B, 0)T € U, =Z**1 x R**1, where fh,, € X_, is a solution of the
equation (3.17) and h,, ., € X, is a solution of the equation (3.20). Due to Lemma
12, the mapping A, defined by the equality (3.27) is a mapping from U, to U,. We
denote by A;(x,) the Jacobian matrix of 4,(x,) with respect to x,. For the solution
X, A(%,) is also a mapping from U, to U, due to Lemma 12. For the mapping
A (x;) we easily have the following theorem.

Theorem 14.
Under the assumption (3.1), Ai(x,) is an isomorphism from U, to U, if and
only if

(3-28) ?k+1$ ?(])(X1)=Fx(£’ B) (Xl) s

where 1, | is the vector referred to in Theorem 12.

Next, we consider the case where S is a matrix satisfying the condition (2.64)
and the solution &, of the equation (2.15) belongs to X —1- In this case, we have
the following lemmas.

Lemma 16.
For xeX_{and he X_; (i>1)

(329 (1) VvWex_, (jz1),
(3.30) (i) YYUyeX_; for yeX_, (j=>1).
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Lemma 17.
(3.31) YW =F (%, B) is a mapping from X _, into X _4, so
?(1)(X— D=F(X, B) X_D&EX_1,

where
(3.32) YO(X_)=F, &, BY(X_)={y; y=F (% B)z, ze X_,}.
Lemma 18.

There exists a positive integer iy (1 <iy<n) such that
(3.33) F= —%%)eio$ POX_)=F.(% B)(X_,) and HeX_,.

In this case, as noted above, the equation (2.20) certainly has a solution X =
(%, h,, BTeC=X_,;xX_,; xR. Both G and G'(x) are mappings from C to C due
to Lemma 16. But G'(%) is not an isomorphism from C to C. Hence we need to
introduce another parameter  and consider the following equation

F(x, B)—pB?p
F.(x, B)h,
(3.34) P(y)=| F.(x, B)h,+ Fp(x, B) | =0,
hi—1
h}
where x=(x;, X3,..., X,)T, hy=(h%, h?,..., k)T (i=1,2) and y=(x, hy, hy, B, p)T.

Since the equation

Fx(x9 B)h’2+FB(x’ B)=0’
(3.35) [

hi=0  (where hy=(h}, h3,..., )T e X_,)

has only one solution h,eX_, due to (1.2) (or (2.14)), the equation (3.34) has a
solution $=(&, hy, h,, B, )TeC;=X_;xX_;xX_,xR% Due to Lemma 16,
the mapping P defined by the equality (3.34) is a mapping from C, to C;. We denote

by P'(p) the Jacobian matrix of P(y) with respect to y. For the solution y, P'(»)
has the form
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Yo 0 0 pa —3
y@ Yy 0 4% 0
(3.36) P=] o 0 V4] P 0l
00---0 10---0 00---0 0 0
00---0 00---0 10---0 0 0

where Y@ and V@ (1< g < 3) denote the values of Y@ and V@ at x=%, h,=h,(i=1,
2) and B=B, respectively. Due to Lemma 16, P'( ») is a mapping from C, to C,.

Now let us discuss whether the mapping P'(y) is an isomorphism from C, to
C, or not. To do this, for (uy, u,, uz, A, 1,)Te C; we consider the following
equation:

YOu, +2, 70— 2,5=0,
3.37) YOu, + ¥Ou,+ 4, P®=0, ul=0,
POuy+¥Ouy + 2,7 =0, uj=0,

where  u;=(u}, u?,..., u)T (1<i<3). Since VDO =Fy&, B)eYWO(X_,) and
b Y(X _;), we have 1, =0 from the first of (3.37), so u, =1 h,+ch,, where c is
an arbitrary constant. Substituting u,; =2,h,+ch, into both the second and the
third of (3.37), we have -

(3.38) Y(l)uz‘i‘}vlﬁl +Cﬁ2=0, u%=0,
(3.39) YOu,+2p3+cp =0, ul=0,
where

Pr=YPh,4+ VO =Y®),

(3.40) pr=YPh,

Then, for the mapping P'(y), we have the following theorems from (3.38) and (3.39).

Theorem 15.
If p;&EYONX_)) and p,e YO(X_,), then P'(p) is an isomorphism from C,
tO Cl‘ ’ .

Theorem 16.
Ifp,e¥O(X_)) and p,e& YOU(X_,), then P($) is an isomorphism from C,
to Cy if and only if

(3.41) Pt TOX_)).
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Theorem 17.
If p,&YO(X_,) and p,&YI(X_,), then P'(P) is an isomorphism from C,
to C, if and only if

(3.42) EYID(X_y),
where
(3.43) 6=ps+9p, (eX_y).

Here ¥ is the v-component of the solution (£, 9)e X _; x R of the equation
F %, B)+py+vp,=0,
£1=0 (where5=(él> 629"'3 én)TEX—l)'

(3.44)

Remark 3.
In the case where

(3.45) S#E, and S?1*'=—E, for a positive integer g,

it is clear that

(3.46) R'=X_,®X,,

where

(3.47) Xo={x€eR"; p(S)x=0}.

Here 3(S)= S (— 1)iSi=E,—S+S2— ... —S2a-1 4524 Then there exists a positive
i=0

integer m, (1 <mg<n) such that

(3.48)  a= 22_(5—)1 enedt TO(X_)=F, (%, B)(X_,) and aeX_,.

Therefore, in this case, we consider the equation
F(xa B) - ﬁa
Fx (x; B)hl

(3.49) D(p)=| F.(x, BYhy+ Fy(x, B) | =0

Bl—1
h}

instead of the equation (3.34). Then the equation (3.49) has a solution p=(Z&, hy,
h,, B,0)TeC,. We denote by D'(p) the Jacobian matrix of D(y) with respect to y.
Both D and D’(p) are mappings from C, to C; due to Lemma 16, For the mapping
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D’(p) we have results similar to Theorems 15-17.

Remark 4. )
In the case p;& Y (X _,), when we consider the equation
F(x, B) = fp,
Fy(x, B)h,
(3.50) U(y)=| F.(x, BYh,+ Fg(x, B) | =0
hl—1
hj

instead of the equation (3.34), we need not look for the vector 5= —g(S)e; /2p
satisfying the condition (3.33), where p;=Y®h,+ V@,  Similarly, in the case
pr¢t YA(X _,), we may consider the equation

F(x, B)—Bp,
F(x, B)hy
(3.51) O(y)=| F.(x, B)hy+ Fy(x, B) | =0
hi—1

h;

instead of the equation (3.34), where p,=Y@®h,. Then we have results similar to
Theorems 15-17.

§4. An Example

To illustrate our theory and method, we present an example.

Example ([3]).
We consider the equation

X+ B(x3—x,+x,x3) >
=0,

4.1) F(x, B) =(
10x, — B(x,+2x2x,+x3) ,

where x=(x;, x,)" and B is a parameter. The mapping F defined by the equality
(4.1) satisfies the condition

(4.2) F(Sx, By=SF(x, B) for xeR? BeR

where
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-1 0
@3 s:( >
0 1/.

1 0

It is clear that S*=E, =< > From (4.3) we have
1

0
4.4 X, ={xeR?; Sx=x}=span {(0, 1)T}
and
4.5) X_,;={xeR?; Sx=—x}=span {(1, 0)T},

where span {«} (x€ R?) denotes a linear space spanned by a vector a.

The equation (4.1) has some bifurcation points. A point (X, BT =(%,, %,, B)T=
(0, 9/10, 100/19)T € X, x R is one of them. In fact, for (%, B)T=(0, 9/10, 100/19)T
we have

0 0
(4.6) rank F (&, B)=rank 90 | =1

0 —

19

and

0 0 0
4.7 rank (F (%, B), Fy(%, B))=rank 90 171 | = 1.

19 100
By (4.6) the equation
F (%, B)h, =0,

(4.8)

hi—1=0 (where h, =(h}, h$H)T)

has only one solution i, =(1, 0)T, so h; € X_;. Then, as stated in §2, we consider
the equation

F(x, B)
4.9) G(x)=| Fy(x, B)h; |=0,
ht—1

where x=(x, x,)T, hy=(h}, h})T and x=(x, h,, B)T. As noted above, the equation
(4.9) certainly has a solution X=(X, hy, B)T=(0, 9/10, 1, 0, 100/19)T e M =X x
X _,xR. We denote by G'(x) the Jacobian matrix of G(x) with respect to x. Both
G and G'(%) are mappings from M to M. For the solution X we have
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(@100 h=Fo® B+ Fos, By =( -3 O)T (eX_y),

where h, € X, is a solution of the equation
(4.11) F %, B)hy+Fy(%, B)=0  (h,eX,).

In fact, h,=(0, —361/1000)7. Since F (&, B(X_,)={0}, we have I,¢&
F (%, BY(X_,). Hence G'(%) is an isomorphism from M to M due to Theorem 1
in §2.

On the other hand, a point (X, B)T=(%,, X,, B)T=(/3/2,0, Te X_, xR is
also a bifurcation point of the equation (4.1). 1In fact, for (X, B)T:(\/§ /2,0, 4)T
we have

6 0
(4.12) rank F (X, B)=rank ( ) =
0 0
and
6 0 —Y3
(4.13) rank (F (X, B), Fg(X, B))=rank 8 |=1.
0 0 0

Moreover the mapping F satisfies the condition (3.1) in §3. By (4.12) the equation

Fx(')_ca B)hl =09
(4.14)
h?—1=0

has only one solution h,=(0, 1)7, so h,eX,. Then, in this case, we consider
the equation

F(x, B)
(4.15) H(x)=| F.x, B)h, | =0.
h—1

As noted above, the equation (4.15) certainly has a solution x=(%, h,, B)T=
(/3/2,0,0,1,49TeL=X xX;xR. We denote by H'(x) the Jacobian matrix
of H(x) with respect to x. Then both H and H'(X) are mappings from L to L. For
the solution x we have

(4.16) Iy =F,(X, B)h1h,+Fp(X, B)h,=(0, —=3)T  (eX)),
where h, e X _, is a solution of the equation

4.17) F (X, B)h,+ Fy(X, B)=0 (h,eX_y).
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In fact, h,=(/3/48,0)T. Since F (X, B)(X;)={0}, we have I,&F (X, B)(X,).
Hence H'(X) is an isomorphism from L to L due to Theorem 10 in §3.
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