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Let us consider a manifold provided with a non-linear connection. In the
preceding paper [6] we have defined a notion of a holonomy mapping and found a
gemetrical significance for the condition that the hv-curvature tensor of a Finsler
connection vanishes.

In the present paper, we investigate the holonomy mappings in detail and
consider, in connection with the holonomy mappings, the character of Landsberg
spaces, Berwald spaces, generalized Berwald spaces and almost Hermitian Finsler
spaces.

§1. In this paper, we shall treat an n-dimensional C*-manifold M and its
tangent bundle T(M). In the sequel, we assume that M is connected and provided
with a non-linear connection N(x, y). Let Ni(x, y) be the components of N(x, y)
with respect to a canonical coordinate (x?, y*) and put

(L) 8Ny =i,

then Nj ;(x, y) satisfy the law of transformation of a linear connection on a manifold.
Let S be a Finsler tensor field on M, for instance, of type (1, 2), then the covar-

n
iant derivative | with respect to the non-linear connection N(x, y) can be written
as

(1.2) ViSt=0,5%—0,StNy+ NhSr,—NuSh,—N%.Sh,.

For the interpretation of a Finsler tensor, there exist many papers, for examples,
Cartan [1], Matsumoto [9] and Stavroulakis [11]. We consider, in this paper,
fibre tensors defined by the following:

For any point p=(x) in M, the fibre T,(M) over the point p is a submanifold
of T(M). So T,M) can be regarded as an n-dimensional manifold. Now, for any

1 The indices 4, B, C, .. run over the range 1, 2,..., 2n and i, j, k... run over the range 1, 2,..., n,

and the indeces i, j, k... stand for i-+n, j+n, k+n,... respectively and 3, stands for 9/0x* and
0, stands for 4/ay*,
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fixed point pe M, we consider a Finsler tensor S(x, y) on the fibre T, (M) only.
That is to say, we consider S(p, y) as the quantity defined on the fibre T,(M). Since
the law of transformation of the canonical coordinate (y*) in T,(M) satisfies 0 =
0,X*, the quantity S(p, y) can be regarded as a tensor field on T(M). So, we denote
by S*(p, y) the tensor field on T,(M), and call it a fibre tensor on T,(M). However,
this fibre tensor S*(p, y) is neither the so-called vertical lift of S(x, y) [12] nor a
tensor field on T(M). This is only a tensor field on the fibre T,(M). With respect
to a canonical coordinate (Z4)=(x!, y?) of T(M), the vertical lift (S)*=K(x, y) of
a tensor field S(x, y) of (1, 2)-type has the following components; Kf-k:Sjk(x, ),
otherwise vanish.

If M is a Finsler manifold, the fibre tensor g*(p, y) of the Finsler metric tensor
g(x, y) gives T, (M) a Riemann metric, that is, g*(p, y) is the so-called tangent
Riemann metric of the Finsler manifold.

§2. The notion of the holonomy mapping has been defined in the paper [6]
as follows;

Let p and g be arbitrary two points in M, and ¢ be any piecewise differentiable
curve joining the points p and g. Let ¢ be the horizontal lift of the curve c. If we
express ¢ by c={x(1)}, ¢ is expressed by ¢={x(t), y(t)} where y(t) satisfies

2.1) YN, y@0) S =0,
For brevity, we put p=x(0) and g=x(1). For each point (x(0), y) in T,(M), there
exists one and only one horizontal lift & of ¢ passing through the point (x(0), y).
And ¢ passes T, (M) by one point, which we denote by (x(1), ). Then the corre-
spondence y—j defines a bijective differentiable mapping y: T,(M)—T,(M). This
mapping  is called a holonomy mapping from T,(M) to T(M) along the curve ¢
with respect to the non-linear connection N(x, y).

Let Ci(x, y) be a (1, 2) Finsler tensor field which is positively homogeneous of
degree —1 with respect to y. The fibre tensor C*(p, y) of C is a (1, 2) tensor field
on T, (M) and, at the same time, C*(p, ) is a linear connection on T,(M), because
the transformation of the canonical coordinates of T,(M) is linear. Thus {T,(M),
C*(p, y)} can be regarded as an affinely connected manifold. With respect to the
hv-curvature tensor

(2-2) Pj'hk=akN§'h_ V}:C}k,
we have shown in the paper [6] that

Theorem 1. Suppose that M is a connected manifold provided with a non-
linear connection N(x, y) and a (1, 2)-tensor field C(x, y) of Finsler type, where
C(x, y) is positively homogeneous of degree —1 with respect to y. Let p and q
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be arbitrary two points in M and let ¢ be any piecewise differentiable curve joining
p and q. In order that the holonomy mapping from T,(M) to T(M) along c with
respect to the non-linear connection N(x, y) is always an affine mapping from the
affinely connected space {T, (M), C*(p, y)} to the affinely connected space {T(M),
C*(q, y)}, it is necessary and sufficient that the hv-curvature tensor Pi:=0,0,N}j—

n
V,Ci, vanishes.

Theorem 2. In order that a connected Finsler manifold {M, g} be a Land-
sberg space, it is necessary and sufficient that, for arbitrary two points p and q,
any holonomy mapping from T,M) to T,(M) with respect to the Cartan’s

*
(Barwald’s) non-linear connection Ni=TIi,y"=G! is always an affine mapping
from the Riemann space {T,(M), g*(p, y)} to the Riemann space {T(M), g*(q, y)}.

§3. We shall now prove

Theorem 3. Let S(x, y) be a tensor field of Finsler type on a connected mani-
fold M provided with a non-linear connection N(x, y). Let p and q be arbitrary
two points in M. In order that any holonomy mapping from T (M) to T M) with
respect to the non-linear connection N(x, y) always transfers the fibre tensor field
S*(p, y) on T, (M) to the fibre tensor field S*(q, y) on T(M), it is necessary and

sufficient that %S=O holds good.

ProOF. We represent the curve ¢ by c={c,| ¢,=x(1), co=x(0)=p, ¢, =x(1)=q}
and denote by y the holonomy mapping along ¢ and denote by ¥ the induced map
of Y and put Y(y)=y. Then the condition under consideration is written as ¥(S*(q,
y))=S*(p, y). On the other hand, we denote by ¥, the holonomy mapping from
T, (M) to T, (M) along ¢ and put ¥,(S*(x(2), V(7)) =S,(x(0), y). Now we shall
calculate the components of

PS&C(_O),XL} )

=lim St(x(()), y)—S(x(0), v) i
di

-0 1

Without loss of generality, we may assume S is of (1, 2)-type. Then putting S*(p,
Y)={Si(x(0), 1)}, Sx(0), y)={S,)}i(x(0), y)} and lﬂz(y_)fﬁt =_()Z(§)), we have S*(x(1),
W:(J’))z{sj.'k(x(f)» y.)} and §(z)§k=52c(x(l), Vo) a(}y(;) : aayy(;) : aayJ;;c)- If we put Y& =
fe(t, yt, y2,..., y*) then f2 is a solution of the differential equation %{;—JrN;',,(x(t),

S 4xX" _ 0V _ _ Na 5 ay dx" (‘97(?)) —Sa
F) L =0. Hence O Z\—J,,,(x(t), Sy and (50)  =of hold. If
we put <ﬂ> =0, we have <%> = —N2(x(0), y)v". And we have

dt t=0 at t=0
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We have also E{%( 6a)7y; ﬂ —8,Ni(x(0), y)u". Now we see [ dSm‘ka;tC(O), ) }
(1) t=0 t=0

=0, SH(x(0), V" +8,85(x(0), y)(—NAa(x(0), Y)v™)+S4(x(0), y)3,NL(x(0), yyom +
Six(0), y)(—0;Na(x(0), »)v™)+Si,(x(0), y)(—3Na(x(0), y)o)=v"7,,S4,(x(0), y).
Thus we obtain that the condition V,S%, =0 is necessary.

Conversely, the above calculation shows us that 6,,Sj-k= implies
[%gaﬁ‘kl:o:()’ ie., [7‘;7 W (SH(x(1), lﬁ,(y)))} —0. Now, on the curve c=

t=0
{x(t)| x(0)=p}, we take arbitrary two points r=x(s) and r'=x(s+u). We denote

by ¢, the holonomy mapping from T,(M) to T,. (M) along ¢, and by @ ,(S§+,)

the induced fibre tensor of S§., with respect to ¢,. Then it follows from our

assumption that {% D (SE+u) lzo=0 holds. Since VY, ,=q@, Y, it follows also

that ¥, ,=¥,®,. Hence we have

0 ] 0
O =|:W q)u(S(ﬂ;‘+u))—’u=o :[%~ {lI/s 1ollys+u(SEks+u))}i|u=
Cgim 5 oW st u(S ) = VSV (SE)
u—>0 u

=yp-1 {llm q](s+u)(S?fs+u)) - 'Ps(Szks)) }
§ u-—»O U

Since ¥, is isomorphic, it follows that

lim q’(ﬁu)(S?‘erZ;)—‘Ps(S?‘s)) =0
u—>0

which implies - W,(S3)=0. Hence we have ¥,(S&)=o(Sk)="S%,. Con-
sequently we have that y, leaves S*(x(0), y) invariant. Q.E.D.

§4. Let M be a Finsler manifold whose Finsler metric function is F(x, y).
Let g(x, y) be the Finsler metric tensor, then the fibre tensor g*(p, y) is a Riemann

metric tensor on T,(M). The condition %kg,.j=0 implies, from Theorem 3, that,
for arbitrary two points p and g in M, the holonomy mapping with respect to the
non-linear connection N(x, y) is an isometry from the Riemann space {T,(M), g*(p,
y)} to the Riemann space {T(M), g*(q, y)}.

Here we adopt the Cartan’s non-linear connection as the non-linear connec-

tion N(x,y). That is to say, Ni=I% y"=G!, then Ni;=0,Ni=G};. And the
covariant derivative Gk coincides with that of Berwald’s ||k. On the other hand,

it is well-known that g,;,,=0 is the condition for a Finsler manifold to be a Land-
sberg space. Thus we obtain
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Theorem 4. Suppose that M is a connected Finsler manifold. A necessary
and sufficient condition for M to be a Landsberg space is that, for arbitrary two
points p and q in M, any holonomy mapping from T,(M) to T(M) with respect to
the Cartan’s non-linear connection G is always an isometry to the Riemann space
{T, (M), g*(p, y)} to the Riemann space {T(M), g*(q, y)}.

Now, for the tensor Ci;, = %g"’"émgjk, we see
Cliyn=0,Cly— a.mci'kGZz + Gl Chy — Ci Gy — CELGY,
= Cj‘klh'I_PrihCS'k_ CikPS'h— C}"rpih

*
where Pl =G —I%. It is well-known that Pi,y'=0 and Ciy,y"=Pi, where |r
implies the covariant derivative defined by Cartan. Hence Ci;,=0 implies that
tn=0, that is, the space is a Berwald space. Conversely, in a Berwald space, the

®
relation I'},=G%, holds. Therefore C%;,=0 holds good. Consequently we
obtain

Theorem 5. Suppose that M is a connected Finsler manifold provided with

the Cartan’s non-linear connection Gi. Let C(x, y) be the tensor field given by

C§k=%gi’"6‘mgjk. A necessary and sufficient condition for M to be a Berwald space
is that any holonomy mapping with respect to G% always leaves the fibre tensor
C*(x, y) invariant.

§5. In this section we assume that M is a Finsler manifold admitting a linear
connection I'(x) and the non-linear connection N(x, y) is given by Ni=T} (x)y™.

n
Then V, is called the h-covariant derivative associated with the linear connection
! !
I'(x). We denote it by V,. For any (1, 1)-tensor T, V, is written as

l ; . . . .
ViT§ =0T =0, iy + T5l b —Til,
l
On the other hand, we know that V,g,;=0 is the condition for M to be a gener-
alized Berwald space with respect to the linear connection I'(x) ([2], [4], [5]).
Hence we obtain

Theorem 6. Suppose that M is a connected Finsler manifold provided with a
linear connection I'(x). A necessary and sufficient condition for M to be a gener-
alized Berwald space with respect to I'(x) is that, for arbitrary two points p and q
in M, any holonomy mapping from T,(M) to T, (M) with respect to the non-linear
connection 'L, (x)y™ is always an isometry from the Riemann space {T, (M), g*(p,
y)} to the Riemann space {T(M), g*(q, y)}.
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If we pay attention to the theorem shown in the paper [7], we can prove easily

Theorem 7. Suppose that M is a connected Finsler manifold provided with a
linear connection I'(x) and admits such a point p that the Riemann space {T, (M),
g*(p, y)} is irreducible. A necessary and sufficient condition for M to be a gener-
alized Berwald space is that any holonomy mapping with respect to I'l (x)y™
always leaves the fibre tensor C*(x, y) invariant.

§6. In this section we assume that the dimension of the manifold M is 2n and
M admits an almost complex structure f(x). In this case, the fibre tensor f*(p) in
T, (M) is independent to y, and satisfies f1(p)f%(p)= —4% So, f*(p) is a complex
structure on T,(M). Now we show

Theorem 8. Let M be a 2n-dimensional connected manifold and admit an
almost complex structure f(x) and a non-linear connection N(x, y). For arbitrary
two points p and q in M, any holonomy mapping from the complex space {T, (M),
f*(p)} to the complex space {T(M), f*(q)} is a holomorphic mapping, if and only

if Vf=0 holds.

Proor. The condition for the holonomy mapping ¥ to be holomorphic is
given by (dy),of ¥(p, y)=f*(q, Y(y))d¥,,. This can be reduced to f*(p)=

Y(f*(q)). Hence, due to Theorem 3, we obtain that %sz is the necessary and
sufficient condition. Q.E.D.

Now, we assume moreover that M admits a Finsler metric F(x, y). Here we
put

(6.1) (g =c0s 065 +sin O f L.
If the relation
(6.2) F(x, @oy)=F(x, y)

holds for any 6, M is called an almost Hermitian Finsler manifold. With respect
to this manifold, we have shown in the paper [8] that

Theorem 9. The tangent space at any point of an almost Hermitian Finsler
manifold is an n-dimensional complex Banach space.
Now we show

Theorem 10. [n an almost Hermitian Finsler manifold M, let us put

(6.3) gif(x, ») =~é (9:(x, V)G (X, YIFUX) (X))

Then the tangent space T,(M) at any point pe M admits a Kéhler structure {G*(p,
), fX(p)-



On Holonomy Mappings Associated with a Non-linear Connection 7

PrOOF. The fibre tensor f*(p) is a complex structure on T,(M) and satisfies

Gunf1f"=di;. So, {G*(p, ), f*(p)} gives T,(M) an Hermitian structure. More-
over it follows that

Ok GinS )+ 04G 1)+ 0 (G S )
= 0 Gin T = Gi S D UG S T = i 1)+ 8N Ganf T =G 1)
=0
Hence, {g*(p, y), f*(p)} is a Kéhler structure on T,(M). Q.E.D.

Putting together the above theorems, we obtain

Theorem 11. Suppose that the manifold M admits a non-linear connection
N(x, y) and an almost Hermitian Finsler metric {g(x, y), f(x)}. In order that
any holonomy mapping for arbitrary two points p and q always transfers the
Kdhler structure {G*(p, y), f*(p)} on T,(M) to the Kdihler structure {G*(q, y),
S*(q@)} on TAM), it is necessary and sufficient that

(8239 +f2f D) Vigpy=0 and ¥, fi=0
hold good.
We show lastly

Theorem 12. Suppose that the manifold M admits an almost Hermitian
Finsler metric {g(x, y), f(x)} and the non-linear connection N(x, y) satisfing the

conditions Ni(x, (/)oy)=3mNj-(x, P),ry" and %kfj:O. Then, for arbitrary two
points p and q in M, any holonomy mapping from T,(M) to T (M) with respect to
the non-linear connection N(x, y) carries every complex line passing through the
origine of T(M) to a complex line passing through the origine of T(M).

ProoOF. Since the non-linear connection satisfies
N(x, ky)=kN(x, y) ("k>0),

the holonomy mapping  always carries every half real line starting from the origine
to a half real line starting from the origine. That is,

(6.4) W(ky)=ki(y) (Yk>0).
Now, we sec

d i m i dxm
d?((p(}my ) + Nm(xa (Pﬂy) 74?[

o0 i 0 im0t B8 N e ot e 4
_cose-f—c—{l +sm9*al~.y1+sm0fj i +0,Ni(x, y)o§.y 57
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. m . . . ) . L odxk .
= Qb 80 00 =0, NECx, 9 F+8;NEGe, )i S0
. . . dx™
+01ern(xa J’)Q’éry %‘
= 5 " dxr —si ; i m .dxr 1 i m dx_r_
= — (meNr (.’C9 y) 7 sin HamNr(x, y)f]yl dz +sin H.mer (x’ y _dz

. dx’
+0,Ni(x, y)(pémy’"Txt

- dc;cl' {—cosONi(x, y)—sin0fiNm™(x, y)—sin 95,,,N;’(x, YTy

+sin 0f [, N7(x, p) +cos 00, Ni(x, y)y' +sin 00,N(x, y)fhy™}
=0.

Thus we have

(6.5) Y((©63)p) = (@o(W (1))
Because of the fact ¢} ;= —¢*, it follows that |
(6.6) Y(=y)=—v(y).

Due to (6.4) and (6.6), we have Y(ky)=ky(y)(Yk). Moreover we have (6.5), i.e.,
Y ((9e),) =(0s(V(y)),. Hence ¥ carries every complex line passing through the
origine of T,(M) to a complex line passing through the origine of T(M). Q.E.D.
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