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Introduction

The purpose of this paper is that we will realize the six kinds of Fourier hyper-
functions and vector valued Fourier hyperfunctions which were defined in Ito [11]
as “boundary values’’ of holomorphic functions of corresponding types or that we
will reconstruct the Sato-Kawai’s theory of hyperfunctions. We will prove vanishing
theorems and duality theorems of (relative) cohomology groups which are necessary
for that purpose and will realize the above goal as their consequences.

We will prove Theorem B due to Oka [27] and Cartan [1], here, for several
kinds of sheaves of germs of slowly increasing or rapidly decreasing holomorphic
functions by the way of Kawai [18], [19] and Hérmander [3] for scalar valued cases
and by the tensor product method for vector valued cases.

The Dolbeault-Grothendieck resolutions with coefficients in sheaves of germs of
slowly increasing or rapidly decreasing locally square integrable functions and in
sheaves of germs of slowly increasing or rapidly decreasing C* functions play
important roles in this paper. In several cases, by using those resolutions we can
prove some results for the smoothness of solutions of 0 equation without using
Sobolev’s lemma.

Malgrange’s Theorems are modifications of Malgrange [23]. Serre’s duality
theorems are those of Serre [35]. Martineau-Harvey’s Theorems are those of
Martineau [24] and Harvey [2]. Sato’s Theorems are modifications of Sato [32],
[33].

For the outline of this paper, see “Contents”’. But Chapters 5 to 12 will be
published in the second and third parts of this paper which were submitted to the
following volumes of this Journal.
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Chapter 1. Cases of sheaves 0, <7, ¢ and &/

1.1. The Oka-Cartan-Kawai Theorem B

In this section we will prove the Oka-Cartan-Kawai Theorem B for the sheaves
0 and 0.

We denote by D" the radial compactification of R” in the sense of Kawai (see
Kawai [19], Definition 1.1.1.). We denote by C" the space D" x J—1R" endowed
with the direct product topology.

Definition 1.1.1 (The sheaf ¢ of germs of slowly increasing holomorphic functions).
We define 0 to be the sheafification of the presheaf {@(Q); Qc C open}, where the
section module O(Q) on an open set Q in C" is the space of all holomorphic functions
f(z) on Qn C" such that, for any positive number ¢ and for any compact set K in Q,
the estimate sup {|f(z)e(—elz|)}; ze Kn C"} <o holds. Here e(z) denotes the
function e* =exp (z) and we put |z|=(|z,|2+--- +]|z,[2)!/2.

Definition 1.1.2 (The sheaf ¢ of germs of rapidly decreasing holomorphic func-
tions). We define ¢ to be the sheafification of the presheaf {¢(Q); Q<= C” open},
where the section module 0(Q) on an open set Q in C" is the space of all holomorphic
Junctions f(z) on Q n C" such that, for any compact set K in Q, there exists some
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positive constant ¢ so that the estimate sup {|f(2)e(d|z|)|; ze K n C"} < oo holds.

Definition 1.1.3.  An open set V in C" is said to be an é-pseudoconvex open
set if it satisfies the conditions:

(1) sup{|/lmz|; zeVn C"} <oo, where we put Imz=(Im z,,...,Imz,) and
|Im z| denotes the Euclidean norm of Im z.

(2) There exists a C*-plurisubharmonic function ¢(z) on Vn C" having the
following two properties:

(i) The closure of V,={zeVn C"; (z)<c} in C" is a compact subset of V
for any real c.

(i1) @(z) is bounded on L n C" for any compact subset L of V.

Then we can prove the Oka-Cartan-Kawai Theorem B by the same method as
that of Kawai [19] with a slight modification.

Theorem 1.1.4 (The Oka-Cartan-Kawai Theorem B). For any 0-pseudoconvex
open set Vin C*, we have H¥(V, 0")=0, (p=0, s=>1). Here we denote by Fru
the sheaf of germs of differential forms of type (p, q) with coefficients in a sheaf F
and FpP=Fpr0,

Proof. Since Vis paracompact, H5(V, 0®) coincides with the Cech cohomology
group. So we have only to prove lim H5(2l, @?)=0, where U={U;};5 is a locally
finite open covering of V' so that Vj=uUj n C" is pseudoconvex. We can choose such
a covering of ¥ because V is an @-pseudoconvex open set.

Now we define CS(Z}gfq)({Vj})) to be the set of all cochains c={c;; J={j,,
J1s--+5 js) € NST1} of forms of type (p, q) satisfying the two conditions.

(i) Oc;,=0in V=V, nV; n---nV,.

(i) For any positive ¢ and any finite subset M of Ns*!, the estimate

s [ lele—slzdr <o

JeM

holds, where dA is the Lebesgue measure on C" and ||z|| denotes the modification of

n
2. |z;| so as to become C* and convex.
j=1

Now we will prove the following

Lemma 1.1.5. Ifce CS(Z}‘;,fq)({Vj})) satisfies the conditions éc=0, then we can
find some c’eCS'l(Z{gfq)({Vj})) such that 6c'=c. Here & means the coboundary

operator.

If this Lemma is proved, the theorem will follow from this Lemma as the special
case where g =0 because we can use Cauchy’s integral formula to change the L,-norm
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to the sup-norm for holomorphic functions.

Proof of Lemma 1.1.5. We denote by {x;} the partition of unity subordinate
to {V;} and define b,= 3 x;c;; for I'e N*. Since dc=0, we have éb=c. So 60b=0

because dc=0. Since :V_, x;=1and x;20, we have
[, bile(=elizDdis s | wleqle(—clzdz

for any positive number ¢ by virtue of Cauchy-Schwarz’s inequality.

By the assumption of the existence of C* plurisubharmonic function ¢(z) in
Definition 1.1.3, we can find some plurisubharmonic function y(z) on W=¥Vn C"
which satisfies the following two conditions;

(1) X 10x1se¥(2)),

(2) sup{Y(z); ze Kn C"} < Cy for any K€ W.

Thus it follows from the condition on ¢ that

5 {100 Pe(—slzl —p @)z <oo

IeN

for any positive number ¢ and any finite subset N of Ns.

Now we consider the case s=1. By the fact that 8(0b)=0, db defines a global
section f on W=V n C". Then, by Hérmander [4], Theorem 4.4.2, p. 94, we can
prove the existence of u such that ou=f and the estimate

S lul2e(— gz (1 + 2152 dA< o
Kncn

holds for any positive number ¢ and any K € V.
If we define ¢;=b;,—u|V;, then dc;=0 and dc'=db=c. Clearly ¢'eCs!.

(Zigey({V;))-

Now we go on to the case s>1. In this case we use the induction on s. By
the induction hypotheses there exists b’ e Cs~2(Z1%,,1,({V;})) such that &6b’=0b.
By virtue of Hormander [4], Theorem 4.4.2, p. 94, we can also find b” ={b}} yens-1
such that by =0db} and the estimate
5 Ibale(=ellzl —y(@) (1 +|247) 22 < o0

HeL

holds for any positive number ¢ and any finite subset L of Ns~!. Therefore ¢'=
b—96b” satisfies all the required conditions. Q.E.D.

This completes the proof of the theorem. Q.E.D.

Remark. This method of proof is essentially due to Hérmander [3], §2.4.
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Now we will prove the Malgrange Theorem for the sheaf <7 of germs of slowly
increasing real analytic functions. Here we define the sheaf 7 to be the restriction
of 0 to D": o =@|D". Then we have the following

Theorem 1.1.6 (Malgrange). For an arbitrary set Q in D", we have
Hs(Q, &7)=0, (p=0, s=1).

Proof. We know, by virtue of Theorem 2.1.6 of Kawai [19], that Q has a fun-
damental system {Q} of O-pseudoconvex open neighborhoods. Then, it follows
from the Oka-Cartan-Kawai Theorem B (cf. Theorem 1.1.4) and Theorem B42 of
Schapira [34], p. 38 that, for p=0 and s>0, we have

H3(Q, o?)= _lim H(8, or) =0.
Qnpn=Q
Q.E.D.

Next we will prove the Oka-Cartan-Kawai Theorem B for the sheaf ¢. This
can be proved by the same method as Theorem 1.1.4. Thus we have the following

Theorem 1.1.7 (The Oka-Cartan-Kawai Theorem B). For any 0-pseudoconvex
open set Vin C", we have H5(V, ¢?)=0 for p=0 and s>1.

Proof. Since Vis paracompact, H5(V, @) coincides with the Cech cohomology
group. So we have only to prove lim H5U, ¢?)=0, where W={U,};> is a locally
finite open covering of V so that Vj=liJ ;N C"is pseudoconvex. We can choose such
a covering of V because Vis an &-pseudoconvex open set.

Here we use the notations in the proof of Theorem 1.1.4.

For any cocycle d ={d,} representing an element in HS(U, ¢?), we can define an
element c¢={c,} in C(Z!s%,({V;})) such as 6c=0 by putting c,=d, - h(z), h(z)=
f[ cosh (ez;) for some positive ¢, where 6 denotes the coboundary operator. Then
év_elcan find some ¢’ € CS‘I(Z}ng)({Vj})) such that éc'=c. If we put dy=c}- (h(z))7!,
then d’'={d;} is a cochain with values in ¢ such that 6d’=d. Thus the element in
Hs(U, ¢p) represented by d is zero. Since a class [d] with a representative d is an
arbitraty element in HS(U, ¢7), we have HSQU, ¢?)=0. This completes the proof.

Q.E.D.

At last we will prove the Malgrange theorem for the sheaf .oz of germs of rapidly
decreasing real analytic functions. Here we define the sheaf .7 to be the restriction
of ¢ to D": &z =0 | D". Then we have the following

Theorem 1.1.8 (Malgrange). For an arbitrary set Q in D", we have H%(L,
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&P)=0 for p=0 and s=1.

Proof. We can prove this by the method similar to that of Theorem 1.1.6.
Q.E.D.

1.2. The Ddlbeault—Grothendieck resolutions of ¢ and ¢

In this section we will recall the soft resolution of ¢ and prove some of its
consequences and the similar results for the sheaf ¢.

At first we will recall the definition of the sheaf & of germs of slowly increasing
C=-functions over C” following Ito [10] and Junker [14].

Definition 1.2.1. We define the sheaf & to be the sheafification of the presheaf
{(8(Q); Qc C" open}, where, for an open set Q in C", the module &(Q) is defined
as follows:

éz(Q)={fe &(Q n C™); for any positive € and any compact set K in § and
any ae N2, the estimate sup {|f((z)|e(—¢|z|); ze K n C"} <o holds}.

Here N=NU {0} and &(Qn C") is the module of C®-functions on the open set
QnC"in C".

Then it is easy to see that & is a soft nuclear Fréchet sheaf. Then we define
the sheaf &7+ to be the sheaf of germs of differential forms of type (p, q) with
coefficients in & and denote the Cauchy-Riemann operator by 6. We also define the
sheaf @7+4 in the similar way and denote ¢?=(@?°. Then we have the following

Theorem 1.2.2 (The Dolbeault-Grothendieck resolution). The sequence of
sheaves over C"

0—s P —5 P02, gp1 2, ... 2, & — 0
is exact.

Proof. See Ito [10], Corollary to Theorem 3.1. See also Junker [15].
Q.E.D.

Corollary 1. For an open set Q in C*, we have the following isomorphism:
Hi(Q, 67)={fe &r4(Q); 0f=0}/{0g; g€ 747 1(Q)}, (p20, ¢21).

Proof. It follows from Theorem 1.2.2 and Komatsu [21], Theorems II.2.9
and I1.2.19. Q.E.D.

Corollary 2. Let Q be an (E-pseudoconvex open set. Then the equation du=f
has a solution ue &P 4Q) for every fe &2-971(Q) such that df=0. Here p, q are
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nonnegative integers.

Proof. It follows from Theorem 1.1.4 and Corollary 1 to Theorem 1.2.2.
Q.E.D.

Now we will define the sheaf & of germs of rapidly decreasing C*-functions
over C".

Definition 1.2.3. We define the sheaf & to be the sheafification of the presheaf
{£(Q); Qc C" open}, where the section module £(Q) on an open set Q in Cr is the
space of all C®-functions on Q n C" such that, for any compact set K in Q and any
ae N2, there exists some positive constant d so that the estimate

sup {|f(2)le(d]z]); ze Kn C"}<o0
holds.

Then it is easy to see that & is a soft nuclear Fréchet sheaf. Then we define
the sheaf &7:4 to be the sheaf of germs of differential forms of type (p, g) with
coefficients in ¢ and denote the Cauchy-Riemann operator by 0. We also define
the sheaf ¢7+¢ in the similar way and denote ¢? =¢?-°. Then we have the following

Theorem 1.2.4 (The Dolbeault-Grothendieck resolution). The sequence of
sheaves over C"
0 op gro &, gpt 0, ... o, gron 0

~

is exact.
Proof. It follows in the same way as Ito [10], §3. Q E.D.
Corollary 1. For an open set Q in C", we have the following isomorphism:
HYQ, o) ={fe & 4Q); 0f=0}/{dg; ge &m (D)}, (p20,921).

Corollary 2. Let Q be an 0-pseudoconvex open set. Then the equation
Ju=f has.a solution ue &P 4(Q) for every fegrati(Q) such that 0f=0. Here
p, q are nonnegative integers.

Proof. It follows from Theorem 1.1.7 and Corollary 1 to Theorem 1.2.4.
Q.E.D.

Now, for later applications, we will prove another soft resolutions of 0 and @
following Kaneko [17], p. 175.

We will now recall the definition of the sheaf L= Ez,loc of germs of slowly in-
creasing locally L,-functions.
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Definition 1.2.5. We define the sheaf L to be the sheafification of the presheaf
(L(Q); Qc Cr open}, where, for an open set Q in C, the section module L(Q) is
the space of all fe L, 1,.(2n C") such as, for any e>0 and any relatively compact
open subset w of Q, e(—e¢|z||)f(z)|w belongs to L, (wn C"). Here e(—¢||z|)f(2)|w
denotes the restriction of e(—ée|z|)f(z) to w and |z| denotes the modification of

i |z;| so as to become C* and convex.
Jj=1 -~
Then it is easy to see that L is a soft FS* sheaf. Then we define the sheaf

L»+4 to be the sheaf of germs of differential forms of type (p, g) with coefficients in L.

Definition 1.2.6 (The sheaf #7-9). We define the sheaf £7-4=%5 1. to be the
sheafification of the presheaf {£74(Q); Q<= C" open}, where, for an open set Q in
C", the section module £74(Q) is the space of all fe EP"I(Q)=i’2’;?oc(Q) such that
dfe [ray(Q)=128973(Q). We put & =20,

Then #7+4 is a soft FS* sheaf. Then we have the following

Theorem 1.2.7 (The Dolbeault-Grothendieck resollition). The sequence of
sheaves over C"

0 or @p.0 8, @ppl 8, ... o, prn 0
is exact.

Proof. The exactness of the sequence

0\ Gr . $ro_i, grn
is evident. In fact, let Q be a relatively compact open set in C". Let u e £7%Q)
such that du=0. Then, if we write u in the form

u= >y u,dz!,

[I]=p
we have
0u;/0z;=0, j=1,2,...,n.

But this is the Cauchy-Riemann equation. Thus u; is holomorphic in Qn C".
The condition that u; is slowly increasing is already satisfied by the fact that we
can interchange the sup-norm and L,-norm for a holomorphic function. Thus the
exactness of the above sequence was proved.

Next we have to prove the exactness of the sequence

wp0 3, ep.l _ 0, ... o, @ ().

We will reason as in Hormander [4], p. 32. Thus it follows from the following
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Lemma 1.2.8. Let Q be a relatively compact open set in C". Let fe £P-1+1(Q)
(p, g =0) satisfy the condition 0f=0. If Q is a relatively compact open subset
of Q, we can find ue LP9Q) such that du=fin Q'.

Proof of Lemma 1.2.8. We shall prove inductively that Lemma 1.2.8 is true
if f does not involve dZ,,4,..., dZ,. This is trivial if k=0, for f must then be zero
since every term in fis of degree g + 1 >0 with respect to dz. For k=n, the statement
is identical to Lemma 1.2.8. Assuming that it has already been proved when k is
replaced by k—1, we write

‘f=d;';k/\g+h.,

where g e #P4(Q), he £71*4(Q) and g and h are independent of dz,..., dZ,
Write

g= 2" ' gI,szI/\d'z'J,
[T)=p |I]=4q

where £’ means that we sum only over increasing multi-indices. Since df=0, we
obtain

5g;,1/52j=0, j>k.

Thus g, , is holomorphic in these variables.
We now choose a solution G, ; of the equation

5GI,J/521< =91,

To do so, we choose a bounded function € CF(Q) with bounded derivatives of any
degree so that y(z)=1 in a neighborhood Q" € Q of @’, and set

Gy =iyt (| Gz e~ (- 2?)
XW(Zqseens Zymts Ts Zka 15005 Zn
X g1 (Z1seees Zhm15 T Zg15000s Z)AT A AT,

Then it is easy to see that G; ; € 2(Q). Here we can consider Gy ; to be a convolution
product of ¥(z)g; ,(z) and the fundamental solution (nz,)~'e(—z3) of the Cauchy-
Riemann operator 0/0Z,. So that, by Theorem 3.4.11 of Ito [11], we have

6GI’J/afk=gLJ in Q”, aGI’_,/an———O, i>k.
If we set
G= ¥ Gy, dz' ndZ,

it follows that in ©”
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3G=dz, Ang+h,,

where h, is independent of dz,,...,dz,, Hence h—h,=f—0G does not involve
dZ,..., dZ,, so by the inductive hypothesis we can find ve £74Q’) so that dv=
f—0G there. But then u=v+ G satisfies the equation du=f, which completes the
proof. Q.E.D.

Corollary 1. For an open set  in C", we have the following isomorphism:
HYQ, 07)={fe Z5:1,(Q); f=0}/{0g; g€ LLNDY, (p20, g2 1).
Corollary 2. Let Q be an 0-pseudoconvex open set in C". Then the equation

ou=f has a solution uej‘z’;{’oc(Q)for every fe 5?5;{’;1(9) such that of=0. Here
D, q are nonnegative integers.

Proof. It follows from Theorem 1.1.4 and Corollary 1 to Theorem 1.2.7.
Q.E.D.

We will now recall the definition of the sheaf L=L, . of germs of rapidly
decreasing locally L,-functions.

Definition 1.2.9. We define the sheaf L to be the sheafification of the presheaf
{L(Q); Q= C" open}, where, for an open set Q in C*, the section module L(Q) is
the space of all fe L, ,.(2n C*) such as, for any relatively compact open subset
w of £, there exists some positive 6 such that e(5|z|)f(z)|w e L,(w n C¥).

Then it is easy to see that L is a soft FS* sheaf. Then we define the sheaf
LP-4 to be the sheaf of germs of differential forms of type (p, ¢) with coefficients in L.

Definition 1.2.10 (The sheaf #7-9). We define the sheaf £"'=%%{. to be
the sheafification of the presheaf {£?-9(Q); Q< C" open}, where, for an open set
Q in C", the section module LPUQ) is the space of all fe Lr-4(Q)=L5{ (Q) such
that 0fe Lra* (Q)= LY {3M(Q). We put & =£°°.

Then #7-7 1s a soft FS* sheaf. Then we have the folloWing

Theorem 1.2.11 (The Dolbeault-Grothendieck resolution).  The sequence of
sheaves over C"

0 or P03, gt 4, ... AN 7 NN
is exact.
Proof. It follows in the same way as Theorem 1.2.7. Q.E.D.

Corollary 1. For an open set Q in C", we have the following isomorphism;
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HYQ, 07)={fe £51,(Q); 0f=0}/{0g; g LD}, (p=0,q=1).

Corollary 2. Let Q be an O-pseudoconvex open set in C". Then the equation
Ou=f has a solution ue £51,(Q) for every fe £5i31(Q) such that df=0. Here
D, q are nonnegative integers.

Proof. It follows from Theorem 1.1.7 and Corollary 1 to Theorem 1.2.11.
Q.E.D.

1.3. Malgrange’s Theorem
Theorem 1.3.1. Let Q be an open set in C". Then we have H"(Q, ¢)=0.

Proof. By virtue of Corollary 1 to Theorem 1.2.7, we have only to prove the
exactness of the sequence

Lo Q) L5 FOn(Q) — 0

in the notations of Theorem 1.2.7. But, in order to do so, we have only to prove
the injectiveness and the closedness of the range of 9 =(0)’ in the dual sequence
LU Q) &L 22°(2) —0

in the notations of Theorem 1.2.11 by virtue of the Serre-Komatsu duality theorem
for FS*-spaces. Here #7-4(Q) denotes the space of sections with compact support
of #74 on Q. This has already been proved by Kawai [19], p. 479. Q.E.D.

Corollary. Flabby dim 0<n.

1.4. Serre’s duality theorem

In this section we will prove Serre’s duality theorem.

Theorem 1.4.1. Let Q be an open set in C" such that dim HP(Q, 0) <o
holds (p=1). Then we have the isomorphism [H?(Q,0)] = H*?(Q, 0) (0< p<n).

Proof. By virtue of Corollary 1 to Theorem 1.2.7 and Corollary 1 to Theorem
1.2.11, cohomology groups HP(Q, 0) and H"P(Q, ¢) are cohomology groups re-
spectively of the complexes

00—, a?0,0(9) .~5_> QO,I(Q) "5_, ...... __.5_, jO,n(Q) — 0

Vv _ + _ _
0 — L0(Q) & L2 (Q) & vooee L 220(Q) — 0.

Here the upper complex is composed of FS* spaces and the lower complex is com-
posed of DFS* spaces. Since the ranges of operators 0 in the upper complex are
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all closed by virtue of Schwartz’s Lemma (cf. Komatsu [20]), the ranges of operators

—0=(0) in the lower complex are also all closed. Hence we have the isomorphism
[HY(Q, O)) 2H2 (@, 0)

by virtue of Serre’s Lemma (cf. Komatsu [20]). Q.E.D.

1.5. Martineau-Harvey’s Theorem

In this section we will prove Martineau-Harvey’s Theorem.

Theorem 1.5.1. Let K be a compact set in C" such that it has an 0-pseudo-
convex open neighborhood Q and satisfies the conditions HP(K, 0)=0 (p=1).
Then we have HYQ, 0)=0 for pxn and isomorphisms HYQ, O)=H"Y(Q\K,
0)=0(K)'.

Remark. If a compact set K in C* has a fundamental system of @-pseudo-
convex open neighborhoods, it satisfies the assumptions in Theorem 1.5.1.

Proof. It goes in the same way as Ito and Nagamachi [13].

By the excision theorem, HE(Q, @) is independent of an open neighborhood Q
of K. So, we may assume that Q is an @-pseudoconvex open neighborhood in the
assumptions in this theorem. Then in the long exact sequence of cohomology
groups (cf. Komatsu [21], Theorem I1.3.2):

0— HY(Q, 6) —> H°(Q, 0) —> H°(Q\K, 0)
— H}(Q, 6) — HY(Q, ) — HY(Q\K, 0)

— HY(Q, §) —> H"(Q, ) —> H"(Q\K, §) —— .-,

we have HP(Q, (5) =0for p=1and HYL, @) =0 by the unique continuation theorem.
Hence we have isomorphisms

HL(Q, 0)=0(2\K)[6(Q),
HE(Q, O)= HPY(Q\K, 0), p=2.

We also have the long exact sequence of cohomology groups with compact
support (cf. Komatsu [21], Theorem I1.3.15):

0 — HYQ\K, 0) — H2(Q, 9) — H(K, 0)
— HY(Q\K, ¢) — HU(2, 9) — H'(K, ¢)
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—— H2(Q\K, 0) — H2(Q, §) — H?(K, 0) — .

Here H?(K, ¢)=0 (p=1) by the assumption on K. Therefore we obtain the
isomorphisms

O(K)=H(Q\K, 0),
HY(Q, O)=H{(Q\K, 0), p22.

By the theorem 1.4.1, we have H%(Q, ¢)=0 (p=xn). Thus we have the following
isomorphisms

HE(Q\K, 0)=0, p=x=1,n,
HYQ\K, 0)=0(Q)'.
Now we consider the following dual complexes:

o_,é)w(fz\m—% FOUQ\K) —Ts o fn=2y POn=1(Q\K) — (¥)

0 FUM(Q\K) T2ty LU (Q\K) iz 0 PUUQ\K) — (x%)
(*) Lzt @0 (Q\K) —0
(k%) =2 £OO(Q\K) « 0.

Then, since HX(Q\K, ®)=0 (p=1, n), the range of —J,;=(0,-;-,) is closed except
for j=0,n—1. However 0,_ is of closed range by Malgrange’s Theorem. Hence,
by the closed range theorem, — 0, is of closed range (cf. Komatsu [20], Theorem 19,
p. 381).

In order to prove the closedness of the range of —0,_;, we consider the following
diagram:

0 PONQ\K) <5 p0n-1(Q\K)

m [

b l

0 — 207(Q) = guri(Q),

where the map i is the natural injection. However, in the dual complexes for Q,
0% is of closed range since H'(Q, 0)=0. Thus, by the closed range theorem,
Im (—02\K)=i~1(Im (—3%2_,)) is closed. Therefore all —d%'¥ are of closed range.
Hence by the Serre-Komatsu duality theorem, we have the isomorphisms [HP(Q\K,
] =~ H»(Q\K, ¢), for 0<p<n. Hence we have O(Q\K) = HIQ\K, §)=
HY(Q, 0)=0(Q). Here O(Q\K) and @(Q) are both FS spaces, a posteriori, reflexive.
Hence we have the isomorphism 6(Q)=@(Q\K). Thus HY(®, 0)=0(2\K)/0(Q)=
0. Hence, for p=2, pxn, we have 0=H!7"(Q, 0)= Hr P (Q\K, 0)=
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[HP~Y(Q\K, )Y ~[H¥Q, 0)). Thus HYQ, §)=0. In the case p=n, we have
the isomorphisms [HY(Q, 0)]'=[H" Y(Q\K, 6)]' = HI(Q\K, ¢) ~ HYK, 0) = 0(K).
Since ¢(K) is a DFS space, it follows from the Serre-Komatsu duality theorem that
the above isomorphisms are topological isomorphisms. Hence we have the isomor-
phism H(Q, 0)~¢(K)'. Q.E.D.

1.6. Sato’s Theorem

In this section we will prove the pure-codimensionality of D" with respect to
0. Then we will realize Fourier hyperfunctions as “boundary values™ of slowly
increasing holomorphic functions or as (relative) cohomology classes of slowly in-
creasing holomorphic functions.

Theorem 1.6.1 (Sato’s Theorem). Let Q be an open set in D" and V an open
set in C" which contains Q as its closed subsets. Then we have the following

(1) The relative cohomology groups HY(V, 0) are zero for pxn.

(2) The presheaf over D"

Q— Hy(V, 0)

is a flabby sheaf.
(3)  This sheaf (2) is isomorphic to the sheaf % of Fourier hyperfunctions.

Proof. (1) It goes in the same way as Kawai [19], p. 482.

(2) By Malgrange’s Theorem, we can conclude that flabby dim ¢ <n. Thus,
by (1) and by the theorem I1.3.24 of Komatsu [21], we have the conclusion.

(3) Consider the following exact sequence of relative cohomology groups

0 — H2%(V, 0) — HY. (V, ) — HY(V, 0)
— Hio(V, ) —>  een — Hy YV, 0)
— Hio(V, 0) — Hpu(V, 0) — Hy(V, 6)
— HI5\(V, @) — ey s )

(Here Q¢ denotes the closure of Q). Then, by (1) and by Martineau-Harvey’s
Theorem, we have H5™(V, (§)=0, Hig\(V, 0)=0. Thus we have the exact sequence

0 — Hio(V, 0) — Hpo(V, 6) — Hy(V, 6) — 0.
Since, by Martineau-Harvey’s Theorem, we have isomorphisms
Ho(V, 0)= o/ (0Q)', Hp(V, 0)=2(Q°),

we obtain the isomorphism
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Hy(V, 0)=.2(Q%) | £(0Q)' = 2(R).
Thus the sheaf Q— HA(V, 0) is isomorphic to the sheaf # of Fourier hyperfunctions
over D" Q.E.D.

Let Q be an open set in D".  Then there exists an 0-pseudoconvex open neigh-
borhood V of Q such that V n D"=Q(cf. Kawai [19], Theorem 2.1.6.). We put
Vo=V and V,=V\{zeV; Imz;=0}4, j=1,2,.,n. Then B={V,, V;,..., V,} and
B ={V,,..., V,} cover V and V\Q respectively. Since V; and their intersections are
also 0-pseudoconvex open sets, the covering (B, B') satisfies the conditions of
Leray’s Theorem (cf. Komatsu [23]). Thus, by Leray’s Theorem, we obtain the
isomorphism H(V, 0)= H®, B', 6). Since the covering B is composed of only
n+1 open sets V; (j=0, 1,..., n), we easily obtain the isomorphisms

708, B, 6)=0(N\;V,),

C (S, B, H)= @ (N V),
J=1 i
Hence we have
6CTHB, B, )= 3 O(N P)IVin Ty
=1 ixg
Thus we have the isomorphisms
Hy(V, 0)~HY(B, B', O)~Z"(B, B', 0)[5C"~ (B, B', 0)
=0(N,V)) > O Ny Vi) -
=
Thus we have the following

Theorem 1.6.2. We use notations as above. Then we have the isomorphisms
Hy(V, O)=HY(B, 8, O)=5( V)] 3, 6NV,

At last we will realize Fourier analytic functionals with certain compact carrier
as (relative) cohomology classes with coefficients in 0.

Let K be a compact set in C” of the form K=K, x --- x K, with compact sets
K;in C (j=1, 2,...,n). Assume that K admits a fundamental system of 0~—pseud0-
convex open neighborhoods. Then we have

H?(K, 0)=0 for p>0.

By virtue of Martineau-Harvey’s Theorem, there exists the isomorphism
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O(K) = Hi(C, 0).

Further assume that there exists an O-pseudoconvex open neighborhood Q of K
such that

Q,=Qn{zeC"; z,&K;}

is also an @-pseudoconvex open set for j=1,2,.. ,n. Then B={Qy=0Q, Q,, ., Q,}
and 8'={Q,, Q,, ., Q,} form acyclic coverings of Q and Q\K. Set

QK= Q,,
j=1

Q'i= m Q,’.
i==j

Let Y 0(Q/) be the image in 0(Q#K) of ]—nI 0(97) by the mapping
7 j=1

(FPjer = 3 (=DI*7,

where f'; denotes the restriction of f; to Q#K.
Then, by the same method as that of Theorem 1.6.2, we have the isomorphisms

O(KY =Hy(Cr, O)=H"(B, B', §) é(mK)/g Q).
By the above theorem, we can define the canonical mapping
b: O(Q4K) —> O(K)
whose kernel is Jz 0 (Q)).

Then we have the following

Theorem 1.6.3. We use the above notations. (i) Letue ¢(K) and put
ii(z)= (2"7'5)7"“5(1—[1 (T z;) lexp(— (é, - Zj)z)) .
N j=

Then 1i € 0(Q%K) and b(#)=u holds.

(ii) Let fe 0(Q#K) and ged(K). Let w=w; X Xw,=Q with open neigh-
borhoods w; of K; in C and g e O(®) where & is an open neighborhood of w with
d<=Q. Let I'; (j=1,2,...,n) be regular contours in w; n C enclosing once K;nC
and oriented in the usual way. Then we have

bN@=(=1r| | 9z,
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Proof. The integral
- { s@eenz -z,
Iy I'n

does not depend on the chosen contours and defines a linear mapping
b': O(QEK) — O(K)',
which is zero on ¥ 0(©/). Hence, in order to prove (ii), it is sufficient to prove
that, if u € 9(K)', wje have
b'()y=u.
But

b@ @)=~ @i | | ug(E=2 exp (= (E-2g()dz

=ug@iny || 9@ =97 e (—(z =9 =u(g),

where we write

(E—2) exp(—(¢—2)?) = n (& —z) T exp (—(&;—2,7).

This proves (i) and completes the proof. Q.E.D.

Chapter 2. The case of the sheaf £0

2.1. The Dolbeault-Grothendieck resolution of £¢

In this section we will recall the soft resolution of E¢. Here E denotes a quasi-
complete locally convex topological vector space (LCTVS) (always assumed to be
Hausdorff) unless the contrary is explicitly mentioned and 7 = .7 denotes the family
of continuous seminorms of E defining a locally convex topology on E.

At first we will recall the definition of sheaves 2@ and E& following Ito [10]
and Junker [14].

Definition 2.1.1 (The sheaf £@ of germs of slowly increasing E-valued holomorphic
functions over C*). We define the sheaf E0 to be the sheafification of the presheaf
{O(Q; E)}, where for an open set Q in C*, the module 0(Q; E) is defined as follows:

o(Q; E)={fe0(n C"; E); for any positive ¢ and any compact set K
in Q and any ge 7, sup {q(f(2)e(—¢|z|); ze Kn C"} <o holds}.
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Here we denote by (22 n C*; E) the space of all E-valued holomorphic functions on
the open set Qn C* in C".

We call this sheaf E0 the sheaf of germs of slowly increasing E-valued holomor-
phic functions.

Definition 2.1.2 (The sheaf & of germs of slowly increasing E-valued C*-func-
tions). We define £& to be the sheafification of the presheaf {€(Q; E)}, where, for
an open set Q in C", the module &(Q; E) is defined as follows:

&(Q; Ey={fe&(Qn C"; E); for any positive ¢ and any compact set K
in Q and any ae N2 and any qe 7, sup {qg(f@(2))e(—¢|z]); ze K n C*}
< o0 holds}.

Here N=NU {0} and &(Qn C"; E) is the space of E-valued C®-functions on the
open set Qn C".

Then the sheaf E& is soft, and we have the following

Theorem 2.1.3 (The Dolbeault-Grothendieck resolution of £¢?). Let E be a
quasi-complete LCTVS. Then the sequence of sheaves over C"

0___*E(9p”___)Eévp,0_L)Eévp,1__@.) ~~~~~~ -—‘LEé’P’"_—-—»O

is exact. Here we denote by FP-1 the sheaf of germs of differential forms of type
(p, q) with coefficients in a sheaf # and put F?=Fr°,

Proof. See Ito [10], Theorem 3.1, p. 989. Q.E.D.

Corollary. For an open set Q in C", we have the following isomorphism:

Hu(Q, E0r)={fe é»4(Q; E); 3f=0}/{0g; g 7+ (Q; E)}, (p20, q=1).

Proof. It follows from Theorem 2.1.3 and Komatsu [21], Theorems I1.2.9
and I1.2.19. _ ' Q.E.D.

2.2. The Oka-Cartan-Kawai Theorem B
We will recall the Oka-Cartan-Kawai Theorem B for the sheaf £¢@.

‘Theorem 2.2.1 (The Oka-Cartan-Kawai Theorem B). Let E be a Fréchet space.
For any (E-pseudoconvex open set Q in C", we have HYQ, E0P)=0 for p=0 and
qz1.

Proof. See Ito [10], p. 992 or Junker [15], p. 33. Q.E.D.

Corollary. Let E be a Fréchet space and Q an 0- pseudoconvex open set. Then
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the equation Su=f has a solution u € &7-9(Q; E) for every fe &7-4*Y(Q; E) such that
0f=0. Here p, q are nonnegative integers.

Proof. It follows from Theorem 2.2.1 and Corollary to Theorem 2.1.3.
Q.E.D.

2.3. Malgrange’s Theorem

The remainder parts of this chapter go well along the line of Junker [15]. So
we briefly summarize them for unification. In the following of this chapter E is
assumed to be a Fréchet space.

Theorem 2.3.1. Let Q be an open set in C". Then we have H"(Q, Eé)=0.
Proof. See Junker [15], p. 34. Q.E.D.
Corollary. Flabby dim E0<n.

2.4, Serre’s duality theorem

Theorem 2.4.1. Let Q be an open set in C" such that dim HP(Q, é)< o0 holds
(p=1). Then we have the isomorphism H?(Q, E0)~ L(H"-7(Q, ¢); E), 0<p<n.

Proof. By Junker [15], Lemma 3.5, we have the isomorphism HP(Q, E0)x
- H?(®Q, 0)® E. Then, by Theorem 1.4.1, we have the following isomorphisms
HP(Q, E0)= HV(Q, 0)®,Ex[H1?(Q, 0)]' ®,EXL(HI (2, 0); E)
Q.E.D.

2.5, Martineau-Harvey’s Theorem

Theorem 2.5.1. Let K be a compact set in C" such that it has an
0O-pseudoconvex open neighborhood Q and satisfies the conditions HP(K, ¢)=0
(p=1). Then we have HE(Q, E0)=0 for p>n and isomorphisms HL(Q, E0)=~
H* Y(Q\K, E0)~ L(0(K) ; E).

Proof. We can assume that Q is an @-pseudoconvex open neighborhood of
K. Then, in the long exact sequence of cohomology groups (cf. Komatsu [21],
Theorem 11.3.2):

0 — HY(Q, £E0) — H(Q, E) — H°(Q\K, £0)
— HK(Q, £0) — HY(Q, ¥0) — H'(Q\K, F0)
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we have HP(Q, E0)=0 for p=1 and HY(Q, E0)=0 by the unique continuation
theorem. Hence we have isomorphisms

H(Q, £0)=0(QK; E)/0(Q; E),

H(Q, 56)= HP'(Q\K, £0), p22.

But, by Junker [15], Lemma 3.5, we have isomorphisms H?(V, E¢)~H?(V, 0)® ,E,
0<p<n, for any open set V in C". So that, by Theorem 1.5.1, we have
isomorphisms

HZ(Q, E0)= HY(Q, 0)® ,E=0 for p=n,
and

Hy (Q, B0)~ H™Y(Q\K, EO)= H" ' (Q\K, O)Q E~H: (Q, O)® E

lle

O9(K) ®,,E=L(0(K); E).
Q.E.D.

2.6. Sato’s Theorem

In this section we will prove the pure-codimensionality of D" with respect to
E@. Then we will realize E-valued Fourier hyperfunctions as “boundary values of
E-valued slowly increasing holomorphic functions or as (relative) cohomology classes
of E-valued slowly increasing holomorphic functions.

Theorem 2.6.1 (Sato’s Theorem). Let Q be an open set in D" and V an open set
in C" which contains Q as its closed subsets. Then we have the following

(1) The relative cohomology groups H5(V, E0) are zero for p=n.

(2) The presheaf over D"

Q — Hy(V, £0)

is a flabby sheaf.
(3) This sheaf (2) is isomorphic to the sheaf E# of E-valued Fourier hyper-
functions.

Proof. (1) By the excision theorem, we may assume that V is an @-pseudo-
convex open set in C". Consider the following exact sequence of relative
cohomology groups

0 — Ho(V, EO) —> HYu(V, EO) — HY(V, E0)

— Hio(V, E0) — oo — HEY(V, E0)
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— Hig(V, F0) — Hp. (V, £0) — H(V, £0)
s HEGN(V, ) s e
By Theorems 1.1.8 and 2.5.1, we may conclude that HZ(V, E0)=H5.(V, E0)=0

for p=n. So that, we have HE(V, E0)=0 for pxn—1, n. On the other hand,
by Theorems 1.1.8 and 2.5.1, we also have the exact sequence

0 —— HE ' (V, E0) — L(£(0Q); E) — L(£(Q%); E).

Since j is injective, we have H2 1(V, £0)=0.

(2) By Malgrange’s Theorem, we can conclude that flabby dim E0<n. Thus
by (1) and by the theorem I1.3.24 of Komatsu [21], we have the conclusion.

(3) By the proof of (1), we have the exact sequence

0 — Hig(V, E0) — Hj(V, E0) — Hy(V, E0) — 0.
Since, by Martineau-Harvey’s Theorem, we have isomorphisms
Hio(V, £0)= L(#/(09); E),
HyoV, 20)= L(#/(Q%); E),
we obtain the isomorphism
HJ(V, EO)= L(&(Q%); B)/L(£(09); E)=2(Q; E).

Thus the sheaf Q—HA(V, E0) is isomorphic to the sheaf £# of E-valued Fourier
hyperfunctions over D". Q.E.D.

In the same notations as in Theorem 1.6.2, we have the following

Theorem 2.6.2. Hp(V, E0)= H(B, B', EO)=0(N,; V;; E)/ le G(Mi; Vis E)
holds.

At last we will realize Fourier analytic linear mappings with certain compact
carrier as (relative) cohomology classes with coefficients in EQ. v

Let K be a compact set in C" of the form K=K x --- x K, with compact sets
K, in C (j=1,2,...,n). Assume that K admits a fundamental system of (b—
pseudoconvex open neighborhoods. Then we have

HP(K, ¢0)=0 for p>0.
By virtue of Martineau-Harvey’s Theorem, there exists the isomorphism
0'(K; E)=H(C", £0).

Further assume that there exists an @-pseudoconvex open neighborhood Q of
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K such that

is also an O-pseudoconvex open set for j=1, 2,..., n. Then B={Q,=Q, Q,,..., 2.}
and B'={Q,, Q,,..., 2,} form acyclic coverings of 2 and Q\K. Set

QiK= N Q;,
i=1

Q-’: /-\ Qi‘
ixj

Let ¥ 0(Q/; E) be the image in 0(Q#K ; E) of ﬁ 0(Q7; E) by the mapping
7 j=1

(fjer = 2, (= D7*If},

where f; denotes the restriction of f; to Q#K.

Then, by the same method as that of Theorem 1.6.2, we have the following

Theorem 2.6.3. We use the notations as above. Then we have the
isomorphisms

0'(K; EyxHy(C", EO)=H"(B, B', E0)=0(Q4K; E)| . 6(Q; E).
J

By the above theorem, we can define the canonical mapping
b: O(Q4K; E)— 0'(K; E)
whose kernel is JZ O(QV; E)
Then we have the following

Theorem 2.6.4. We use the above notations.
(i) Letue¢'(K; E) and put

U(z)=Q2in)"u (¢ —2)7" exp (—({—2)?)).

Then ii € O(Q4K ; E) and b(ii)=u holds.

(ii) Let fe @(QﬁK; E) and ge¢(K). Let w=w;x--xw,=Q with open
neighborhoods w; of K; in Candyg € O(®) where & is an open neighborhood of w
with @< Q. Let I';(j=1,2,..., n) be regular contours in w;n C enclosing once
K;n C and oriented in the usual way. Then we have

bN@=(=1r| | regedz,dz,



Theory of (Vector Valued) Fourier Hyperfunctions 81

Proof. It goes in the same way as that of Theorem 1.6.3. Q.E.D.

Chapter 3. Cases of sheaves (9:, .52; Y and X4

3.1. The Oka-Cartan-Kawai Theorem B

_ In this section we will prove the Oka-Cartan-Kawai Theorem B for the sheaves
¢ and 9.

We denote by D” the radial compactification of R” in the sense of Kawai
(see Kawai [19], Definition 1.1.1) and by E” the radial compactification of C”
considering it as R?".

Definition 3.1.1  (The sheaf (3 of germs of slowly increasing holomorphic
functions). We define 0 to be the sheafification of the presheaf {0(Q); Q< E™
open}, where the section module &(Q) on an open set Q in E" is the space of all
holomorphic functions f(z) on Q n C" such that, for any positive number ¢ and for
any compact set K in Q, the estimate sup {|f(z)e(—¢|z|)|; ze K n C"} < oo holds.

Definition 3.1.2 (The sheaf 0 of germs of rapidly decreasing holomorphic
functions). We define ¢ to be the sheafification of the presheaf {0(Q); Q< E"
open}, where the section module () on an open set Q in E" is the ;pace of all
holomorphic functions f(z) on Qn C" such that, for any compact set K in Q, there
exists some positive constant ¢ so that the estimate sup {|f(2)e(d|z|)|; zeK n C"} < ©
holds.

Definition 3.1.3.  An open set V in C* is said to be an (zﬂ-pseudoconvex open set
if it satisfies the conditions:

(1) sup{|{Imz|—|Rez|; zeV n C"}<oo, where we put Re z=(Re zy,..., Re z,)
and Imz=(Im z,,..., Im z,).

(2) There exists a C*-plurisubharmonic function @(z) on V n C" having the
Jollowing two properties:

(1) The closure of V,={zeV n C"; p(z)<c} in E" is a compact subset of V
for any real c.

(i) ¢(z) is bounded on L n C" for any compact subset L of V.

Then we can prove the Oka-Cartan-Kawai Theorem B by the same method as
in section 1.1.

Theorem 3.1.4 (The Oka-Cartan-Kawai TheoremB). Forany 0- pseudoconvex
open set Vin E", we have H(V, @P)=Ofor p=0and sz=1.

Proof. Since Vis paracompact, H¥(V, (;I’) coincides with the Cech cohomology
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group. So we have only to prove lim H5(U, 0?)= 0, where U={U;};5, is a locally
5 z

finite open covering of V so that V;=U;n C" is pseudoconvex. We can choose

such a covering of ¥ because Vis an @-pseudoconvex open set.

Now we define CS(Z}gfq)({Vj})) to be the set of all cochains c={c;; J=(jo,
Jis---s js) € N*T1} of forms of type (p, q) satisfying the two conditions:
(i) Oc;=0in V,=V,,nV, n---nV,.

(if) for any positive ¢ and any finite subset M of Ns*!, the estimate

zg ley|2e( ¢l z])dA < o0
M Vo

€

holds, where d2 is the Lebesgue measure on C" and |z| denotes the modification of

2. |z, so as to become C* and convex.

=1
’ Now we will prove the following

Lemma 3.1.5. Ifce CS(Z:“’c ({V;})) satisfies the conditions 6c=0, then we can

(r.q)

find some c’eCS‘l(Z}I‘,’fq)({Vj})) such that 6c'=c. Here 0 means the coboundary

operator.

If this Lemma is proved, the theorem will follow from this Lemma as the special
case where ¢=0 because we can use Cauchy’s integral formula to change the L,-
norm to the sup-norm for holomorphic functions.

Proof of Lemma 3.1.5. We denote by {y;} the partition of unity subordinate
to {V;} and define b,=3_ y;c;; for Ie N*. Since 5c¢=0, we have db=c. So 80b=0

= J
because dc=0. Since Y ;=1 and y;=0, we have

[, teie=clzDars s | tlepie(—slz]d

for any positive number ¢ by virtue of Cauchy-Schwarz’s inequality.

By the assumption of the existence of C® plurisubharmonic function ¢(z) in
Definition 3.1.3, we can find some plurisubharmonic function ¥(z) on W=V n C*
which satisfies the following two conditions:

(1) I <e(z)

(2) sup{¥(z); ze Kn C"} <Ck forany K ¢ W.

Thus it follows from the condition on ¢ that we have

IeN

5 | 16bdre(~elz —pe)di <o

for any positive number ¢ and any finite subset N of Ns.
~ Now we consider the case s=1. By the fact that (db)=0, 0b defines a global
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section f on W=V n C". Then, by Hérmander [4], Theorem 4.4.2, p. 94, we can
prove the existence of u such that du=f and the estimate

S |ul?e(—elz]) (1 +]z[?)"2dA < 0
Kngn

holds for any positive number ¢ and any K € V.
I we define ¢c;=b;—u|V,, then oc;=0 and dc'=8b=c. Clearly ¢'eCs'-
(Zige (V).

Now we go on to the case s>1. In this case we use the induction on's. By
the induction hypotheses there exists b’eCs‘z(%%gqu)({ V;})) such that 5b’=0b.
By virtue of Hérmander [4], Theorem 4.4.2, p. 94, we can also find b"={b};} ens-1
such that b}, =0b} and the estimate

5 | ibhle(—ellz] W) (1 +lz7) 2k <o
HeL H

holds for any positive number ¢ and any finite subset L of N*~'. Therefore ¢’ =
b—Sb” satisfies all the required conditions. Q.E.D.

This completes the proof of the theorem. Q.E.D.

Now we will prove the Malgrange theorem for the sheaf :.x; of germs of slowly
increasing real analytic functions. Here we define the sheaf &7 to be the restriction
of 0 to D": o7 =0|D". Then we have the following

_ Theorem 3.1.6 (Malgrange). For an arbitrary set Q in D", we have H3(Q,
) =0 for p=0 and s=1.

Proof. We know, by virtue of Theorem 6.2.1 of Saburi [28], that Q has a
fundamental system {Q} of 0-pseudoconvex open neighborhoods. Then, it follows
from the Oka-Cartan-Kawai Theorem B (cf. Theorem 3.1.4) and Theorem B 42 of
Schapira [34], p. 38 that, for p=0 and s>0, we have

H(Q, #7)=_lm H(3, 07)=0.
QnNDn=0
Q.E.D.

Next we will prove the Oka-Cartan-Kawai Theorem B for the sheaf ¢. This
can be proved by the same method as Theorem 3.1.4. Thus we have the following

Theorem 3.1.7 (The Oka-Cartan-Kawai Theorem B). For any 5-pseudoconvex
open set V in E", we have H(V, ¢?)=0 for p=20 and s=1.
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Proof. Since V'is paracompact, H5(V, ¢¥) coincides with the Cech cohomology
group. So we have only to prove lim HS(II: 0P)=0, where U={U;};>, is a locally
finite open covering of V so that Vuj=Uj n C" is pseudoconvex. We can choose
such a covering of V because V is an (zﬂ—pseudoconvex open set.

Here we use the notations in the proof of Theorem 3.1.4.

For any cocycle d={d,} representing an element in H¥(1l, ¢P), we can define
an element c={c,} in CS(Z};;CO)({V 1)) such as 6c=0 by putting ¢;=d, - h(z), h(z)=
cosh ((¢/2),/z?) for some positive &, where  denotes the coboundary operator and
we put z2=z3+4..-42z2. Then we can find some ¢’ € Cs~ 1(Zl 0({¥;})) such that
oc’=c. If we put dy=cj-(h,(z))"!, then d’={d;} is a cochain with values in 0
such that 6d’=d. Thus the element in H5U, ¢?) represented by d is zero. Sinc~e
a class [d] with a representative d is an arbit;ary element in H<, ¢r), we have
HsQU, ¢»)=0. This completes the proof. Q.E.D.

At last we will prove the Malgrange theorem for the sheaf &/ of germs of rapidly
decreasing real analytic functions. Here we define the sheaf &/ to be the restriction
of ¢ to D": o/ =¢|D". Then we have the following

Theorem 3.1.8 (Malgrange). For an arbitrary set Q in D", we have H¥(Q, HP)
=0 for p=0 and s=1.

Proof. We can prove this by the method similar to that of Theorem 3.1.6.
Q.E.D.

3.2. The Dolbeault-Grothendieck resolutions of (5 and g

In this section we will construct soft resolutions of @ and ¢ and prove some of

its consequences. L
At first we will recall the definition of the sheaf £=i2’,oc of germs of slowly
increasing locally L,-functions over E” following Saburi [28].

Definition 3.2.1. We define the sheaf L to be the sheafification of lhe presheaf
{L(Q) Qc E" open}, where, for an open set Q in E", the section module L(Q) is the
space of all fe L, (2 n C*) such as, for any ¢>0 and any relatively compact open
subset w of Q, e(—¢|z|)f(z)lw belongs to Ly(wn C"). Here e(—e|zINf(2)|w
denotes the restriction of e(—¢|z|)f(z) to w and ||z| denotes the modification of

n
2> lz;] so as to become C* and convex.
J=1

Then it is easy to see that Lis a soft FS* sheaf. Then we give

Definition 3.2.2. We define the sheaf .2”1”‘1—,2”2 foc to be the sheafification of
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the presheaf {.,?P %Q); Q< E" open}, where, for an open set Q in E", the section
module 27 9(Q) is the > space of all fe 12 4(Q)=L54,.(Q) such that 3fe i 4+ (Q) =
‘2’ a+1(Q).  We put £ =%,
Then 274 is a soft FS* sheaf. Then we have the following

Theorem 3.2.3 (The Dolbeault-Grothendieck resolution). For some d>0, put
U=int {ze C"; |Im z| —|Re z| <d}4, where int { } denotes the interior of the closure
in E" of a set { }. Then the sequence of sheaves over U

0 —s OP|U — SPOU Ly GPYU Ly oveve By ZPM|U —, 0
is exact.

Proof. The exactness of the sequence

0 OP|U — FPO\U T, ZPYU

is evident. In fact, let Q be a relatively compact open set in U. Let ue .S;P'O(Q)
such that du=0. Then, if we write u in the form

u= Y wu,dz!,

[I]=p

we have
0u;/0z;=0, j=1,2,...,n,

from which we obtain

Since the operator (on Q n R?")
L0 0
2,0z, 7,

is elliptic, it follows from Weyl’s Lemma that u,’s are analytic on Q. So that we can
conclude that u,’s are holomorphic. The fact that u,e o(Q) follows from the
exchangeability of L,-norm and sup-norm for holomorphic functions. Thus the
exactness of the above sequence was proved.

Next we have to prove the exactness of the sequence

PrOU 2y PPI|U By e &, pr|U—— 0.
For this purpose, we have only to prove the exactness of the sequence of stalks

ypo gpl ...... o, #bn 0
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for every ze U. But this is an easy consequence of Hérmander [4], Theorem 4.4.2
because every ze U has a fundamental system of @-pseudoconvex open neigh-
borhoods. Q.E.D.

Corollary 1. Let U be as in Theorem 3.2.3. For an open set Q in U, we have
the following isomorphism:

HA(Q, 0)={fe £51,(0); 3f =0}/{0g; g € LRLN@D), (20, g2 1).
Corollary 2. Let Q be an @:-pseudoconvex open set in E*. Then the equation

du=f has a solution ue L% 1,(Q) for every fe £5:4+1(Q) such that & f=0. Here
D, q are nonnegative integers.

Proof. It follows from Theorem 3.1.4 and Corollary 1 to Theorem 3.2.3.
Q.E.D.

We will now recall the definition of the sheaf L=L; . of germs of rapidly
decreasing locally L,-functions.

Definition 3.2.4. We define the sheaf L to be the sheafification of the presheaf
{L(Q); Q<= E" open}, where, for an open set Q in E", the section module L(Q) is
the space of all fe L, ,,(2n C") such as, for any relatively compact open~ subset
o of Q, there exists some positive § such that e(8)|z|)) f(z)|w e Ly(w n C").

Then it is easy to see that L is a soft FS* sheaf.

Definition 3.2.5 (The sheaf 27.9). We define the sheaf £?41= £%5{.. to be the
sheafification of the presheaf {ES}P”J(Q); Qc E" open}, where;, for an open set Qin
E", the section module ZP4Q) is the space of all fe Lra(@Q)= L5:{,(Q) such that
ofe Lot Q)= L5:{i1(Q). We put L =g%0

Then ¢7-4 is a soft FS* sheaf. Then we have the following

Theorem 3.2.6 (The Dolbeault-Grothendieck resolution). For some d>0, put
U=int {ze C*; |Im z|—|Re z|<d}*. Then the sequence of sheaves over U :

o_ﬂ:@ply_,zgp,ol(/_é, ,?p,1|U_é_, ...... iﬁ‘gp,nly__»o
is exact.
Proof. The exactness of the sequence
0— 0?|U —> gPOlU -2, gr'|U

can be proved by the same way as that of Theorem 3.2.3.
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Next, in order to prove the exactness of the sequence
.E?P'OIU—5» Efp’llUi» ...... _e., .ES,PP-"|U——>O,
we will recall the following
Lemma 3.2.7 (Saburi). For 6>0 and A>0, put
Vs.a={ze C"; |Im z|2<5?|Re z|> + A2} .

Then, if 0<d <1, we have, for 0<e < \/1—6%/(\/24),
lcosh (/27)] = Ce( Jl o2 |z|) zeV; o

Here C is a constant independent of 6, A, ¢ and we put z2=z3+z3+---+z2. We
also have

cosh (e/z?)| Se?l?l, ze Cm.
Proof of Lemma 3.2.7. See Saburi [28], Lemma 2.3.8, p. 37. Q.E.D.

Now we will return to prove Theorem 3.2.6. Let zeU. For an open neigh-
borhood  of the form V; , in Lemma 3.2.7 for some 6 and A such as 0<d<1 and
A>0, we take an element fe £74*'(Q) such that 0f=0. Then, for some £>0, we
can see that f- hs(z)ejl”q“(ﬂ)z where we put h(z)=cosh (8V/}z_f/2). Since o(f-
h(z))=0, we can find some ve .27 4Q’) for some open neighborhood Q(cQ)of z
such that ov=f-h,(z). Here we may assume that h(z)>~0 on Q' n C". Then
u=v[h(z) belongs to £?-4(') and ou=fholds. This completes the proof.

Q.E.D.

Corollary 1. Let U be as in Theorem 3.2.6. For an open set Q in U, we have
the following isomorphism:

HY(Q, o) = {fe £51,.(Q); 0f=0}/{0g; ge L5 ()},  (p20, g=1).

Corollary 2. Let Q be an (E—pseudoconvex open set in E". Then the equation
ou=f has a solution ue L81,(Q) for every fe L5 {iNQ) such that 0f=0.

200

Here p and q are nonnegative integers.

Proof. It follows from Theorem 3.1.7 and Corollary 1 to Theorem 3.2.6.
Q.E.D.

Now, for later applications, we will construct another soft resolutions of @
and 0.
At first, we will give some preliminary facts.
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For an integer s >0 and for an open set Q in C”, we put

W, 10(Q)={f€ L, 1,(Q); for every relatively compact open subset @ of Q
and for every a € N2" such that |o| < s, f®(z)|w € L,(w) holds},

and denote by W21 (Q) the space of all differential forms of type (p, g) whose
coefficients in W, (). Further, for an open set 2 in E", we put

VI:/'S(Q)= {f€ W 1,(2 n C*); for any positive ¢ and for every relatively com-
pact open subset w of Q and for every o e N2" such that |a|<s, (e(—el|z])
f@(z))jon C"e Ly(wn C") holds},

and denote byjlsz’q({)) the space of all differential forms of type (p, g) whose
coefficients in W,(Q). Then we have the following

Theorem 3.2.8. Let Q be an 0:-pseud(~)convex open set in E" and s an integer
such as 0<s=<oo. Then, for every fe WP 4tY(Q) such as 0f=0, we can find a
solution u e WSH(Q) of the equation du=f. Every solution of the equation ou=f
has this property when q=0.

Proof. (a) First assume that g=0. We know, from Corollary 2 to Theorem
3.2.3, that the equation OJu=f has a solution u=73"u,dz'e £59 (2) because
fe £21,(Q) and 3f=0. The equation éu=f means that

6(ur 20 C™))3z,=1;,12 1 C7 € W,o(21 C7)

for all I and j. Thus, by Hoérmander [4], Theorem 4.2.5, we have u;e W,y -
(2n C"™. Then, by Nagamachi[25], Lemma 4.3, we can conclude that u; € I’:Vs+ 1(Q).

(b) Next we assume that ¢g>0. Then, by Hérmander [4], Theorem 4.2.5, we
can find u € Wi 1,(£2n C") such that ou=f. Then, by Nagamachi [25], Lemma
4.2, we can conclude that u € WsH(Q) Q.E.D.

Now we will define the sheaf & of germs of slowly increasing C*-functions
over E".

Definition 3.2.9. We define the sheaf & 1o be the sheafification of the presheaf
{é"(Q) Q< E" open}, where, for an open set Q in E", the section module &(Q) is
defined as follows:

é:”(Q)={fe &(Q n C"); for any positive ¢ and any compact set K in Q and
any a € N2, the estimate sup {|f*)(z)|e(—¢|z|); ze K n C"} <o holds}.

Then it is easy to see that & is a soft nuclear Fréchet sheaf. Then we have the
following
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Theorem 3.2.10. Let Q be an (E:pseudoconvex open set in E". Then the
equation du=f has a solution ue &P Q) for every fE(o;P"l“(Q) such that
0f=0. Every solution of the equation du=f has this property when q=0.

Proof. Since fe V?/g”‘” 1(Q) for every integer s=0, we can find u eszf;‘{(Q)
for every s. But, by the well-known Sobolev lemma, we have

W1i5,(Q) = Cra(®),
where we put
C(Q)={fe C(Q n C"); for any positive ¢ and any compact set K in Q and

any a € N2" such that |a|<s, the estimate sup {|f@(z)le(—e|z]); ze K n
C"} < oo holds}.

Thus we have u € ép’q(Q). Q.E.D.
Then we have the following

Theorem 3.2.11 (The Dolbeault-Grothendieck resolution). For some d>0, put
U=int{ze C"; |Im z| —|Re z|<d}*. Then the sequence of sheaves over U

0 s OP|U — EPO\U 2y £21U 2y oo 5, gpm|U —,0
is exact.
Proof. It follows immediately from Theorem 3.2.10. Q.E.D.

Corollary. We use notations in Theorem 3.2.11. For an open set Q in U,
we have the following isomorphism:

HY(Q, 07 {fe £79(Q); 3f=0}/{0g; g€ 671}, (p20, q21).
Now we will define the sheaf ¢ of germs of rapidly decreasing C*-functions over
E".

Definition 3.2.12. We define the sheafgf to be the sheafification of the presheaf
{6(Q2); Q< E" open}, where the section module £(Q) on an open set Q in E" is
the space of all C*-functions on Q n C" such that, for any compact set K in Q and
any o€ N2 there exists some positive constant & so that the estimate sup-
{1f®)(z)le(d]|z]); ze Kn C"} <o holds.

Then & becomes a soft nuclear Fréchet sheaf. Then we have the following

Theorem 3.2.13 (The Dolbeault-Grothendieck resolution).  The sequence of
sheaves over U

0———>QPIU—> zé"l’aoll]___é__, :gpvllU__lé) ...... Fi :gp,nlU 0
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is exact, where U=int {ze C"; |Im z| —|Re z| <d}* for some d>0.

Proof. Let ze U. For an open neighborhood Q of the form V; , in Lemma
3.2.7 for some 6 and A such as 0<d<1 and A>0, we take an element fe ¢»4*(Q)
such that df=0. Then, for some ¢>0, we can see that f- ha(z)e:f"l’-‘I“(Q),~ where
we put hy(z)=cosh (e\/z2/2). Since &(f-h,(z))=0, we can find some ve &P 4(Q)
for some open neighborhood Q'(=Q) of z such that dv=f- h(z) by Theorem 3.2.11.
Here we may assume that h,(z)=0 on Q' n C". Then u=uv/h,(z) belongs to £7-9(Q")
and du=f holds. This completes the proof. EQ E.D.

Corollary 1. Let U be as in Theorem. 3.2.13. For an open set Q in U, we have
the following isomorphism:

HY(Q, gr)={fe &r4Q); If=0}/{dg; ge 7+ (D)}, (pz0,q=1).

Corollary 2. Let Q be an (E-pseudoconvex open set in E". Then the equation
Ou=f has a solution ue g 4Q) for every fe &»1*(Q) such that 0f=0. Herep
and q are nonnegative integers. '

Proof. It follows from Theorem 3.1.7 and Corollary 1 to Theorem 3.2.13.
Q.E.D.

3.3. Malgrange’s Theorem

In the following of this chapter we will go in the same way as Saburi [28].

Theorem 3.3.1 (Malgrange’s Theorem). Let Q be an open set in E" such that,
for any ze Qn C", |Im z|—|Re zl<~d holds for some constant d>0 independent of
zeQn C". Then we have H"(Q, 0)=0.

Proof. By virtue of Corollary 1 to Theorem 3.2.3, we have only to prove the
exactness of the sequence

Fon=1(Q) —5, FOn(Q) — 0

in the notations of Theorem 3.2.3. But, in order to do so, we have only to prove
the injectiveness and the closedness of the range of 9=(0)’ in the dual sequence

Lo (Q) A 22%Q) —0

in the notations of Theorem 3.2.6 by virtue of the Serre-Komatsu duality theorem
for FS*-spaces. Here Z2%((2) denotes the space of sections with compact support
of £7 % on Q. This has already been proved by Saburi [28], p. 44. Q.E.D.

Corollary. Flabby dim ; <n.
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3.4. Serre’s duality theorem

In this section we will prove Serre’s duality theorem.

Theorem 3.4:1. Let Q be such an open set as in Theorem 3.3.1 and assume
that dim HP(Q, 0)< oo holds for p=1. Then we have the isomorphism [H?(L, (9)]
> Hi7P(Q, ¢) (0sp=n).

Proof. By virtue of Corollary 1 to Theorem 3.2.3 and Corollary 1 to Theorem
3.2.6, cohomology groups HP(Q, 0) and H" P(Q, 0) are cohomology groups re-
spectively of the complexes

0 $00(Q) 3, FON(Q) Iy s 2, FONQ) — 0
| I T
] ) o
0— FoM(Q) L Q) & L Z2%(Q) — 0.
Here the upper complex is composed of FS* spaces and the lower complex is com-
posed of DFS* spaces. Since the ranges of operators 0 in the upper complex are

all closed by virtue of Schwartz’s Lemma (cf. Komatsu [20]), the ranges of operators
—0=(J) in the lower complex are also all closed. Hence we have the isomorphism

[HP(Q, 0)]'=H!7? (Q,0)

by virtue of Serre’s Lemma (cf. Komatsu [20]). Q.E.D.

3.5. Martineau-Harvey’s Theorem

In this section we will prove Martineau-Harvey’s Theorem.

Theorem 3.5.1. Let K be a compact set in E" such that it has an 0- pseudo-
convex open nezghborhood Q and satisfies the conditions HP(K, 0)=0 (pz1).
Then we have HE(L, 0)=0 for p#n and isomorphisms H%(£, O)~H" Y(Q\K, 0)=
9(K)"

Remark. Ifacompactset K in E” has a fundamental system of 5-pseudoconvex
open neighborhood, it satisfies the assumptions in Theorem 3.5.1.

Proof. See Saburi [28], p. 63. " Q.E.D.

3.6. Sato’s Theorem

In this section we will prove the pure-codimensionality of D” w1th respect to

0. Then we will realize modified Fourier hyperfunctions as ‘‘boundary values’’
of slowly increasing holomorphic functions or as (relative) cohomology classes of
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slowly increasing holomorphic functions.

Theorem 3.6.1 (Sato’s Theorem). Let Q be an open set in D" and V an open set
in E" which contains Q as its closed subsets. Then we have the following

(1) The relative cohomology groups HE(V, 0) are zero for p=n.

(2) The presheaf over D"

Q — H(V, 0)

is a flabby sheaf.

(3) This sheaf (2) is isomorphic to the sheaf 2 of modified Fourier hyper-
functions.

Proof. (1) It goes in the same way as Saburi [28], p. 66. 5

(2) By Malgrange’s Theorem, we can conclude that flabby dim @<n. Thus,
by (1) and by the theorem II. 3.24 of Komatsu [21], we have the conclusion.

(3) Consider the following exact sequence of relative cohomology’ groups

0 —— HO(V, 0) —> HY(V, 0) — HS (V, 0)

— Hig(V,0) — o — HE(V, 0)

—— Hig(V, 0) —> Hpa(V, 6)— H3(V, 0)

s HUN(V, 0) — oo,
Then, by (1) and by Martineau-Harvey’s Theorem, we have HA5 (¥, (9:)=O, HisY(V,
5)=0. Thus we have the exact sequence

0— Hig(V, 0) — Hpo(V, 0) — HY (V, 6) — O.
Since, by Martineau-Harvey’s Theorem, we have isomorphisms
Hio(V, 0)= (09, Hpu(V, 0)= (2%,
we obtain the isomorphism
Hy(V, 0)= o/(27) | /(09) = 2(9).

Thus the sheaf Q— H3(V, 5) is isomorphic to the sheaf 2 of modified Fourier
hyperfunctions over D”. Q.E.D

Let Q be an open set in D”. Then there exists an éz-pseudoconvex open
neighborhood V of @ such that V n D"=Q (cf. Saburi [28], Theorem 6.2.1). We
put Vo=V and V;=V\{zeV; Imz;=0}% j=1, 2,...,n. Then B={V,, V,,..., V,}
and B’'={V,,..., V,} cover Vand V\Q respectively. Since V; and their intersections
are also 0-pseudoconvex open sets, the covering (B, B') satisfies the conditions of
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Leray’s Theorem (cf. Komatsu [21]). Thus, by Leray’s Theorem, we obtain the
isomorphism Hi(V, 0)= H"(B, B’, ¢). Since the covering B is composed of only
n+1 open sets V; (j=0, 1,..., n), we easily obtain the isomorphisms

(B, B, 0)=0(N,; V).

CrI(B, B, 0)= & O(N V).

j=1 i f

Hence we have
SCrUB, B, O)= S (A V)|V, 00V,
j=1 ixj

Thus we have the isomorphisms

H(V, O)= HY(B, B', 0)=Z"(B, B, 0)/sC™ (B, B, 0)
=600 VI E, 000y -

Thus we have the following

Theorem 3.6.2. We use notations as above. Then we have the isomorphisms
Hy(V, 0)= H(B, B, O)= (N, O O(Mixj Vi)

At last we will realize modified Fourier analytic functionals with certain compact
carrier as (relative) cohomology classes with coefficients in @.

Let K be a compact set in E" of the form K=K, x --- x K, with compact sets
K; in E=E' (j=1,2,...,n). Assume that K admits a fundamental system of
0-pseudoconvex open neighborhoods. Then we have

H¥(K, 0)=0 for p>0.
By virtue of Martineau-Harvey’s Theorem, there exists the isomorphism
O(KY = HY(Q, 0).

Here Q denotes an open neighborhood of K. Further assume that there exists an
0-pseudoconvex open neighborhood Q of K such that

is also an (E—pseudoconvex open set for j=1, 2,...,n. Then U={Q,=Q, Q,..., Q,}
and W'={Q,, Q,,..., Q,} form acyclic coverings of 2 and Q\K. Set

QK=" Q, Q=N Q.

i=1 i
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Let 3 6(Q7) be the image in G(Q4K) of [T 6(2) by the mapping
J i=1

e — 3, (=1,

where f’; denotes the restriction of f; to Q#K.
Then, by the same method as that of Theorem 3.6.2, we have the following

Theorem 3.6.3. We use the notations as above. Then we have the isomor-
phisms

O(KY = HYQ, 0)=H"(B, B', O)=~0(Q4K)|S. & (QF).
~ J

Chapter 4. The case of the sheaf EQ

4.1. The Dolbeault-Grothendieck resolution of 0

In this section we will construct a soft resolution of E@: In this chapter we
always assume that E is a Fréchet space whose topology is defined by a family
J =7 g of continuous seminorms of E. 5

At first we will define sheaves £0 and E¢&.

Definition 4.1.1 (The sheaf Ez of germs of slowly increasing E-"valued holomorphic
functions over E"). We define the sheaf 5(9 to be the sheafification of the presheaf
f@(!) E)}, where, for an open set Q in E", the module 0(Q; E) is defined as follows:

0(52; E)={fe®(Qn C"; E); for any positive ¢ and any compact set K
in Q and any qe .7, sup {q(f(z))e(—¢|z|); ze Kn C"} < oo holds).

We call this sheaf EQ the sheaf of germs of slowly increasing E-valued holo-
morphic functions.

Definition 4.1.2 (The sheaf Eg of germs of slowly increasing E-valued C*-
functions). We define £& to be the sheafification of the presheaf {£(Q; E)}, where,
for an open set Q in E", the module &(Q; E) is defined as follows :

5(!2; E)={fe&(Qn C";E); for any positive ¢ and any compact set K in Q
and any ae N** and any qe.7, sup {q(f @ (2))e(—é|z|); zeK n C"} < oo holds}.

Then the sheaf £& is a soft Fréchet sheaf and we have the following

Theorem 4.1.3 (The Dolbeanlt-Grothendleck resolution of Emf’) The sequence
of sheaves

O——)E(‘O:pIU—-n—)Eégp’olU.__é_.) E(ggl’sl(U_é_) ,,,,,, __i_,Eé:gp,n[U____)O
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is exact, where U=int {z € C"; |Im z| —|Re z| <d}? for some d>0.
Proof. The exactness of the sequence
0 EQr|U —, Egn\|U —3, Egp1|U

is evident.
Next the exactness of the sequence

EGpO|U 2, Egp1|U 2, ... b, EErn|U —,
follows from the following

Lemma 4.1.4. Let Q be an (g-pseudoconvex open set in E".  Then the equation
du=f has a solution ue&r4Q; E) for every fe&ra+\(Q; E) such that 0f=0.
Here p, q=0.

_ Proof of Lemma 4.1.4. If we put 21”‘1~+1(9)={fe (;1’5‘1“(!2); 0f=0} and
Zrat(Q; E)={fe &r1*Y(Q; E); 6f=0}, then Z?9*1(Q) is a nuclear Fréchet space
and

Zroti(Q: B)x 20t (Q)QE

holds. By virtue of Theorem 3.2.10, we have an exact sequence
EP1(Q) — ZPat1(Q) — 0

for the 5-pseudoconvex open set. Then, since we have also

ér9(Q; E)= 67 1(Q)QE,
we have an exact sequence

Era(Q; E) —2\ Zpat1(Q; E) — 0
by virtue of Tréves [36], Proposition 4.3.9. Q.E.D.
This completes the proof of Theorem 4.1.3. Q.E.D.

Corollary. We use notations in Theorem 4.1.3. For an open set Q in U, we
have the following isomorphism:

HH(@, 07)={fe 674(Q; E); 3/=0/{0g; g€ 674725 B)}, (p20, 4Z1).
Proof. It follows from Theorem 4.1.3 and Komatsu [21], Theorems I1.2.9
and I1.2.19. Q.E.D.

4.2. The Oka-Cartan-Kawai Theorem B
We will prove the Oka-Cartan-Kawai Theorem B for the sheaf 0.
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Theorem 4.2.1 (The Oka-Cartan-Kawai Theorem B). For any 5-pseud0convex
open set Q in E", we have Hi(Q2, E0?)=0 for p=0 and q=1.
Proof. Since we have, by the Oka-Cartan-Kawai Theorem B for (3,
HY(Q, 0°)=0 (p=0and s=1),
the complex obtained from Theorem 3.2.11:
EPO(Q) T EP1(Q) Ly s T, EPN(Q) — 0
is exact. Since Z”P"I(Q)’s are nuclear Fréchet spaces and E is a Fréchet space, the
complex
E7(Q; B) —L> 67:1(Q; E) —Ls oo 8, 627(Q; E) — 0
is also exact by virtue of the isomorphism
Er1(Q; E)=ér9(Q)QE
and Ion and Kawai [5], Theorem 1.10. Hence we obtain
HY(@, F0n)=0 (p20, g21).
This completes the proof. Q.E.D.

Corollary. Let Q be an (;-pseudoconvex open set in E". Then the equation
du=f has a solution ueé&»4Q; E) for every fe cf"l”q“(Q; E) such that 0f=0.
Here p and q are nonnegative integers.

Proof. It follows from Theorem 4.2.1 and Corollary to Theorem 4.1.3.
Q.E.D.

4.3. Malgrange’s Theorem
We will prove Malgrange’s Theorem for the sheaf E¢.

Theorem 4.3.1. Let Q be an open set in E" such that, for any zeQnC",
|Im z| —|Re z| <d holds for some constant d>0. Then we have H(Q, E(§)=0.

Proof. By virtue of Theorem 3.2.11 and 3.3.1, we have an exact sequence
EOn1(Q) 2, £01(Q2) — 0.
Thus, by Tréves [36], Proposition 4.3.9, we have the exact sequence
EOn1(Q)RE —L, 6°7(Q)QF — 0
or

E0n-1(Q; E) —2, £9%(Q; E) — 0.
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Hence we obtain the conclusion. Q.E.D.
Corollary. Flabby dim EQ <n.
4.4. Serre’s duality theorem

Theorem 4.4.1. Let 2 be an open set in E" such as in Theorem 4.3.1 and
such that dim H?(Q, 0)< oo holds (p=1). Then we have the isomorphism HP(Q,
EQ)= L(H1 (R, 0); E), 0Sp<n.

Proof. By the same methog as Junker [15], Lemma 3.5, we can obtain the
isomorphism H?(Q, £0)~H»(Q, 0)®,E. Then, by Theorem 3.4.1, we have the
following isomorphisms

HP(Q, E0)= HP(Q, 0)® E=[H27(Q, 0)1' ®,E= L(HI (R, 0); E).
Q.E.D.

4.5. Martineau-Harvey’s Theorem

Theorem 4.5.1. Let K be a compact set in E" such that it has an 0:-pseud0-
convex open neighborhood Q and satisfies the conditions HP(K, 0)=0 (p=1).
Then we have H(<Q, EQ)=0 for pn and isomorphisms HQ, £0) =~ H"Y(Q\K,
E0)= L(9(K); E).

Proof. We can assume that Q is an 5-pseudoconvex open neighborhood of K.
Then, in the long exact sequence of cohomology groups (cf. Komatsu [21], Theorem
11.3.2):

0 — HYUQ, Ed) — HO(Q, E0) — HO(Q\K, EQ)

— HL(Q, EO) — H(Q, E0) — H'(Q\K, E0)
—— HY(Q, F0) — H"(Q, E0) —> H"(Q\K, EO) — ...

we have HP(Q, E(ﬂ) 0 for p=1 and HYQ, L@) 0 by the unique continuation
theorem. Hence we have isomorphisms

HI(Q, E0)=0(Q\K; E)/6(Q; E)
HYQ, EO)xH>"(Q\K, E0), p22.

But, by the same method as J unker [15], Lemma 3.5, we have 1somorphlsms He(V,
E@)"’HP(V 0)® E, 0<p<n, where V is an open set in E" such that, for any
zeVn C* |Imz|—|Re z|]<d holds for some constant d>0. So that, by Theorem
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3.5.1, we have isomorphisms
HYQ, EO)= HYQ, 0)® E=0  for pn,
and
1(Q, FO) = H"Y(Q\K, F0) = H"(Q\K, 0)® ,E= HY(Q, 0)®,E
~0(K)'®,E=LO(K); E).
Q.E.D.

4.6. Sato’s Theorem

_In this section we will prove the pure-codimensionality of D" with respect to
E@. Then we will realize E-valued modified Fourier hyperfunctions as ‘““boundary
values’’ of E-valued slowly increasing holomorphic functions or as (relative)
cohomology classes of E-valued slowly increasing holomorphic functions.

Theorem 4.6.1 (Sato’s Theorem). Let Q be an open set in D" and V an open set
in E™ which contains Q as its closed subset. Then we have the following

(1) The relative cohomology groups H5(V, E0) are zero for pn.

(2) The presheaf over D"

Q —— Hu(V, E0)

is a flabby sheaf. ,
(3) This sheaf (2) is isomorphic to the sheaf £2 of E-valued modified Fourier
hyperfunctions.

Proof. (1) By the excision theorem, we may assume that V is an @-pseudo-
convex open set in E". Consider the following exact sequence of relative
cohomology groups

0 — H(V, E0) — HY.(V, EO) — HY(V, E6)

s Hig(V, 50) — .. — HE'(V, £0)
—— Ho(V, 50) — Hpu(V, EO) — HB(V, E0)
—— HEEW(V, EO) — .

By Theorems 3.1.8 and 4.5.1, we may conclude that HZy(, 55)=H§’2a(l/, E@:)=0
for pxn. So that, we have H5(V, £0)=0 for pxn—1, n. On the other hand, by
Theorems 3.1.8 and 4.5.1, we also have the exact sequence

0 — Hy 'V, E0) —> L(¢£(9Q); E) —» L(£(2%); E).
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Since j is injective, we have H5 (V, E(:9)=0. )
(2) By Malgrange’s Theorem, we can conclude that flabby dim Eg<n. Thus
by (1) and by the theorem 11.3.24 of Komatsu [21], we have the conclusion.
(3) By the proof of (1), we have the exact sequence
0 — Hig(V, E) — Hba(V, EG) — H(V, EO) — 0.
Since, by Martineau-Harvey’s Theorem, we have isomorphisms
1oV, E0) = L/ (00); E),
Hpy(V, 50)= L(2(Q9); E),
we obtain the isomorphism
Hy(V, £0)= L(g£(Q%); E)/L(£(9Q); E)=2(Q: E).
Thus the sheaf Q—H{(V, E(;) is isomorphic to the sheaf £2 of E-valued modified
Fourier hyperfunctions over D". Q.E.D.

In the same notations as in Theorem 3.6.2, we have the following

Theorem 4.6.2. Hy(V, EO)=HYB, B, EO)=0(N\, V;; E)/Jil 0N, Vi E)
holds.

At last we will realize modified Fourier analytic linear mapping with certain
compact carrier as (relative) cohomology classes with coefficients in EQ,

Let K be a compact set in E” of the form K=K, x ---x K, with compact sets
K; in E (j=1,2,....,n). Assume that K admits a fundamental system of 0-
pseudoconvex open neighborhoods. Then we have

HP(K, ¢)=0 for p>0.
By virtue of Martineau-Harvey’s Theorem, there exists the isomorphism
0'(K; E)y= HY(Q, £0).

Here Q denotes an open neighborhood of K. Further assume that there exists an
0-pseudoconvex open neighborhood € of K such that

Qj-:Qn{ZEEn; ZJQKJ-}

is also an z-pseudoconvex open set for j=1,2,...,n. Then B={Q,=Q, Q,,..., Q,}
and B'={Q,, Q,,..., Q,} form acyclic coverings of Q and Q\K. Set
Q8K= N Q,,
i=1

QJ: f\. Qi'

i=j



100

Yoshifumi ITo

Let 3 0(Q7; E) be the image in 6(Q#K ; E) of [T 6(Q7; E) by the mapping
J j=1

(D3 — £ (=175,

where f’; denotes the restriction of f; to Q#K.

Then, by the same method as that of Theorem 4.6.2, we have the following

Theorem 4.6.3. We use the notations as above. Then we have the isomor-

phisms

(11
[2]

[3]
[4]
(5]

(6]

[8]
[9]
(10]

(11]
[12]

(13]

(14]
[15]

0'(K; E)~ Hy(Q, E0)~ H(B, B', E0)~ G(Q4K ; E)|S. 0(Q7; E).
~ J
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Tokushima University
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