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Let Q be a domain with smooth boundary in R” and
Lu=a"(x)D;;u+b*(x)Du+c(x)u

be uniformly elliptic in Q, that is there exists a positive constant x such that
ati(x)¢;¢;zk|é|* for all xeQ, e R". Throughout this paper, it is assumed that
the coefficients ai/(x), bi(x), c¢(x) arc at least of class C(2). Under these assump-
tions, it is well-known that the following boundary point lemma is valid. (cf. [1])

Lemma 1. Let u(x)e C*Q), x,€ 0Q be such that

(1) Luz0in Q,

(11) u(x) is continuous at x,,

(i) u(xo) <u(x) for all xe Q,

(iv) Q@ satisfies the interior sphere condition at x,.

Then if ¢(x)=0 in Q, the inner derivative of u at x,, if it exists, satisfies the
strict inequality

Oou .
‘67(x0)>0, v: inner normal at x,.

Moreover if ¢(x)<0 and is bounded from below in Q, the same conclusion holds
provided u(x)=01in Q. (On the definition of the interior sphere condition, see [1].)

In the case when there are corner points on 0%, it does not in general follow
the same kind of result, even for Laplacian. At a corner point x, € 0Q2, we must

consider the following type of derivative instead of inner derivative.

%i;— where s is any direction at x, which enters Q non-tangentially.

Example. (cf. [1]. We adopt here a little modification.) Let Q={(x,, x,):
x?2—x3>0, x;>0} and u(x)=x%?—x3. Then we have u(x)>u(0)=0 in Q and
Au=0. But we see '

so we can’t obtain the positivity of derivative,
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At a corner point, Serrin has proved the following boundary point lemma.

(cf. [2])

Lemma 2. Let D* be a domain with C?*-boundary and T be a plane con-
taining the normal to OD* at some point x,€ 0D*. Denote by D a portion of D*
lying on some particular side of T.

For the coefficients at/(x), we assume the validity of the following inequality.

() lat(x)m;| =C(US-nl+[E]-d)  C=const. >0

where £ € R" is an arbitrary vector, n is the unit normal to the plane T and d=d(x,
T) is the distance between x and T.

Suppose ¢(x)=0 and u(x) which is of class C*(D) satisfies

(i) Luz0 inD,

(1) u(xo)Zu(x) forall xeD.
Then, for s which is any direction at x, entering D non-tangentially, we have

. Ou 0%u )
either b5 >0 or —a—§§r—>0 at  Xxg,
unless u(x)=u(x).

In this paper, we want to prove Lemma 4, which gives the same kind of result
as Lemma 2 under simplified condition of (1). In doing so we need the following
simple lemma concerning a bilinear form.

Lemma 3. Let  be any fixed unit vector in R". In order that
2 lati &l =CIE-nl for every CeR”
it is necessary and sufficient that n is an eigen vector of the matrix (a'/)=A.

The above Lemma 3 seems to be almost self-evident but for the completeness
we give a proof.

ProOOF. If n is an eigen vector of A, then it is easy to obtain (2). Conversely
if (2) holds, then denoting by [#] the subspace spanned by #, we have

[n1+=[An]*.
By taking orthogonal complement, we have
[An]<[n]
and this is the same fact that # is an eigen vector of A.
Using the above Lemma 3, we can prove the following boundary point lemma.

Lemma 4. Let D*, x4, T and D be the same asin Lemma 2, and n be the unit
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normal to T. We assume that c(x)=0, a‘i(x) are of class C' and satisfy the
following condition.
(3) # is an eigen vector of the coefficient matrix (atJ(x)) for every x € T.

Suppose that u(x) is in C¥(D) and satisfies

(i) Luz0in D,

(i)  u(xo)=Zu(x) for all xeD.

Then, for s which is any direction at x, entering D non-tangentially, we have

) Ju 0%u
either —a?>0 or 552

>0 at x,
unless u(x)=u(xg).

PrOOF. We proceed along the same line as that of Serrin. First we introduce
the ball K; which is internally tangent to dD* at x,, and which touches dD* only
at xo. This is possible because dD* is of class C2.  We denote the radius of K; by
ry. Next we take a ball K, with center at x, and radius 0r,, where §<1/2 is a posi-
tive constant to be determined later.

Here we choose coordinates with origin at the center of K,;, with T being
the plane x; =0 and D being x; >0. Now we put K'=K, n K, N1 D and define the
auxiliary function z(x) in K’ as the following manner.

2(x)=[exp (—alx; —ry)?) —exp (—ar})] [exp (—ar?) —exp (—ar})]

where « is a positive constant to be determined.
Then it is clear that

z(x)>0 in K’,z(x)=0 on 0K; andon T.
On the other hand, by direct computations, we have
Lz=exp(—ar?)[exp (—afx;—r;)?)—exp (—ar})]
[doatix;x;—2o(a' + bix;)] +
+exp (—a(x,; —r)?) [exp (—ar?)—exp (—ar?)]
Jdo?all(x, —r)—20(a' + b (x; —r))]+
+ 802 exp (—ar?) exp (—al(x; —ry)?) (x; —ryalix;.
By the uniform ellipticity, we have
aifxixjgrcrzg»Z— r? in K,
and also

a“(xl—rl)zgg-r% in K.
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Since we have assumed that #, the unit normal of T, is an eigen vector of (a%/(x))
when x € T, by Lemma 3 we have

la'i(0, x")x;| < Cx;.

Here we used notations x'=(x,, xs,..., x,) and x=(x;, x’). So we obtain, by the
mean value theorem

lat/(x)x;| = 1[a"(xy, X)—a'J(0, x")]x;| +
+a'(0, x")x;| £Cx;.
Finally we have the following inequality by the mean value theorem.
exp (—ofx; —ry)?) —exp (—ar})
=201 —0)ry exp (—ar?)x,
2ox,r; exp (—200r? —a(x; —ry)?)

Inserting these inequalities into the earlier expression for Lz and using the fact
that the terms (a# +bix;) and (a'! 4+ b'(x, —r,)) are bounded, we have, for large «,

Lz=o?x,r; exp(—a(r?+(x; —r)?) [(axr? — B) exp (—2a0r2) — C] +
+aexp(—a(x; —ry)?) [exp (—ar?)—exp (—ar?)](akr?—B)

where B and C are appropriate constants.

By choosing 6=1/x and taking « sufficiently large, we can make the quantities
[(xxr?— B) exp (—206r3)— C] and (axr?— B) positive. We have then Lz>0 in K'.

Next, we consider the portion of K’ lying on ¢K,, and suppose u(x) is not
identically u(xy) in D. Without loss of generality, we may assume that u(x,)=0.
Then by the strong maximum principle, we have u(x)>0 in D. Noting that 0K’ N
0K, intersects 0D only on the plane T, and moreover the intersection set lies at a
finite distance from the corners of D, it is easy to see that there exists a constant
¢>0 such that

u(x)zex, on 0K NdK,

by virtue of Lemma 1. Moreover, since we have already seen that u(x)>0 in D,
we have

u(x)20 on 0K'ndK; andon JK'NT.
On the other hand, it is clear that
z(x)<exp (—a(x; —r{)?)—exp(—ar})<2ar;x, on 0K'NIiK,

by the mean value theorem. Consequently the function
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u(x) = 3 2(x)

is non-negative on dK’, and is zero at x,. Also we have

Hence we have

8<u—- o z) 82<u—>—8——
207 >0 or 20ur

either s 552

:)
>0 at

On the other hand, we have by a direct calculation

0z 0%z

*67—0, 76F—>O at Xo.

Thus the proof is complete.

25

Xo-

Q.E.D.

Remark. Compared with the condition (1), the condition (3) is only on T, and
it is not difficult to see that from the condition (1) we obtain the condition (3) by
Lemma 3. Moreover the converse may be valid, but the condition (3) seems to be

easier to apply.
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