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§1. Introduction

We consider a point (%, B) € Q satisfying an n-dimensional nonlinear equation
(1.1) F(x, B)=0

such that the rank of the Jacobian matrix F (x, B) of F(x, B) with respect to x is
n—1 at (x, B)=(%, B), where F(x, B) is defined in some region  of the (x, B)-space
and F(x, B) is (d+2) times continuously differentiable with respect to (x, B) in €,
and B is a parameter and we assume that the dimension of the parameter B is (d +1),
that is, B=(B,, Bs,..., B4+1)T (d>0). Here (---)T denotes the transposed vector
of a vector (--).

We call the point (%, B) above a “singular point> of the nonlinear equation (1.1).
Especially, in the case d=0, that is, the dimension of the parameter B is one, (X, B)
is called a “turning point> or “fold point”, see [3], [4], [5], [6], [7]. Further,
in the case d=1, that is, the dimension of the parameter B is two, (%, B) is called a
“cusp point”’, see [1], [6], [7].

We shall show that the B-component B of such a singular point (%, B) is geo-
metrically characterized as an extremum of some function which expresses a curve in
the parameter space, that is, the B-space. Here B(= B(%)) is called an “‘extremum”
of a function B(o) if %—g—(fr) =0 and %;—3(6) 20, where o (scalar) is a real variable
and B(o) is defined in some neighborhood of & and is twice continuously differen-
tiable with respect to ¢ in such a neighborhood.

When the dimension of the parameter B is <2, that is, d<1, H. Kawakami [6]
defined a singular point (&, B) as the B-component B of (£, B), where the component
is an extremum of some function. Such a function coincides with the above one in
the case d=0 but is different from that in the case d=1, and he proposed a method
for computing it. But he did not give any condition for guaranteeing the isolatedness
of a singular point and he did not describe anything about the case d> 2.

In the case d< 1, A. Spence and B. Werner [7] also considered the B-component
B of a singular point (&, B) as an extremum of some function. In the case d=0,
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their characterization of a singular point is similar to ours, but in the case d=1,
theirs is different from ours. And they also did not describe anything about the
case d>2.

In our case, on the other hand, we of course study the case d>2 and we give a
condition for guaranteeing the isolatedness of a singular point.

In this paper, in §2, we give geometric characterization of singular points of
nonlinear equations involving parameters and we propose a method for computing
them with high accuracy.

§2. Geometric Characterization of Singular Points of Nonlinear Equations
Involving Parameters

We consider a singular point (£, B)e Q of the nonlinear equation (1.1). In
order to simplify the following argument, for the singular point (£, B), we assume
that

(2.1) n—1=rank F (8, B)y=rank Fy(%, B),

where Fy(%, B) is the nx (n—1) matrix obtained from F(%, B) by deleting the first
column vector.

Now we define nxn matrices X™*D (0<m<d) and n-dimensional vectors
I, (1<m<d+1) by

2.2) XmtD=y CXOh,, _,  (0<m<d)
i=0
and
(2.3) =3 CXOh, .1,  (1<m<d+1)
i=1

respectively, where X =F (x, B), and X (i=0, 1,..., d) are the derivatives of
X® (i=0, 1,..., d) with respect to x, respectively, and h; (j=1,2,...,d+1) are n-
dimensional vectors. Moreover, we define n-dimensional vectors p,(1<m<d+ 1) by

m—1
2.4) U= 3 W CXGDR, . (I<m<d+1).

Jj=0

Now we consider the following equation

F(x, B) F(x, B)
X’(O)}l1 X(O)h1
2.5) G(x, By = | XVhat XOhy | _| XOhytly | o
d—1 ) :

¥(x, B) Y(x, B)
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where  x=(x, hy, hy,..., h)T, x=(x1,..., x,)7T, hj=(h}, h3,..., k)T (j=1, 2,..., d),

B=(By, B,,..., B;; ()7, and Y(x, B)=(h} —1, hi,..., h})T. Then the function G(x, B)

defined by the equality (2.5) is a {(d+1)(n+ 1) — 1}-dimensional vector and is twice

continuously differentiable with respect to (x, B) due to the assumption on F(x, B).
In particular, in the case d =0, the equation (2.5) becomes

(2.6) G(x, B)=F(x, B)=0

since x=x. Moreover, in the case d= 1, the equation (2.5) becomes
F(x, B)

(2.7 G(x, B)=| F(x, B)h; | =0
hi—1

because x=(x, h,)T and Y(x, B)=h}—1.
Assume that there exists a vector (£, B)=(R&, hy,..., h;, B)T such that
the conditions

(2.8) (%, B) € Q satisfies the equation (1.1) and the condition (2.1)
(2.9) (%, B) satisfies the equation (2.5)

(2.10) rank (Fo(%, B), 1)=n—1

(2.11) rank (G (%, B), Gy,(%, B),..., Gg,, (%, B)=(d+1)(n+1)—1

are satisfied, where I, denotes the value of I, at (x, B)=(%, B), and G (x, B) denotes
the derivative of G(x, B) with respect to x, that is,

0Co X
CoXV  [C XO 0
2CoX® LG XD L0 X©

(2.12)  Gu(x, B)=| CoX@ ,C,XW-1 ,C,X0@-2.. C,x©® |,

and Gg(x, B) (i=1,2,..., d+ 1) denote the partial derivatives of G(x, B) with respect
to B;, respectively, that is,
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Fg,(x, B)
XPh
(2.13) i GBi(x, B)= X§2>h2+ Xf,{.)hl (i=1,2,...,d+1).

d—1

> i Ci X
j=o 0

Here Fp(x, B) and X§ (i=1,2,..,d+1;9=0,1,...,d—1) denote the partial
derivatives of F(x, B) and X (¢=0, 1,..., d— 1) with respect to B;, respectively, and
0 denotes the d-dimensional zero vector.

By (2.8), (2.9) and (2.10), £=(&, f 4, B)T (where h,,, is a solution of the
equation X@h,,;+1,=0, h},,=0) is certainly a solution of the system

F(x, B) F(x, B)
XOp, XOp,
(2.14) S(z)= X(O)hz-{—X(l)hl = X(O)h.2+ll =0,
, : :
Jéo deX(j)kd+1—j XOhy 1 +1,
¥ 441(2) W 441(2)

where X =F (%, B) and 1, denotes the value of I, at (x, B)=(%&, B), and
2=(x, hyyy, B)T, x=(x, hy,..., h))T, x=(x1,..., x,)T, h;=(h}, h?,..., k)T
(j=1,2,....,d+1) and ¥4, (2)=(x, B), hj,)T=(hi—1, h},..., h, hj, )"
For the solution Z, we have the following theorem.

Theorem.
The matrix S'(£) is non-singular if and only if

(2.15) rank (Fo(%, B), 1;.1)=n,

where S'(z) denotes the Jacobian matrix of S(z) with respect to z and 1,,, denotes
the value of 1,,, at z=1%.

Proor. Since F(x, B) is (d+2) times continuously differentiable with respect
to (x, B) in Q, S(z) defined by the equality (2.14) is continuously differentiable with
respect to z. Then we have
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oCoX
CoXM C,X© 0

,CoX® ,C XV ,C,X©
(2.16) S'(@)=| 4+:1CoX @D 4, CX® d+IC.ZX(d—l)""d+1Cd+1X(O)

[ I 1 T 0 00-.... 0
i 1 0 0
‘ 0 ‘ 00------ 0 10------ 0 '
| |
I 0 i 0 10------ 0
SBl(z) SB;_(Z) """" SBd_H(Z) )

where Sp(z) (i=1, 2,..., d+1) are {(d +2)n+d + 1}-dimensional vectors defined by
FBi(x’ B)
X©Oh,

(2.17) Sp()=| X®Ohy+ XPh, (=1,2,.,d+1),

d -
> uCi Xk
j=0
0
where X (i=1, 2,..., d+ 1) denote the partial derivatives of X with respact to

B,, respectively, and 0 denotes the (d + 1)-dimensional zero vector. From (2.16) it
follows that for the solution Z, we have

(2.18) det S'(£) %0 is equivalent to (2.15),

because
-~ ~ a -~ ~ m ~ L~
XOh, +1,=XOh, + 21 mCiX Ohy g1
l:

~

=3 WC& OBy =0  (1<m<d),
i=0 -
where X (i=0, 1,..., d) and 7j(j= 1,2,...,d) denote the values of X®(i=0,1,...,d)
and [; (j=1, 2,..., d) at (x, B)=(%, B), respectively. This completes the proof.
Q.E.D.

Thus, if the condition (2.15) is satisfied, we can get an approximation to the
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solution Z of (2.14) as accurately as we desire by applying the Newton method to
the system (2.14). Hence we can also obtain a desired approximation to the singular
point (%, B) of the equation (1.1). We call this singular point (&, B) satisfying
det S'(z) 0 an ““isolated singular point”.

From the conditions (2.9) and (2.11), due to the theorem on implicit function,
we have the following results: The equation (2.5) defines a curve in some neigh-
bourhood of (%, B) in the (x, B)-space. We denote such a curve by I Then,
taking some parameter o, we can write the curve I in the form

(2.19) x=x(0)=(x(0), h((0),..., hy(c))T and B=B(c)=(B(0),..., By (0))T
and we have
(2.20) G(x(0), B(6))=0

for (x(c), B(c)). Since (&, B) is of course a point on the curve I', there exists one
and only one & corresponding to (£, B), and we have

(2.21) £=x(6) and B=B(5).

Further, x(o) and B(o) defined by (2.19) are twice continuously differentiable with
respect to o because G(x, B) is twice continuously differentiable with respect to
(x, B).

Then, differentiating the both sides of (2.20) with respect to ¢, we have

dx | K dB,;

(2.22) Go Gt X Gy, - Gi=0,

where G, and Gp, (i=1,2,...,d+1) denote G (x(0), B(o)) and Gg(x(0), B(c))
(i=1, 2,..., d+1), respectively, and %{-’t— and %l:_—i (i=1, 2,..., d+1) are the de-

rivatives of x(¢) and B(o) (i=1, 2,..., d+ 1) with respect to o, respectively, that is,

dx _ dx dh dhy T dB; _ dB;
L@ =(F @, L), 2i(0) and LP_LBi(q)

do
(1<i<d+1).

Differentiating the both sides of (2.22) with respect to o, we have

dx | 43! dBi dx d?x | 4l dB;
<G"'d + 2 oy >%+Gx daz+lzl< ) Ao
(2.23)
d+1 dZB
+§1GBl do? =0,
where

G,.. denotes the second derivative of G(x, B) with respect to x;
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G,p,(i=1,2,...,d+1) denote the partial derivatives of G_(x, B) with respect to B;;
2 2 ’
% and %i_o% (i=1, 2,..., d+1) denote the second derivatives of x(o) and B(o)

(i=1, 2,..., d+1) with respect to o, respectively, that is,

Px & 2 . d?h dhy , N\ d°B, _d?B,
&% 850 =( D5 0), L) Y (@) and GH=G RN 0)
(1<i<d+1);
d_G (i=1,2,...,d+1) denote -4 (G (x(0), B(@)} (i=1, 2,..., d+1)
do_ B; s L5y dO' B; ’ . 3 Ly .

We shall show that

224) 4B (5)=(4B1(6), 4B2 (s, Bee (@) ) =0
and

2 2 2 T
(2.25) LB &) =(L810), B0)..... Ll @) %0,

This implies that B=B(§) is an extremum of the function B(c) which expresses a
curve projected from the curve I' into the parameter space, that is, the B-space.
Hence it is sufficient to show that (2.24) and (2.25) hold.

From (2.8), (2.9) and (2.10), it follows that

(2.26) rank G (&, B)=(d+1)n—1.
By (2.11) and (2.26), we see that

(2.27) 4B (5)=(4515), 282 5),.., Beer (@) ) =0.

This shows that the equality (2.24) holds. Next we will also show that (2.25) holds.
From (2.27), at (x, B)=(%, B) (or at ¢=4), it follows that both the equations (2.22)
and (2.23) become

(2.28) G.(%, E)%(a)=o
and

6.3, B) G5 O} X +6.(2, BTE @)
(2.29)

IO MENIE 4 5@)=0,
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respectively. We consider the vector {G, (%, B)%(a)}%(a). When we put

(2.30) k(a)——~——(0) kz(a)-- (0) ks(a)—ﬂll(a) km(o)— (0),

from (2.12), we have
0CoX Pk (o) \
1CoX Pk ,y(0) +,C; XVk ()

2 .
(2.31) G.(x, B) ~ (0)= X 26X f”k3_,-(a) ,

3. CX k(o)
d)(kl(o-)’ kZ(U)""a kd+l(a))

where k(o)=(k}(0), k¥o),..., k(o))" (i=1, 2,..., d+1), and ¢(k,(c), ky(0)....,

kd+ 1(0')) (k (0’), :li(a):- [RS] k¢11+ 1(0-))7:
We set

Y(O)(o') = Fx(X(O'), B(G)) »

(2.32)
Ym+(g) = Z mCiXP(@Okyiq-i0)  (0<m<d),

where kl(a)-—— (o), kj(a)— ’ — =0 (j=2,3,....,d+1), and X{o) (i=0,1,...,d)

denote the Values of X at (x, B)=(x(0), B(s)). Here X (i=0, 1,..., d)
are previously mentioned i (2.2). Then, the {(d+Dn+d} x(d+1)n matrix

G..(x(0), B(cr)) (a) can be written in the form

0Co Y (o) 0
1C0Y(2)(0') 1C1 YD (o)
2Co Y (o) 2C, Y®) (o)

(2.33) G..(x(0), B(O‘)) (0) = : :
LY@ V(o) ,C,YD(o)
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0o e 0 \
0 e 0
,C, lf‘(l)(o’) ...... () ,
dczy(ci—l)(a) ...... dCdYéU(o')
0
from which it follows that
0CoY P (0)ky(0)

1Co YD (0)k,(0) +,C, Y (0)k 1 (0)

2 i+1
¢34 {6.G0), BV E @@= &k

Zd «Ci YD (o) kypi-i(0)

VT
0

where 0 denotes the d-dimensional zero vector.

-~

dx _
do} (0)=1.

For example, we can take o=x,, where xyi1 is the first component of x=(xy,..., x,)T.
Then <x(a), 4% @), B(a)) (x(a) x4, ‘”’1 .@),.. d"”d '), B(&)) is a solu-

tion of the system (2.14). In fact, in thls case, we have

Assume that the parameter o of the curve I' is chosen so that

(2.35) 2=x(6), 1———( 6), z—-~~—(3) hm—_*(é‘) B=B(9),

where £=(&, hy, hy,..., hysq, B)T is the previously mentioned solution of (2.14)
which is referred to in Theorem. Therefore we have -

(2.36) YO@G)= RO, YO(6)=X D), ., YED(g) =K@+

where X (i=0, 1, 2,..., d+1) denote the values of X® (i=0, 1, 2,..., d+1) at
z=2%. Then, by (2.4) and (2.36), we have the equalities

(2.37) n="T, s CYEI Dy (1<m<d+D),

where fi,, (m=1, 2,..., d+1) denote the values of pu, (m=1, 2 . d+1) at z=12,
and k, =k, (&)=-‘j£(6) 122=k2(6)= dhy (6) kdﬂ—kdﬂ(o)———df (6). Thus, the

vector {G,(x(6), B(a)) (o)} (a) is of the form
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(2.38) {G..(x(8), B(G)) (6)}—~—(0) (A15 fizseees flgse 1, O)F,

where 0 is the d-dimensional zero vector. When we put

3=(ﬁ1, ﬁ29-~: 'ad+1a 0)T’
by (2.38), the equation (2.29) can be written in the form

~

~ 42 d+1
(2.39) 5+G.(2, BT + 3 Ga (%, B Bis)=0.

From (2.11), (2.26) and (2.39) it follows that

2 2 T
GEO=(45@), 450, CB@)) w0 s

(2.40)
equivalent to rank (3, G,(&, B))=(d+ 1)n.
Since
(2.41) g X=Dhy, ;=0  (0<i<d—1)
and
. S
(2.42) '/"d+1+1§0 (G X Dhy =141,
we have
(2.43)  rank (8, G(%, B))=rank (¢, G (%, B)),

where {=(0, 0,..., 0, 1ie1, O)T. Here 0 is the n-dimensional zero vector and 0 is
the d-dimensional zero vector. From (2.26), we have

(2.44) rank (8, G(%, B))=(d+D)n is equivalent to (2.15)
Hence, by (2.40), (2.43) and (2.44), we have

equivalent to (2.15).

Thus, when the singular point (£, B) of the equation (1.1) satisfies the condition
(2.15), the B-component B of the singular point (%, B) can be characterized as an
extremum of the function B(c) which expresses a curve projected from the curve I'
into the B-space. From (2.45), due to Theorem, we also have
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det S'(z) %0 is equivalent to

(2.46) d*B d4*B, .. d’B d*B r
Go2 @ =442 ©), G ©),. . S15@)) %0

for the solution Z of (2.14), where S'(z) is the Jacobian matrix of S(z) defined by the
equality (2.14) which is referred to in Theorem.
Especially, in the case d =0, both the equations (2.28) and (2.29) become

(2.47) F(%, B’)%(&)=O

and

~ ~ 2 2 -
(248) {Fu2, B) 9L O} P (6)+ F(2, B IE @)+ LB 6)Fa(2, BY=0

respectively, because G(x, B)=F(x, B) from (2.6). As has been mentioned in the

above argument, if the parameter ¢ of the curve I' is chosen so that %(a)= 1, then
the equation (2.48) can be rewritten in the form

2 a
48 () Fa(s, B)=0,

5 A D dzx A
(2.49) I+ F.(%, B) 752 (6)+
since i, =1,. Therefore, if the condition rank (Fy(&, B), Fx(%, B))=n is satisfied,

then we have

(2.50) ’ %g(&) %0 is equivalent to rank (Fo(%, B), 1,)=n.

In this case, the system (2.14) is of the form
F(x, B)

(2.51) S(z)=| F«x, B)h | =0,
h,—1

where z=(x, h, B)T, x=(x,,..., x,)T, h=(hy,..., h,)T. Since jﬁ(&) is a solution of

do
the equation
F (%, B)h=0,
(2.52)
hy—1=0
from (2.47), the system (2.51) certainly has a solution 7 =(%, i, B)T, where h =—§—:(6).

Due to Theorem, for this solution %, we have

(2.53) det S'(£) =0 is equivalent to rank (Fo(%, B), I,)=n
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and also

(2.54) det §(2) %0 is equivalent to ;”Tf(a) 0.

Acknowledgement

The author expresses his hearty gratitude to Professor Seiiti Huzino and

Professor Yoshitane Shinohara for their helpful advice and constant encouragement.

(1]
[2]

(3]

[51]

[6]

(7]

(8]

Department of Applied Mathematics
Faculty of Engineering
Tokushima University

References

Seydel, R., Numerical computation of branch points in ordinary differential equations,
Numer. Math., 32 (1979), 51-68.

Seydel, R., Numerical computation of branch points in nonlinear equations, Numer.
Math., 33 (1979), 339-352.

Moore, G. and Spence, A., The calculation of turning points of nonlinear equations,
SIAM J. Numer. Anal., 17 (1980), 567-576.

Ponish, G. and Schwetlick, H., Computing turning points of curves implicitly defined by
nonlinear equations depending on a parameter, Computing, 26 (1981), 107-121.

Melhem, R. G. and Rheinboldt, W. C., A comparison of methods for determining turning
points of nonlinear equations, Computing, 29 (1982), 201-226.

Kawakami, H., Bifurcations of periodic responces in forced dynamic nonlinear circuits:
Computation of bifurcation values of the system parameters, to appear in IEEE Trans.
Circuits and Systems.

Spence, A. and Werner, B.,, Non-simple turning points and cusps, IMA J. Numer. Anal.,
2 (1982), 413-427.

Yamamoto, N., Newton’s method for singular problems and its application to boundary
value problems, J. Math. Tokushima Univ., 17 (1983), 27-88.



