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§1. Introduction

In the previous paper [8], we have considered a periodic solution of a periodic
differential system whose first variation equation has a characteristic multiplier one
and we have proposed a method for computing singular points of nonlinear equations
defined by solutions of periodic systems involving parameters. Further, we have
also given a method for computing bifurcation points of periodic solutions of peti-
odic systems.

In the present paper, we shall consider a periodic solution of an autonomous
system whose first variation equation has a double characteristic multiplier one
and we shall discuss singular points and bifurcation points of nonlinear equations
defined by solutions of autonomous systems involving parameters.

Roughly speaking, as has been shown in [8], a characteristic multiplier one
corresponds to a periodic solution of the first variation equation. In the case of an
autonomous system, on the other hand, if the system has a periodic solution, then
the first variation equation necessarily has a periodic solution. Therefore we must
consider another periodic solution of the first variation equation independent of
such a periodic solution.

Although such a difficulty exists in the case of an autonomous system, the
theory and method used for overcoming difficulties arising from the singularity of
the Jacobian matrix of a nonlinear equation implicit in form are the same as the
ones used in the previous paper [8].

In this paper, in §2, we consider turning points, cusp points, etc. of nonlinear
equations defined by solutions of autonomous systems involving parameters. And,
in §3, we consider bifurcation points of periodic solutions of autonomous systems.

Lastly, in order to illustrate our theory and method, we present some examples
of singular points and bifurcation points in §4. These examples show the usefulness
of our theory and method.
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§2. Singular Points of Nonlinear Equations Defined by Solutions of
Autonomous Systems Involving Parameters

We consider an w-periodic solution of a real n-dimensional autonomous system

dx _
(2.1) T = X(x, B),

where X(x, B) is continuously differentiable with respect to (x, B) in the region 4.
Here 4 is some region of the (x, B)-space, and B is a parameter and we assume that
the dimension of the parameter B is m (>1). Of course, the period w is unknown.

At first, let us suppose that the values of (m — 1) components of B are given and
one and only one component of B is unknown. For the sake of simplicity, we
denote such an unknown component of B by B and this is called the parameter B
with dimension one.

Now, transforming 7 to ¢t by 7= -2—&7)1*2? in (2.1), we have
d
(2.2) _d’;_ = 2“’7 X(x, B).

Therefore the problem of finding an w-periodic solution of (2.1) is reduced to the
one of finding a 2n-periodic solution of (2.2). .

As is well-known, when x(f) is a solution of (2.2), x(t+«) is also a solution of
(2.2) for an arbitrary constant a. This fact tells us that no 2z-periodic solution of
(2.2) is uniquely determined by the periodic boundary condition alone. Then we
must give one more condition (cf. [1]). In order to simplify the following
argument, we adopt the condition

(2.3) x(0)=p

as an additional condition, where x(0)=(x,(0), x,(0),..., x,(0))T and B is a constant
number. About how to choose an additional condition, see Section 5. Here
(---)T denotes the transposed vector of a vector (---).

T
Setting u=(x, @) and V(u, B)= <7°‘7’t_ X(x, B), o) , we rewrite (2.2) in the

following form:

du _
Thus, we consider a 2n-periodic solution u=u(#)=(x(t), w)T of (2.4) satisfying the
condition (2.3).
- Let (o(t, u(0), B), w)" be a solution of (2.4) at agiven B such that (¢(0, u(0),
B), w)" =(x(0), w)", where (x(0), B)e 4. Then we consider the equation
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QD(Oa U(O), B)—(p(sz, M(O), B) >

Xq—

(2.5) F(u(0), B)= <

>

( x(0)— ¢(27, u(0), B) )
x,—f

Whel‘e u(O)———(X(O), w)Ta X(0)=(x1(0), x2(0)9"'> xn(O))T=(x1a Xoseees Xy T' By the
assumption on X(x, B), the function F(u(0), B) defined by the equality (2.5) is con-

tinuously differentiable with respect to (u(0), B) and we denote by F,(u(0), B) the
Jacobian matrix of F(u(0), B) with respect to u(0)=(x(0), w)”. Then we have

En,n+ 17 l111(271:)
(2.6) F(u(0), B)= < )

where E, . =(E,, 0) (E, is the nxn unit matrix and 0 is the n-dimensional zero

vector), and ¥,(¢) is the nx (n+ 1) matrix satisfying ¥(1)= <(')Pl((§%> Here ¥(t) is

the fundamental matrix of the linear homogeneous system

dk

@7 L

Vi(u(®), B)k

satisfying the initial condition Y(0)=E, ., ((n+1) x (n+1) unit matrix), where

w 1
(2.8) vV (u, B)=< 2 Nl B g X5 D) >
00------0 0

and X (x, B) above denotes the Jacobian matrix of X(x, B) with respect to x.
Further, ¥,(¢) can be written in the following form:

t
29) (=2, - 0,(0e),
where @,(1) is the fundamental matrix of the linear homogeneous system
dh o
(2.10) i X.(x(2), B)h

satisfying the initial condition @(0)=E,, and ¢ = X(x(0), B).

Now we consider the case where the first variation equation (2.10) has a double
characteristic multiplier one. That is, we consider the case where the matrix @,(2r)
has a double eigenvalue one.

Assume that there exists a point (#(0), B) ((£(0), B) € 4) satisfying the equation
(2.5) and also satisfying
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En,n+ 1 ¢1(2ﬂ)
(2.11) rank =n,

where 1(0)=(£(0), &), ¥,(1)=(d,(1) ;_n@l(z)e) (¢=X(%(0), B)). Here &,(t)isthe

fundamental matrix of (2.10) at u=1(f)=(%(t), ®)T and B=B satisfying the initial
condition &,(0)=E,, where #i(t)=(%(f), ®)T is a 2n-periodic solution of (2.3)(2.4)
at B= B through (£(0), ®)T at t=0. The condition (2.11) can be rewritten in the form

(2.12) rank F(4(0), B)=n.

This point (4(0), B) is called a “singular point’’ of the nonlinear equation (2.5). We
discuss the singular point ((0), B) and we propose a method for computing it.
For the sake of simplicity, without loss of generality, we assume that

En,n+l '—!Pl(ZTt) Dl(zn)
(2.13) n=rank =rank ,
10---0

where D,(27) is the n x n matrix obtained from Epni1— ¥,(27) by deleting the first
column vector. As for the permissibility of the assumption (2.13), see Section 5.
Then, by the condition (2.13), the equation

E, .+ “'1?’1(2“)
010 «vvveeennnn. 0

3

(2.14) (where k= (ky,..., k,, k,+1)7)

k1_1=0

has a solution k=(k,,..., k,, k,. )T and this solution & is really the initial value of a
2n-periodic solution of (2.7) at u=d(f) and B=B satisfying k,(0)=k,=1. That
is, P(0)k is a 2z-periodic solution of (2.7) at u =1i(r) and B=B. Hence, when &,(2n)
has a double eigenvalue one and the condition (2.13) is satisfied, in order to obtain
the singular point (%(0), B), we have only to find a 2n-periodic solution (4(t), k(f), B)T
of the system

du _

At V(u, B),
(2.15)

dk _y . Bk

dt we
satisfying the conditions
X2~ ﬂ =0,

(2.16) k,—1=0,

k2=0a
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where 4(0)=(x(0), ®)T, x(0)=(x,(0),..., x,(0)T =(xq,..., x,)T and k(0)=(k(0),...,
kn(o)’ kn+ 1)T=(k1"' 9 kna kn+ I)T'
As is seen from the above argument, the problem (2.15)—(2.16) certainly has a 2n-
periodic solution (4(?), k(t), B)T. Indeed, k(t)=P(nk.

Now we discuss the isolatedness of this periodic solution (fi(t), k(t), B)T.

Let ((q)(f;) x)>, <(p1(t’ x)»T be a solution of (2.15) such that ((QD(%) x)>’

nt1

(70 ) (). O e x50, 7, w00,

n+1

k(0)=(k(0), k,, )T and k(0)=(ky,..., k,)T. Then we consider the equation

®(0, x) —o (27, x)\
)
2.17) F(x)=| (9,00, x) —@,(2n, x)\ | =0.
)
ki—1

Of course, the initial value %=(#(0), k(0), B)T of the 2=n-periodic solution
(@(t), k(t), B)T of (2.15)~(2.16) is a solution of (2.17). For this solution X, we have

Theorem 1.

Assume that X(x, B) is twice continuously differentiable with respect to (x, B)
in the region A.

If the conditions

( E, .1 _'fll(z”) Dl(zn)
n=rank =rank

10---0 |
(2.18)

'D,(2m) &,(2m)
<n+1=rank (
10---0 0

are satisfied, then the matrix F'(R) is non-singular if and only if

¢ Dy@2n) 1(2n)
(2.19) rank( =n+1,
10---0 0

where
F'(x) denotes the Jacobian matrix of F(x) with respect to X; ¢, 2n)=

A

- 2n . -~
®,(2n) So &7(s) 26(7)r X 5(%(s), B) ds, where Xg(x, B) denotes the partial derivative

of X(x, B) with respect to B; 1(2n)= —¥,(2n)k(0), where P ,(t) and P ,(t) are the
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nx(n+1) matrices such that P(f)= <O¥/1g%> and ‘f’z(t) = <0W2(()t())>, respectively.
Here (P(t), ¥ ()T is a solution 2(n+1)x (n+1) matrix) of the system

dz,

d[ = V;‘(ﬁ(t), B)Zl’

(2.20)
Ej?z =V, (8(t), B)z;+ {V,(0(1), BYk(1)}z,

satisfying the initial condition (¥(0), 5%’2(0))T=(E,,+1, 0)T (0 denotes the (n+1)x
(n+1) zero matrix), where V,, (u, B) denotes the second derivative of V(u, B) with
respect to u.

Proor. By the assumptions of the theorem, the function F(x) defined by the
equality (2.17) is continuously differentiable with respect to x. Then, for the so-
lution ¥, we have

E, w1 _'Pl(zn) ) _21(275)
( o [

010 <+vvveeennns 0 0
(2.21) F(%)= —~¥,(2n) E,...—P.2n)\ / =&@n) N |,
< 000 «+vvveenens 0 ) ( 010 -cvvvvveee. 0 ) ( 0 >
000 - eieeernnn 0 100 +evevevnnn. 0 0

where (&,(1), ()T (E()=(&(1), 0)T (i=1, 2)) is a solution of the system

L=V (0(1), B, + Val(a(), B),

B2 Va0, B+ (00, B+ Vi1, BR()

satisfying the initial condition (&,(0), &,(0))T=(0, 0)T. Here Vy(u, B) and V,s(u, B)
denote the partial derivatives of V(u, B) and V,(u, B) with respect to B, respectively.
In fact, Vg(u, B) is of the form

(2.22)

. T
Vp(u, B)= (ﬁ X g(x, B), 0> .
From (2.18) and (2.21) it follows that

(2.23) det F'(%)=0 is equivalent to (2.19).
This completes the proof. Q.E.D.

The 27-periodic solution (4(2), k(t), B)T of (2.15)~(2.16) satisfying det F'(%)=0
is called to be “isolated”.
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When rank (11)6(28) l%’”) =n, the equation
o En,n+1 - lPl(ZTL') 7(27‘:)
5 )
(2.24) 010 coveevveeees 0 0

has a solution p, where p=(py,..., Ps» Pu+1)’- This solution p becomes the initial
value of a 2n-periodic solution of

(2.25) ildl‘t—z— =V, (a(t), Bk, +{V,.(04(2), Bk, (D)}k (1),

where k,(f)=Kk(r). That is, ky(t)=P()p+P,()k(0) is a 2r-periodic solution of
(2.25). Hence we have only to find a 2n-periodic solution (#(%), k. (1), ky(©), B)T of
the system

du
7&7 V(ua B) ’
(2.26) 4Ky — v, Bk,
dt
dk, _
—dl‘—— - I/U(u3 B)kZ +{Vuu(u’ B)kl}kl
satisfying the conditions
Xy — ﬁ =0,
ki—1=0,
(2.27) k?=0,
ki=0,
k3=0,

where u(0)=(x(0), ®)T, x(0) =(xy,..., x,)T, k0)=(k},..., k¥, k#*1)T (i=1, 2) and the
dimension of the parameter B is two. By the dimension of the parameter B being
two, is meant the parameter B such that the values of (m —2) components of B are
given and its remaining two components either of which is the preceding unknown
component are unknown. For the sake of simplicity, we write such two unknown
components of B as By, B, and we denote the parameter B by B=(B;, B,)” and this is
called the parameter B with dimension two. Since the equation (2.25) has a 2r-
periodic solution, the problem (2.26)-(2.27) certainly has a 2m-periodic solution
(@(2), ky(0), ka(0), B)T.
Now let us discuss the isolatedness of the solution (fi(t), k4(t), k,(1), B)T,
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Let ((qo(téuxz)> , <(p1]£€,’+'f2)> , <¢2](€t,,’+f2)>>T be a solution of (2.26) such that
1 2

0, L0, 0, T 0 k(0 k,(0)\\7
(). ("), (P =(C0). (4. () v
x2=(u(0), kl(O)a k2(0)> B)T: u(0)=(x(0), w)T: X(0)=(X1,..., xn)Ts kl(0)=(kl(0)’ k?+1)T’
ki(0)=(k},..., k’)T (i=1, 2) and B=(B,, B,)T. Then we consider the system

< ¢(0, x,) —o(2m, x,) )
X, —p
90100, x,) — 0,27, x,)
k3

(2.28) : F,(x,)= =0.
( 9200, x;) —@,(2m, x;) >

Of course, the initial value £,=((0), k,(0), k,(0), B)T of the solution
(@), k,(0), k,(1), B)T of (2.26)-(2.27) is a solution of the system (2.28). For the
solution %,, we easily get the following theorem.

Theorem 2.

Assume that X(x, B) is three times continuously differentiable with respect to
(x, B) in the region A.

If the conditions

( En,n+1_lj/1(27f) D1(275)
n = rank ( > =rank< >
010 «vvvvenennn. 0 10---0
(2.29) R .
" D,(2m) &141(2m) )
<n+l=rank<
10---0 0
and
s ﬁl(Zn) ) O ( ‘511(275) > ' —512(2”) )
( 10--- 0 0 ( 0 )
(2.30) rank =2(n+1)

( D,(2m) )( D, (2m) >( —&51(27) >< —522(271)>
00--0 /\ 100 0 0

are satisfied, then the matrix F5(,) is non-singular if and only if



On Periodic Solutions of Autonomous Systems 31

' D,(2n) 1,(2n)
(2.31) rank( =n+1,
10---0 0

where
F’(x,) denotes the Jacobian matrix of F,(x,) with respect to x,;
(P(1), (1), P,()T is a solution (3(n+ 1) x (n+1) matrix) of the system

(dz, _

dt - u(u(t)a B)Zla

ddztz =V (2(t), B)z,+ {V,.(a(1), BYk; (D)} 25,
(2.32)

d;: =V, (i(t), B)zy+2{V,(a(t), B)k((1)}2,

+ [V 8(8), BYey (0} kr (1) + V,(8(8), Bko(1)]z,

satisfying the initial condition (¥(0), 'z »(0), 7 30)T=(E,;, 0, 0OV, where V,,(u, B)
denotes the third derivative of V(u, B) with respect to u;

D,(2m) and D,(2n) are the nx n matrices obtained from E,,.,—¥,(2n) and
—¥,(2n) by deleting the first column vectors, respectively, where ¥,(2n) and

P,(2n) are the nx(n+1) matrices such that ‘I’(2n)=< 1(2n)>and ?’2(271):

2 00---01
<(l‘;’02(2g())> , respectively;

1), ST En=C ), O (j=1,2)) (i=1, 2) are solutions of
Ao~y a0, B, + Vi (00, B,

(2.33)
b2~ V00, B+ V00, B+ Van 000, BRA)

satisfying the initial condition (€,/0), £,(0)T=(0, 0)T (i=1, 2), respectively, where
Vs (u, B) and V,g(u, B)(i=1, 2) are the partial derivatives of V(u, B) and V ,(u, B)
with respect to B; (i=1, 2), respectively;

3(27r)——‘I’3(27r)k1(0) 29,(21)k,(0), where ¥5(2n) is the nx(n+1) matrix

such that ‘1’3(275) <003(2(1)r())>

More generally, we suppose that d components of the parameter B are unknown
(3<d<m) and X(x, B) is (d+1) times continuously differentiable with respect to
(x, B) in the region 4. For the sake of simplicity, we write such unknown com-
ponents of the parameter B as By, B,,..., B; and we denote the parameter B by B=
(B, B,,..., By)T and this is called the parameter B with dimension d.

Put
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(2.34) VO=F OV k., (<j<d),
where V@ =V, (u, B), and V{9 (¢=0, 1,..., d—1) denote the derivatives of V@
(=0, 1,...,d—1) with respect to u, respectively, and k, (r=1,...,d) are (n+1)-
dimensional vectors.

We assume that there exists a 2n-periodic solution (2(t), k,(1),..., k(t), B)T of
the system

du _

ar V(us B),

dkl — (0)

i =V Ok,

(2.35)

de = J/(0) (1)
- |
ddtd = g.o d—lCiV(l)kd—i

satisfying the conditions
X2— ﬁ = 05
ki—1=0,

2
kt
1
2

TN

(2.36)

b
2
b

=
NN
I

=
A
Il

Il

0
0
0
0,
k%=0,

where  u(0)=(x(0), ®)T, X(0)=(x1,..., )T and  k(O)=(kl,..., kr, ki)
(i=1, 2,...,d). Moreover we assume that for the solution (2(t), k,(?),..., k1), B)T,
the conditions

( D,(2n) D,(27) 1,(27)
n = rank < > =rank< >
10---0 10---0 0
( E1(27f) 22(27'5) [jl(zn) 2;1—1(275)
(2.37) =rank< =......=rank )
10---0 0 10---0 0

D,2n) 1,2n) )

<n+1=rank
10---0 0

\
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0C0< D,(2n) ) 0 O

10---0
D,(2n) D,(2n)
1CI< i > 1 < > 0
00---0 10 ---0
(2.38) rank ; A A
D,(2n) D,(2n) D,(2m)
00 -0 00 -0 100
Dy (2r) b, 2n) D, s 2m)
d—lcd—l ( > d—lCd—2< > d—lcd—3 ( )
00 ---0 00-+---- 0 00 - 0,
—511(275) _514(275)
0 ( 0 >< 0 >
—521(275) —524(2”) >
0 < 0 >( o
R R @) =d(n+1)
—¢&31(2m) —&34(2m )
Q < 0 ) ( o
b,(2n) )( —&,,2n) > ( —&,,27) )
! °< T 0 0

are satisfied, where

@), B0y a7 (PO = (g 1 )and 7 0= ¢ 1BY (=2, d+1)

is a solution ((d+ 1)(n + 1) x (n+1) matrix) of the system

s le ~
4z _poyg
di 1

(2.39) % = POz, + VWz, |

d.Zd+1 d (i)
L =2 CiVPz41-
dt i=o

satisfying the initial condition (¥9(0), l;’512(0),..., l'It’dﬂ(O))T:(E,,H, 0,..., 0)T (0 is the
(n+1)x (n+1) zero matrix), where P® (r=0, 1,..., d) denote the values of . V®
(r=0, 1,..., d) at (u, ky,..., kgy BYT=(0(0), ky(D),..., ki(2), B)T, respectively;

(2.40) Lan=— % ,CP @Ok (<j<d);
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D,(2n), D,(2n),..., D,(27) are the nx n matrices obtained from E, ,,, — ¥,(2n),
—¥,(2n),..., — P ,(2n) by deleting the first column vectors, respectively;

(Elj(t),“w gdj(t))T (ij(t)z(ij(tL O)T (q = 15 25-“5 d)) (.}’_“ 13 29»”3 d) are Solutions

of
&y _por, 47,
(2.41) -f%m = VO + PO+ POk, (1),
L
|G =5GP0l T aCiP PR i)

i=0
satisfying the initial condition (&, j(O),..,,Edj(O))T=(0,...,0)T, respectively, where
Vs, and Vi) (j=1,2,...,d; g=0, 1,..., d—2) are the partial derivatives of ¥(u, B)
and V@ with respect to B;, respectively, and VBJ, and f’};‘} (j=1,2,..,d;
q=0,1,...,d—2) denote the values of Vg, and Vf,;? at (u, ky,..., kg, B)T =
(a(e), kl(t), , k1), B)T, respectively.

In order to discuss the isolatedness of the solution (i), ky(£),..., k«(t), B)T, we

consider the equation
( @(0, x5) — (27, x,) >\
x,—f

<(P1(0 x;)—¢,(2m, xd)>
(2.42) Fy(x,)=

((Pd(o x;)— (Pd(z7r xd)>

Va(xy)

where  x,=(u(0), k1(0),..., ki(0), B)T, u(0)=(x(0), ®)7, x(0)=(xy,..., x,)7, k{(0)=
(El(0)9 k;_x'*'l)T’ E:(O)::(klw k%""’ k?)T (l=17 29--'9 d)a B=(Bla'~-a Bd)T$ t/’d(xd)=
ki1, ki,..., kDT, and((mg} xd)> (‘Pllgl,;fd)),..., (‘Pd,(cgjd))f is a solution

of (2.35) such that (((p(O xd)) (qoll({g;;xd)),..., <(pdl(c(§);fcd)>>T=<<xc(!?)>,

(kln@) ( k‘%@)) . Then the initial value £,=(2(0), k,(0),..., k(0), B)T of
the solution (4(f), k,(1),..., k«t), B)T is of course a. solution of the system (2.42).
For the solution %,, we have the following theorem.

Theorem 3.
The matrix Fy(%,) is non-singular, where Fj(x,) denotes the Jacobian matrix of
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Fy(x,) with respect to x,.

Proor. The proof of the theorem is similar to the one of Theorem 3 of the
paper [8]. For the proof, see the paper [8].

The 2m-periodic solution (2(1), k,(1),..., k,(t), B)T of (2.35)~(2.36) satisfying
det Fj(x,) =0 is called to be “isolated’’.

In order to get a highly accurate approximation to the isolated 2n-periodic
solution of (2.35)-(2.36), we have applied the Urabe-Galerkin method to (2.35)-
(2.36) and we have obtained a desired approximation with high accuracy. For the
details of the practical numerical methods, see [6].

Remark 1.
As has been shown in [8], for the solution £, of (2.42), we have
D,(2n) 1,(2n)

=n+1.

(2.43) det F; (%,) =0 is equivalent to rank(
10---0 O

Remark 2.

Recently, when the dimension of the parameter B is one, R. Seydel [4] has
considered a system similar to (2.15). But he did not give any condition for guar-
anteeing the isolatedness of a solution of the system. Further, he did not describe
anything about the case where the dimension of the parameter B is greater than one.

Remark 3.

............

( (0, y)—o(2r, y) )
(2.44) G(y)= X, p
g(»)

instead of the system (2.17), where y=(u(0), B)", u(0)=(x(0), )7, x(0)=
(Xg,..., x,)T, and (@(t, y), ®)T is a solution of (2.4) at a given B such that

(90, y), ®)T=(x(0), w)T, and g(y)=det (gi'ﬁ'“”lpl(zg)) Then the system

............

=0

(2.44) has a solution $=(4(0), B)T. Under the same assumptions as in Theorem 1,
for the solution y, we have

(2.45) det G'(p) =0 is equivalent to (2.19),

where G'(y) denotes the Jacobian matrix of G(y) with respect to y.
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§3. Bifurcations of Periodic Solutions

In this section, we consider bifurcations of periodic solutions of the autonomous
system (2.1). Throughout this section, we assume that X(x, B) is twice continuously
differentiable with respect to (x, B) in the region 4 and the dimension of the parameter
B is one.

Now we classify bifurcations into the following two cases.

Case (I). Concerning the right-hdnd member X(x, B) of the system (2.1), we
assume that for any t

X(xo(t+m), By=—X(x0(t), B), Xp(xo(t+m), B)=—Xg(xc(t), B)
(3.1 and
Xx(xo(t + ﬂ)a B) = Xx(x()(t)a B)

for an arbitrary 2m-periodic function xo(t) which satisfies both x(t+m)= —x(1)
for any t and (xo(t), B)€ 4 for any t, where X (x, B) denotes the Jacobian matrix of
X(x, B) with respect to x and Xg(x, B) denotes the partial derivative of X(x, B)
with respect to B.

Let B=B be a bifurcation point and u=10(t)=(&(t), ®)T be a 2=-periodic
solution of (2.3)~(2.4) at B=B satisfying %(t + )= —%(t) for any t. When P(t) is
the fundamental matrix of (2.7) at u=10(t) and B= B satisfying the initial condition
P(0)=E, ., P(t) can be written in the form

) ('iu(z)) <@1<r> S NOL >
(3.2) P(1)= = n ,
0---01 0---0 1

where & (1) is the fundamental matrix of (2.10) at x=%(t), o= & and B=B satisfying
the initial condition ®,(0)=E,, and ¢=X(%(0), B). Then we moreover assume that

n—1=rank [E,—®,(n)]=rank [E,+ ®,(n)],
n—2=rank [E,—®,(2n)]<n—1=rank [E,— ®,(2n), ¢]
=rank [E, ., — l1?’1(2”)] >

(3.3) ( En,n+1“q’1(277) ) g En,n+1“q]1(27z) ¢1(2m) >
n =rank =rank( ,
010 cvevvvrseen 0 010+ veen- 0 0
( En,n+1+lpl(7‘:) )
n+1=rank ,
010 «cverveeene 0



On Periodic Solutions of Autonomous Systems 37

where & (1) is defined by

(3.4) &0=8,0) || 376) 2 X,(3(6), Byds.
Case (II). Let u=a(t)=(%(t), ®)T be a n-periodic solution of (2.3)-(2.4) at
B=B and

) <¢1<z)> <@1(r> —{—@(z)é)
(3.5) Y(t)= = T
0---01 0---0 1

/

be the fundamental matrix of (2.7) at u=0(t) and B=B satisfying the initial con-
dition $(0)=E,,,. We assume that

n—1=rank [E,—®,(n)]=rank [E,+ &,(n)],
n—2=rank [E,— ®,(2n)] <n—1=rank [E,— &,(2n), ¢]
=rank [En,n+ 17 l171(277:)] >

(3.6) ( En,n+1—T1(2n)> ( E, 1 —¥1(27) $,(27) > ’
n = rank =rank i
010 cevveenennns 0 010 -veeeenent 0 0
/ E,,5,1+1—W1(7I)
n+1=rank< .
010+vvenen. 0

First, we consider Case (1).
It follows from the assumption (3.1) that for &,(1), we have

(3.7) & (t+1)=d,()d(n)

for any t. By (3.7) we see that

(3.8) & ,(2n)=d,(n)>.

From the definition of &,(7), by (3.1) and (3.8), it is clear that
(3.9) &,2m)=—[E,—®,(m]¢,(m).

Now we consider the equation

< En,n+1 - lIAII(ZTE)

(3.10) >2=A51(2n)

for any constant number A4, where Z=(z, z,,,)7, z=(z4,..., z,)T and 51(275)'=

(&4(2m), O)T.



38 Norio YAMAMOTO
(i) When 4=0, the equation (3.10) becomes
( En,n+1-q]1(2n) )

~

Z=0.

(3.11)

By the use of (3.2), the equation (3.11) can be rewritten in the following form:
(3.12) [ [E,—®:2m)]z~2,4,€=0,
(3.13) z,=0.

Under the assumption (3.3), the necessary and sufficient condition for the existence
of a nontrivial solution of the equation (3.12) is

(3.14) Zn+1=0.

Therefore it is sufficient to consider the equation
E,— &,(2n)
(3.15) z=0

On the other hand, by the assumption (3.3), the equations
[En - 431(”)])’ =0,
[E,+®(n)]v=0

(3.16)

(3.17)

have nontrivial solutions y and v respectively, where y=(y,,..., y,)7 and
v=(vy,..., v,)T. These solutions y and v are linearly independant and y and v are
also solutions of the equation

(3.18) [E,—®,(2n)]w=0.

Since rank [E,— ®,(2nr)]=n~2 due to the assumption (3.3), an arbitrary solution
of (3.18) is of the form

(3.19) a,y+a,v,

where a, and a, are arbitrary constants. Since a solution z of (3.15) of course
satisfies the equation (3.18), we can write z in the form of (3.19).

However ¢=X(8(0), B) is a solution of the equation (3.17), because X(&(¢), B)
is certainly a 2n-periodic solution of (2.10) at x=2£(t), =& and B=B satisfying
XR(t+1), By= — X(%(1), B) for any t. Hence we can take ¢ in palce of v in (3.19).
Then a solution z of (3.15) can be written in the following form:

(3.20) Z=a1y+a26.

The assumption (3.3) tells us that no solution of (3.15) is uniquely determined unless
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we add some additional condition. So we must give one more condition.
Since y and ¢ are linearly independent, there exists a positive integeri (1<i<n,
i%2) such that

V2 &
(21 rank( >= )
Vi G

where ¢=(¢,, ¢&,,..., &,)T.
Now, in order to simplify the following argument, we assume that we can take
i=11n (3.21). In other words, we assume that

En,n+1_q71(2n) Dl(zn)
(3.22) rank =rank =n,
010 +cvevvneens 0 | 10---0
where D,(2n) is the n x n matrix obtained from E,pii— P, (27) by deleting the first

column vector. As for the permissibility of the assumption (3.22), see Section 5.
Then we give the condition

(3.23) z,=a,y,+a,t,=1

as an additional condition. Then a solution of (3.15) satisfying the condition (3.23)
is uniquely determined and we denote such a solution by 2.

When we put Z=(2, 0)7, Z is of course a solution of (3.11). Therefore A(t)=
P(1)% is a 2n-periodic solution of the system

dk

(3.24) S

=V(a(1), Bk

satisfying the conditions

kl = 1,
(3.25)
k2 =0,

where k(0)=(k;(0), k,(0),..., k,(0), k,+ )T =(k,, k,..., ky, k,+1)T. Hence, in order
to obtain the bifurcation point, we have only to find a 2zm-periodic solution
(4(t), k(t), B)T of the system

du _
236) dr V(u, B),
° 9Ky, Bk
dt - u(us )

satisfying the conditions
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x(0)+x(n)=0,
k(0)—k(2m)=0,
(3.27) x,—B=0,
k,—1=0,

k2=0,

where u(f) =(x(t), )T, k(t)=(R(¢), k,» )T and u(0)=(x(0), @), x(0)=(xy,..., x,),
k(0)=(k(0), k, )T, k(0)=(ky,..., k,)T. As is shown in the above argument,
(3.26)~(3.27) certainly has a periodic solution (#(z), k(t), B)T, and the B-component
B of this solution is really the desired bifurcation point. In fact, %(t) satisfies
#(t+m)= — (1) for any ¢ and k(f)= H()=P(1)%.

Next, we discuss the isolatedness of the periodic solution (&(r), k(t), B)T of
(3.26)~(3.27).

Let <<‘/’(fa’) x)>, <‘Plk(t’ x)\>T be a solution of (3.26) such that <<‘/’(%) x)>,

n+1

(910 D)) (<O, (l;w))) where x=(u(0), k(0), B)T, u(0)=(x(0), )T,

n+1

x(0)=(xy,..., x,)T, k(0)=(k(0), k,+1)7, k(©)=(k,,..., k,)T. Then we consider the
system ' .

¢(0, x) + ¢ (=, x)
)
(3.28) F(x)= »,0, x)—0,2n, x) =0.
)
k,—1

Of course, the initial value % =(#(0), k(0), B)T of the periodic solution (4(?), k(r), B)T
of (3.26)—(3.27) is a solution of the system (3.28). For the solution X, we have

Theorem 5.
The matrix F'(X) is non-singular if and only if
D,2n) o
(3.29) rank =n+1,
10---0 0 /-
where

F'(x) denotes the Jacobian matrix of F(x) with respect to x;
P, (t) and P,(t) are the nx (n+1) matrices such that
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. ( 7, (1) ) N /L) >
V()= and Y,(1)= (
0.--01 0---00

/

respectively, where (P(1), &%Z(t))T is a solution 2(n+1)x(n+1) matrix) of the
system

dzl _ A )
dt - u(u(t)s B)Zla

(3.30)

dfi = V,(4(1), Bz, +{V,.(2(1), B)k(2)}z,

satisfying the initial condition (¥(0), l1%’2(0))T=(E,,+1, 0T,
S=—W,02n) —&,(2n), where { is a solution of the equation

< En,u+1+¢’1(7t) ) < El(n)>
(3.31) (= —
0

and (&,(1), &,(0))T () =(&(1), 0)T (i=1, 2)) is a solution of the system

dn

i =Va), By + V@), B),

(3.32)
Dy, a0, By +(Val0(0), By + Vusla(0), BIR()
satisfying the initial condition (€,(0), ,(0))T=(0, 0)T.

Proor. For the solution %, we have

E, pei+ (1) &y ()
<010 ............ 0 > O < 0 )
(333) F 3= —¥,(2n) E,...—¥,2n) -5 20\ |,
( 000 ++--eeveee 0 ) ( 010 coeeveeennes 0 > < 0 )
000 --ccveeenn 0 100 ceveevnenens 0 0

from which it follows that

(3.34) det F'(£)=0 is equivalent to (3.29).

This completes the proof. Q.E.D.
(i) When A4 =0, since

En,n+1+¢1(n)
rank =n+1
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due to the assumption (3.3), the equation
En,n+1+'j]1(”) 51(75)
(3.35) F=—A4
(U

has one and only one solution £, where 2=(z, z,, )T, z=(z,..., z,)T.
(3.35) can be rewritten in the following form:

(3.36) { [Epnss+Pi(m)]z=—AE (),

(3.37) z,=0.

Further, by (3.2), we can rewrite the equation (3.36) in the form
(3.38) [Ext B,(0)]z + 5 2,0, By(m)e = — A& (7).

Since ¢=X(%(0), B) satisfies
[En + @l(n)]é = 09

we have

1 g mpe_ La
3.39) 3 P, (n)e= 5 ¢
and
(3.40) % [E,— &, (n)]e=¢.

The equality (3.39) implies that the equation (3.38) is equivalent to

(3.41) | [E,+ 8, (m)]z— 5 z018=— A&, (1),

The equation

Hence, multiplying the both sides of (3.41) by the matrix E,—®,(n) from the left,

by (3.8) and (3.9), we have
[En,n+ 1 ?1(270]2 = [En— @1(271:)]2 —Zy+ 1é

(3.42) =[E,—&,(®)] [E,+B,(m)]z— 12,1 [E,~ B,(m)]¢

= _A[En —_@1(75)]51(75) =A81(27r) .

This shows that the solution Z of (3.35) is also a solution of (3.10). Therefore %

becomes the initial value of a 2n-periodic solution K(t) of the system

dK

L2 =V (a(t), BYK+A-Vy(a(1), B)

(3.43)
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satisfying h,=0, where K=K(t)=(h(t), h,.,)T and h(0)=(h,,..., h,)T. Indeed,
K(0)=2. Moreover, in this case, the h-component A(f) of the periodic solution
R()=(h(1), h,, )T of (3.43) satisfies h(t+m)= — h(t) for any ¢, because % is originally
a solution of (3.35) and, by the assumption (3.1), X (%(?), B) is n-periodic in ¢ and
X(%(t), B) and X g(&(t), B) satisfy X(%(t+7), B)= — X(%(1), B) and X4(%(t+n), B)=
— X y(%(1), B) for any ¢, respectively.

Next, we consider Case (II).
In this case, similarly to Case (I), we have

(3.44) @1(t+75)=‘131(t)(§1(75)

for the fundamental matrix &,(f) and we get

(3.45) El(zn) =[E,+ ‘§1(n)]§1(”)
for &,().
Analogously to Case (I), we consider the equation
En,n+1‘“¢1(2n) o 31(277)
(3.46) Z=A¢,(2n)=A4
010 «evvenennen 0 0
for any constant number A, where Z=(z, z,. )T, z=(zy,..., z,)T.

(i) When 4=0, the equation (3.46) becomes

( ) J— _1?1(2”) >

~

Z=0.

(3.47)

Since ¥,(2n)=(®,(2n), ¢), we can rewrite the equation (3.47) in the form
E,—®,(2n) ¢

(3.48) Z—Z,4y =0.
010------..- 0 0,

Thus, from the assumption (3.6), it follows that

the equation (3.48) (or (3.47)) has a nontrivial
(3.49)
solution if and only if z,,,=0.

Hence, it is sufficient to consider the equation
(3.50) 4

Due to the assumption (3.6), the equations
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(3.51) [E,—®,(n)]y=0,
(3.52) [E,,+§T>1(7z)]v=0

have nontrivial solutions y and v respectively, where y=(y,,..., y,)T and v=
(vy,..., v,)T. Since rank [E,—®,(2n)]=n—2 due to the assumption (3.6) and the
solutions y and v are linearly independant, an arbitrary solution of the equation

(3.53) [E,—&,(2m)]w=0

can be written in the form of a linear combination of y and ».
In this case, since &= X(%(0), B) satisfies

(3.54) [E,—®,(m)]e=0,

we can take ¢ instead of y. Hence we can write an arbitrary solution of (3.53) in
the following form:

(3.55) a,t+a,v,

where a, and a, are arbitrary constants. Since a solution z of (3.50) is also a solution
of (3.53), we can write z in the form

(3.56) Z=alé+azv.

However the assumption (3.6) shows that no solution of (3.50) is uniquely deter-
mined unless we add some additional condition. Therefore we must give one more
condition.

Now, for the sake of simplicity, we assume that

En,n-ﬁ-l_q/l(zrt) El(zn)
(3.57) rank =rank =n.
10---0

As for the permissibility of the assumption (3.57), see Section 5.
Then, analogouly to Case (I), we give the condition

(3.58) z,=a,C{+av =1

as an additional condition. Then a solution of (3.50) satisfying the condition
(3.58) is uniquely determined and we denote this solution by 2.
When we put Z=(2, 0)7, Z is a solution of (3.47). Thatis, H{#)=P(¢)5 is a
2n-periodic solution of the system
dk

(3.59) —g =V, B)k

satisfying the conditions
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k1 = 1,
(3.60)
kz =0,

where k(0)=(kq,..., k,, k,+1)T. This tells us that in order to obtain the bifurcation
point, we have only to seek for a periodic solution (4i(f), k(f), B)T of the system

du

(3.61) o e
- =V, B

satisfying the conditions

x(0)—x(n)=0,

k(0)—k(2m)=0,
(3.62) x, —B=0,

ki—1=0,

\ k=0,

where u(t)=(x(1), )T, k(ty=(k(?), k,+ )T and u(0)=(x(0), w)T, x(0)=(x,,..., x,)7,
k(0)=(k(0), k,, )T, k(0)=(ky,..., k,)T. The above-mentioned argument shows that
the problem (3.61)~(3.62) certainly has a solution (4(7), k(t), B)T. Indeed, %(¢) is
n-periodic in t and k(f)=H(f)=P()?, and the B-component B of this periodic
solution is the desired bifurcation point.

Next we study the isolatedness of this solution.

Let ((‘P(é; x)>’ <(P1(t, x)))Tbe a solution of (3.61) such that <<‘/’((2:) x)>’

n+1

(P00 < (). (KO s =0, 4057 =01 o7

n+1 ~ ~
x(0)=(x1,..., x,)T, K(0)=(k(0), k,. )T, k(0)=(ky,..., k,)T.- Then, in this case, we
consider the system

?(0, x)—¢(m, x)
< X, =P )
(3.63) G(x)=| [¢,(0, x)—¢,(2m, x) =0
S
k,—1

instead of the system (3.28). The initial value %=(2(0), k(0), B)T of the above-
mentioned solution ((f), k(t), B)T of (3.61)«(3.62) is a solution of the system (3.63).
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Analogously to Theorem 5, for the solution X, we have

Theorem 6.
The matrix G'(&) is non-singular if and only if
D,2n) &
(3.64) rank =n+1,
10--:0 O
where

G'(x) denotes the Jacobian matrix of G(x) with respect to Xx;
P (t) and P,(t) are the n x (n+1) matrices such that

o~

R ¥, : 0]
q,(t)=< ) and m):( )
0...01 0...()()

respectively, where (P(1), 5%2(t))T is a solution (2(n+1) x (n+ 1) matrix) of the system

92 _y (o), Bz,

922 V000, Byzy+ V0. BR(D)z,

satisfying the initial condition (¥(0), f’z(O))T=(E,,+1, 0)T;
§' = —¥,2n){ —&,(2n), where ¢ is a solution of the equation

( En,n+1_lpl(n) > < El(n) )
(3.66) (=

(3.65)

0
and (&,(1), E,()T E()=(&(1), 0T (i=1, 2)) is a solution of the system

,5‘2171 = V,(0(t), By, + Va(tr(t), B),
(3.67)

Dy 00, B+ Val80, B+ Viala(0), BIYR()
satisfying the initial condition (&,(0), &,(0))T=(0, 0)T.

Proor. For the solution X, we have

En,n+1—¢l(n) , _El(n)
( 010 ceeeeeees 0 ) 0 < 0 )
(3.68) G'(%)= < —-¥,@2m) > ( En,n+1—¢1(21r)> - =&02m)) |,
000-++-eerenee 0 010 cvvvvreeeenes 0 ( 0 )

000:c+eeeeeeens 0 100 eeeenennens 0o 0
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from which it follows that
(3.69) det G'(%) %0 is equivalent to (3.64).
This completes the proof. Q.E.D.
(i) When A4 =0, due to the assumption (3.6), the equation
(3.70) < Ey 1= P4(n) >§=A< &i(m) )
0

has one and only one solution z, where ?=(z, z,, )7, z=(z,,..., z,)T. The equation
(3.70) can be rewritten in the following form:

(3.7 (((Ewm &,z 5 2,018, (m2=A8,(7).

(3.72) 1 z,=0.

Since &= X(%(0), B) satisfies [E,— ®,(n)]¢=0, we have

(3.73) % &, (n)e= é— ¢
and
(3.74) % [E,+&,(n)]e=¢.

From (3.73) it follows that the equation (3.71) is equivalent to the equation
(3.75) [E,—®y(m)]z— % 2,110 = AEy(m).

Hence, multiplying the both sides of (3.75) by the matrix [E,+ &,(n)] from the left,
by (3.44), (3.45) and (3.74), we have

[Evps 1 — P1Q)1E=[E,—$,2m)]z — 7, ¢
(3.76) = [E,+ 8,1 [E,— B0z = - 2,4, [E,+ B, (m)]2
:A[En+‘ﬁl(n)]£1(n)=A§1(2n)-

This shows that the solution Z of (3.70) is a solution of (3.46). Therefore 5 becomes
the initial value of a 2r-periodic solution K(t) of the system

(3.77) _‘% —V,(4(f), BYK + A - Vy(ii(1), B)

satisfying h,=0, where K=K(t)=(h(t), h,. )T and h(0)=(h,,..., h,)T. In fact,
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R(0)=%. Moreover, in this case, the periodic solution K(z) of (3.77) is a n-periodic
in t, because # is originally a solution of (3.70), and X (%(1), B), X(£(2), B) and
X g(%(¢), B) are all n-periodic in .

§4. Examples

In this section, in order to illustrate our theory and method mentioned in the
preceding sections, we give some examples of singular points and bifurcations.
First, we consider a turning point and we compute it.

Example 1.
Let us consider an w-periodic solution of the equation
4.1) P tu(-Bx4xt) B tx=0  (u=05)
. — TH - xX= u=0.5).

Transforming 7 to t by 7= ;T tin (4.1), we have

d?x

4.2) BX 2l - x2+x4) +< 2n> x=0.

The equation (4.2) can be rewritten in the form of a first order system as follows:

dx; _

i
4.3) .
x 2
G = () 7 e = Bxte b

As has been mentioned in the beginning of Section 2, in this example, we employ
the condition

4.4) x,(0)=0

as an additional condition. Then we consider a 2zn-periodic solution of (4.3) satis-
fying the condition (4.4). As has been mentioned in Section 2, we consider the
equation

x(0) — (2, u(0), B)
x2(0) >

x1(0) —@,(27, u(0), B)

= | x2(0) — (27, u(0), B) | =0,

x,(0)

(4.5) Fu(0), B)= (
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where  u(0)=(x(0), ®)T, x(0)=(x,(0), x,(0))", and o(t, u(0), B)=(¢4(t, u(0), B),
@,(t, u(0), B))T is a solution of (4.3) such that ¢(0, u(0), B)=x(0). This equation
(4.5) has a singular point (4(0), B) satisfying the conditions (2.18) and (2.19), that is,
a turning point. We compute it and the results of numerical computations are as
follows:

£,(0)=1.68340 92229 706, %£,(0)=0.0,
& =6.31609 14307 729,

46 £,(0)=1.0, £,(0)=0.0,
k= —0.07838 76039 286,

B=2.82966 17309 151.

Next, we study bifurcations of periodic solutions of autonomous systems
involving parameters.
First, we consider a bifurcation point corresponding to Case (I) in Section 3.

Example 2.
Let us consider an w-periodic solution of

3 2
4.7) %’; — (1 —x?)—a) er - {au(l—xZ)—l}»% +ax=0 (u=0.1),

2 tin (4.7), we have

where a is a parameter. Transforming 7 to f by = o

d3x o 2y d?x
(4.8) A3 ‘27.6_{11(1 x?)—a} dz2

The equation (4.8) is equivalent to the following first order system

dx,

—_— —‘x )
dt 2
dx, .

dt ~— 7%

4.9) dx, o \3 » \2
L= <_27> ax,+ <"2T> {au(l—x3)—1}x;

+ o Au(l = x}) —a}x;

In this case, instead of the condition (2.3), we adopt the condition
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(4.10) ax,(0) + %le3(0)=0

as an additional condition.
We compute a bifurcation point and the results of numerical computations
are as follows:

£,(0)=0.16744 12753 33655,  £,(0)=1.15096 04287 46062,
£3(0)= —0.15489 99077 90243, ¢ =6.31292 32503 52323,
(4.11) k,(0)=1.0, k(0)=0.04668 94093 61035,
k3(0)= —0.00628 36089 09721, k,=0.14x10"17,

2 =0.13394 92005 06121.

Secondly, we consider a bifurcation point corresponding to Case (II) in Section 3.

Example 3.
Let us consider an w-periodic solution of the equation

d3x
(4.12) dv®
+ax=0  (u=0.4, a=0.46),

2
(493 =x2) =@} O —fap(14yx—x9) -1} 42

w

o ! in (4.12), then the equation

where y is a parameter. We transform tto ¢t by 1=
(4.12) is rewritten in the form

3 2 2 d
B 0 G5 - () o0 0

4.13)
o\
-+ —2'“;r—> ax=0,

The equétion (4.13) is equivalent to the first order system

d;’; =x2,
(4.14) % o
4.14
_Eia:’% = <...2€"n_>3ax1+ <»§-;—)2 {apu(l+yx,—x3) —1}x,
+f29n_ {1 +yx;—x}) ~a}x;.
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In this example, we add the same additional condition as in (4.10). We compute
a bifurcation point and the results of numerical computations are as follows:

' £,(0)=0.01677 65690,  £,(0)=1.59404 43863,
£5(0)= —1.57257 50454, & =13.47513 13194,
(4.15) k.(0)=1.0, k,(0)=0.62703 53520,
k;(0)= —0.61859 01445, k,=0.38x 1016,

$=0.28392 94943.

§5. Appendix

We study in more detail how to choose an additional condition mentioned in the
beginning of Section 2. Let @(f)=(&(¢), ®)T be a 2n-periodic solution of (2.4) at
B=8 and &,(f) be the fundamental matrix of (2.10) at x=2%(f), =& and B=B
satisfying the initial condition &,(0)=E,.

At first, we assume that @,(27) has a single eigenvalue one (we say that an eigen-
value one of ®,(2n) is simple).  As is well-known, X((1), B) is a 2n-periodic solution
of (2.10). Therefore X(%(t), B) can be written in the form

(5.1 X(%(1), B)= (X (%(0), B)
and so the n-dimensional vector &= X(%(0), B) (*0) satisfies
(5.2) é,2ne=¢  (or [E,—P,(2n)]¢=0).

That is, ¢ is an eigenvector corresponding to the eigenvalue one. Since the eigenvalue
one of &,(2n) is simple, it follows from (5.2) that

(5.3) rank [E, — #,(2n)]=n—1<n=rank [E,—&,(2n), ¢]

and there exists a positive integer k (1 <k< n) such that

(5.4) 2,0
and
(5.5) rank [E,—®,(2n)]=rank D _,=n—1,

where ¢=(&,, &,,..., &,)T and D _, is the nx (n—1) matrix obtained from E,—®,02n)
by deleting the k-th column vector. Then, by (5.3) and (5.5), we have

E,—®,(2n) ¢
(5.6) rank( =n+1,
0---010---0 O
" ‘

k
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T
where k indicates the location of the k-th column vector of the (n+1) x (n+ 1) matrix

E,—&,(2n) ¢ L , .
(0'.'..0101.( ..g) 0)- This implies that we may employ the condition

.7 x(0)— =0

as an additional condition, where x(0)=(x,(0),..., x,(0))T and B is a constant number.
Consequently, in order to obtain the 2z-periodic solution #(f)=(%(t), ®)T of (2.4)
at B=B, we consider the equation

(0, u(0), B) — (27, u(0), B)
x(0)—p )

x(0) — (2w, u(0), B)

< x,(0)—p >

where ¢(t, u(0), B) is a solution of (2.2) such that ¢(0, u(0), B)=x(0). Evidently,
the equation (5.8) has a solution #(0)=(%(0), ®)T. Denoting by S,(u(0), B) the
Jacobian matrix of S(u(0), B) with respect to u(0), for the solution #(0), we have

(5.8) S(u(0), B)= (

>

R E,—®,2n) —¢
(5.9) S,(4(0), B)= v .
0---010---0 0
1
k
Therefore, by (5.6), we have
(5.10) det S(1(0), B)=0.

This tells us that we can get an approximation to the solution #(0) of (5.8) as ac-
curately as we desire by applying the Newton method to the equation (5.8).

Next, we consider the case where &,(2n) has a double eigenvalue one. We
denote by J(1) the Jordan block corresponding to the eigenvalue one of &,(2n).
Then the following two cases are possibly considered:

1 0

(5.11) (i) J(l)z( >

and
1 a

(5.12) (ii) J(l)x( ) (ax0).
0 1

First, we study the case (i). In this case, we have
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(5.13) rank [E,— &,2n)]=n—2<n—1=rank [E,— &,(2n), ¢]

A

because ¢ is an eigenvector corresponding to the eigenvalue one. On the other
hand, there exist positive integers i and j (1<1i, j<n, i=j) such that

& 9
(5.14) rank =2
ei ﬁj
and
(5.15) rank [E,— ®,(2n)]=rank D_; _;=n-2,

where ¢=(¢,, &,,..., ¢,)7, and P =(P4, §,,..., P)T is a solution of the equation
(516) [En—@l(ZTC)]_)):O (Where y=(y15 YVaseeos yn)T)

and is linearly independent of ¢, and D _; _ ; 1s the nx (n—2) matrix obtained from
E,—®,(2n) by deleting the i-th column vector and the j-th column vector. Then,
by (5.13) and (5.15), we have -

E,—®,2n) ¢ ~
(5.17) rank( > =rank V_;=n
0---010---0 0
!
i
and
E,—®,(2n) ¢ R
(5.18) rank< > =rank W_,=n,
0---010---0 0 |
T
J

where V_ is the (n+1) x n matrix obtained from (g"_bcﬁ)l(zg) 8> by deleting the

T
i _~
. P . . E,—®,2n) ¢
j-th column vector and W _; is the (n+1) x n matrix obtained from(o_“md._.o 0>
7
J

by deleting the i-th column vector.
Therefore, in this case, we employ either of the following

(5.19) - x{0)— B, =0
(5.20) | x(0)—B,=0

as an additional condition mentioned in the beginning of Section 2, where x(0)=
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(x,(0),..., x,(0)T and f5, and B, are constant numbers.
Secondly, we study the case (ii). In this case, due to (5.12), there exists a
vector D such that  is linearly independent of ¢ and satisfies

d,2n)e=¢e,
(5.21) R
&, (2n)p=0+ac.
This implies that
(5.22) rank [E,— ®,(2n)] =rank [E,— ®,(2n), ¢]=n—1.

From the first of (5.21) it follows that there exists a positive integer | (1< /< n) such
that

(5.23) &0
and
(5.24) rank [E,— ®,(2n)]=rank D_,=n—1,

where &=(&,, &,,..., &,)T and D_, is'the n x (n— 1) matrix obtained from E,— &,(2n)
by deleting the [-th column vector. From (5.21), (5.22) and (5.24) it follows that
there exists a positive integer m (1< m<n, m=1) such that

(5.25) rank [D_; _,., ¢]=n—1,

where D_, _,, is the n x (n—2) matrix obtained from E,— &,(27) by deleting the I-th
column vector and the m-th column vector. Then, by (5.24) and (5.25), we have

E,—®,2n) ¢ .
(5.26) rank( ) =rank Z_,=n,
0---010---0 0,
)
m

where Z _, is the (n+1) x n matrix obtained from <lg"_0?01(23) 8) by deleting the

T
m

I-th column vector. Therefore, in this case, we employ the condition
(5.27) Xm(0)—B3=0

as an additional condition mentioned in the beginning of Section 2, where x(0)=
(x,(0),..., x,(0)T and S, is a constant number.

In either case, as is seen from the above, if ®,(27) has a double eigenvalue one,
then there exist positive integers k and p (1<k, p<n, k= p) such that
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E,—®,(2n) ¢ R
(5.28) rank( > =rank Y_,=n,
0---010---0 0
T
k

where ¥ _ » 18 the (n+1) x n matrix obtained from <€”_Ofd(2g) (C;> by deleting the

T
k

p-th column vector. In fact, in the case (i), k=i, p=j or k=j, p=i and in the case
(i1), k=m, p=1. Therefore we employ the condition

(5.29) x,(0)—p=0

as an additional condition mentioned in the beginning of Section 2, where x(0)=
(x4(0),..., x,(0))T and B is a constant number.

In the present paper, in order to simplify notations and symbols used in Sections
2 and 3, we employ k=2 in (2.3) and p=1 in (2.13), (3.22) and (3.57). But, as is
seen from the above, it is clear that the generality of the argument developed in
Sections 2 and 3 is never lost if we employ such values for k and p. \

Remark 4.

In the case (ii), we can make another choice of an additional condition. From
(5.21), (5.22) and (5.24) it follows that

E,,_@1(27[) ¢ Eu_(i)l(zn)
(5.30) rank ( ) =rank ( > =n.
0.--010---0 0 0---010---0
T T
) )

This tells us that we may employ the condition
(5.31) x,(0)—f,=0

instead of the condition (5.27), where x(0)=(x,(0),..., x,(0)T and S, is a constant
number. Then, in this case, we may consider the equation

?(0, x) — (27, x)
< x;— Ba >
(5.32) H(x)= ¢.(0, x)—¢,2r, x) =0
SR
knpo1—1
instead of the equation (2.17), where x=(u(0), k(0), B)T, u(0)=(x(0), )T, x(0)=
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(X150em> X)T, k(0)=(k(0), k,, )T, k(0)=(ky,..., k,)T.
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