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§0. Introduction

In the previous paper [17], we considered a real nonlinear autonomous dif-
ferential system with unknown parameters, and we have obtained the following
results;

1. The existence of an isolated periodic solution always implies the existence
of Galerkin approximations and these Galerkin approximations uniformly
converge to an exact periodic solution.

2. The existence of a ‘“‘good” approximate solution always implies the exi-
stence of an exact solution and the error bounds for this approximation are
given.

In this paper, we consider a real nonlinear periodic differential system with
unknown parameters, and we discuss the problems similar to the ones in the case of
autonomous system. And we obtain the same conclusion, that is, the above results
1 and 2 are also true in the case of periodic system. In order to verify the result 2,
we give the existence theorem in §1, and we prove the result 1 in §2.

Lastly, in §3, the numerical examples are given. The results show the usefulness
of our results.

§1. The existence theorem

In the present section, we consider a real n-dimensional nonlinear periodic dif-
ferential system with unknown parameters By,..., B;

b

(1.1) %’; =X(x, B,,..., By, 1),

where X(x, By,..., By, t) is periodic in ¢ of period 2n. To the system (1.1), we add
the periodic boundary condition

(1.2) x(0) — x(2m) =0

and an appropriate additional condition
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(1.3) g(u)=0,

where u=u(t)=(x(), By,..., B), and g(u) is a d-dimensional vector-function.
Now, we consider the following problem;

“Look for a 2m-periodic solution w=u(t)=(x(t), By,..., B;) satisfying
(1.D)—(1.3).”

For brevity, we rewrite the boundary value problem (1.1)-(1.3) in the following
form;

(1.4) Fu)= [ —X(x, By,..., By, 1), f(u)}o,

where
x(0) —x(2n)
f<u>=( )
g(u)

Let Q be the domain of the (x, B,,..., B;, t)-space intercepted by two hyper-
planes t=0 and ¢=2n (the boundary points of Q on the hyperplanes =0 and t=2n
are supposed to be included in 2 and to make an open set on each hyperplane).

Put

S ={u(t)=(x(t), By,..., By); @(t), ) e 2 for te I=[0, 2n], u(t)e M =C'[I] x R%},
S’ = {u(t) =(x(t), By,..., By); (1), 1) e Q for tel, u(t)e C[I]x R},
where
CU[I]={x(t)=col [x,(1),..., x,(O)]; x(t) (i=1,..., n) are C*-class on I},
C[I1 ={x(t)=col [x,(D),..., x,(O)]; x(t) (i=1,..., n) are continuous on I} .
Now, we introduce the norms in the product spaces C[I]x R4 and N=C[I]x R"*4.
For any u(t)=(x(t), By,..., By) € C[1]1x R?, we define

Jus)l. = =)+ 3B,

where ||x(t)]|. —sup |2(6)]|,, and | - |, is the Euclidean norm in R".

And for any n(t) (go(t) v)e N, we define
IOl =le®l+ v+

In this section, we use the natural induced operator norms, for example, | - ||,
denotes the norm of a continuous linear operator mapping from C[I]xR"**¢ with
the norm || - || to C[I]x R¢ with the norm |- |, and |- ||, denotes the norm of a
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continuous linear operator mapping from C[I]x R"**? with the norm ||| to
C[I] with the norm | - |, etc. .

From the above definition, it is evident that S S’ and S and S’ are open in M
and C[I]x R4, respectively.

In the system (1.1), we assume that X(x, B,,..., B, t) is defined on () and con-
tinuously differentiable with respect to u=(x, By,..., B,) in Q, and the d-dimensional
vector valued function g(u) is defined and continuously Fréchet differentiable on S'.
Then, f(u) is defined and continuously Fréchet differentiable on S’.

Then the Fréchet differential of F(u) at u=u(t)=(x(t), B,,..., B,) can be written
as follows;

F'(ah=| 44— X, (o), OB, f'@h |

for any h=(h(t), h,4,..., hy4g) € M=C[I] x R4 where
X (), )=(X (x(1), By,..., By, 1) Xy (x(1), By,..., By, 1)-+-Xp (x(2), By,..., By, 1)),

X, (x, By,..., By, t) denotes the Jacobian matrix of X(«, By,..., B, t) with respect
to x and Xy (x, By,..., By, t) (i=1,..., d) denote the derivatives of X(x, By,..., B, 1)
with respect to B(i=1,..., d), respectively. Here we have

h1(0) —h1(2n) >
gwh )

where f'(u) and g’'(u) are the Fréchet differentials of f(u) and g(u) at u=u(?), re-
spectively, and where h! denotes the transpose of h.
Now, we introduce a linear operator T mapping from M into N=C[I] x R**4;

f’(u)h=<

dh,
dt

(1.5) Th=[ — A, yh],

where A(f) is an n x (n+d) matrix whose elements are continuous on I and .% is a
linear operator mapping from the product space C[I]xR¢? into R"*¢. Then,
concerning the linear inverse operator T—! of the linear operator T defined by (1.5),
we have the following theorem.

Theorem 1 (M. Urabe [6]).
If the (n+d) x (n+d) matrix G=2[¥(t)] is non-singular, namely,

det G=det Z[ V()] =det (L, LPs,..., LP, .00,

then the operator T has a linear inverse operator T-'. That is, for any n=(¢p(t),
v)e N=C[I] x R"*? there exists one and only one solution h=(h(t), hy4 (5. , By )
€ M satisfying the equation Th=n. And the solution h can be written as follows:;
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hi=col[h((1), hy11,..., hyyad=H p +H,v,

where

"t t
0 0

{ Hip=(0) | ¥ ©g(6)ds— V)G 2 [¥(1) [ v s,
H,v=Y(t)G v, ¢(s)=col[e(s), 0],

and by ¥(t) we denote the fundamental matrix of the linear homogeneous system

dz

A2) —
7?=< )z (where | 0 | is a d x (n+d) matrix)

o],
with the initial condition Y(0)=E ((n+d) x (n+d) unit matrix) and by ZL[¥(1)]
we denote the matrix whose column vectors are .,?&i (i=1,2,...,n+d). Here we
put ¢;=(Pis(D), Vins 1> Vinea) =Pi €M, where ;=col [ (1), Yint 15eves Winsal

are column vectors of the fundamental matrix ¥(t).
Now, we introduce a concept of “the isolatedness of a solution of (1.4).”’

Definition
Let u=1(t) be a solution of (1.4). Then, the solution u=14(t) of (1.4) is called
“an isolated solution’ if

det f(a() [P(1)] 0,
where (1) is the fundamental matrix of the linear homogeneous system

i ( X, (@(0), 1

7 )z (where | 0 | is a d x (n+ d) matrix)

ol

satisfying the initial condition P(0)=E((n+d) x (n+d) unit matrix).
We must choose g(u) introduced in the beginning of this section as det f”(#(?))
[P(1)]=0. Concerning the choice of g(u), see the examples in §3, and also see [17].
Here, we devide the linear inverse operator T-! of the linear operator T defined
by (1.5) into several linear operators.
For any n=n(t)=(¢(f), v)€ N, we set

h=T-In=T-1(p(1), ) =(TTHp ), V), TyL (@), ©)00r Tlalp (1), ©)),
that is,
Tt (90, ©)=hy(0),
Tol(@(), ©)=hys s,
Totd (D), ©)=hysq
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Furthermore, we set
H,p H,v
Hip=| Hyn1 |, Hyo=| H,, v
Hln+d90 I.{2n+d’v
Then, by Theorem 1 we have
Ti' (o), v)=H 1+ H,,v,
T i(e(D), v)=H,,s 19 +Hjpi v,
T;}-d(SD(.t)s V)=H 14 +Hypo gv.
Therefore we obtain
IT7H<max ([ Hyqlle [Hzollo),
I Trbi <max ((H s, [Haps 1)),
]T;-;l—d| <max (|Hyp+4ls 1Hapsdl)
and
1T o < NTT I+ 1 Trks ]+ + T4l

Now, we set A(t)=X,(u(t), t) and £ = f'(u(?)) in (1.5), then we have the follow-
ing theorem.

Theorem 2.

Assume that the boundary value problem (1.4) possesses an approximate
solution u=u(t) in S such that det G=det f'(u) [¥(1)] =0, where ¥Y(t) is the funda-
mental matrix of the linear homogeneous differential system

s _< X, @), 0

B o] )z (where | 0 | is a d x (n+d) matrix)

satisfying the initial condition ¥(0)=E({(n+d) x (n+d) unit matrix).
Let piy, Wyt 15 Upt2s---> Uyrq and r be the positive numbers such that
py=max (| Hylle, |Haqllo)
(1.6) Hy + 1 = Mmax (H 144115 [Hzps1l)s

Bnra=max (|Hypygl, 1Hopyidl)s

(17 P2 IF @=L~ X(E, B B )| + 1@l
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If there exist the positive numbers 8y, 8,4 1,..., 0,44 and a non-negative number
k<1 such that

(1.8) Dj={u(1); () —x(D)]| . <04, lBl_—Bllgén-i- JEXTRD |Bd“Bd[§5n+d,
u(t)e C[I]x R4} S,
(1.9) 1X, (), ) = X, @@, ).+ 1f @ —f @I+

< K
i+ oyt R P

on D},

(1.10) <5y, Bt <6y, <,

then the boundary value problem (1.4) has one and only one 2n-periodic solution
u=1u(t) in

Ds={u(t); ||2(t) —x()[|, <6y, [By — By <8415 1By— Byl < 0,44, u(t) € M}

and for this solution @(t) we have

A - Hqr R _n Hu+1? D _ R ﬂn{dl‘
(11D 18O =FO) <2 1By Bl < ot B~ B < e

Proor. The proof of this theorem is similar to the one of Theorem 2 in [14].
See [14].

By the definition of the isolatedness of a solution, we can easily show that the
solution u=1(t) guaranteed in Theorem 2 is an isolated solution. In detail, see

[17].

§2. Existence and Uniform Convergence of a Galerkin Approximation
Let x(¢) be a continuous periodic vector-function of period 2x, and let its Fourier

series be

x(t)~co+\/§ > (€3,-4 COS Nt +€,, Sin nt),
1

n=

where ¢, ¢;, ¢,,... are n-dimensional vectors. Then the trigonometric polynomial
%) =€o++/2 Y (€, €OS NI+ Cy, Sin 1Y)
n=1

is a truncated trigonometric polynomial of the given periodic function x(f). In the
sequel we shall denote such a truncation of a periodic function by P, and write a
truncated polynomial x,,(¢) of a periodic function x(t) as follows:

x,(t)=P,x(1).
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In this section, we use the norm | - ||, defined by

Il =] | IxColzn [

Now, if we put 7, =col[e¢o, €1, €3,--., €2—1, €2,,], then it holds that
1 2n m
llxmllz—gso lem(t)llﬁdt=HcOlI%+Zl(IICzi—1l|%+chillﬁ)=llrxmllﬁ(zmﬂ)-
s

We owe to Cesari the following proposition concerning continuously differen-
tiable periodic functions.

Proposition.

Let x(t) be a continuously differentiable periodic vector-function of period
2n. Then

[ lx—P,x| <a(m)|x|,<a(m)|x].,
(2.1
Hx'—me“qéal(m)“x”q 5
where - ——%— and
! ]
o =2 Gy G )
o1(m) = m{{-l .
Also
\/f <o(m)< Y — \/

m+1

J;
Here, we introduce the following notations;
For any vector function u(t)=(x(t), By,..., B;) € M, we define w,(t)=P,u(t) by
u,(t)=P,u(t)=(P,x(t), By,..., By))=(x,(t), By,..., By,
and define the norms |- |, and |- |, by
()| = (D)l 4+ By + -+ +|Bql,
()l o = (Dl .+ 1B+ -+ Byl
respectively.

For any n(t)=(¢(1), v)e N=C[I] x R**4, we define

lIn@®l,=le@lly+ vl
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lin(Oll =@+ v, +4
By Proposition, we have the following results;
lu(t) = Pou(D)]l o, = [ 2(2) — P (D) || < o(m) |||, = o(m) || , < o(m) | £ ||, = o(m) ||,
|u(®) — P, = l|x(t) — P,x(Dll, < o (m)[|%] ;= o, (m)|| 8] .

For uw, =P, u(t)=(P,x(1), B,,..., B)=(x,(t), B;,..., B;), where

..o m
X ()=Co+/2 Y (€3, COS nt+c,,sin nt),
1

we put
Tu,=C0l[co, €y, €1y..., €101, €0y Byy..., By].
Then we define the norm || - [|” as follows;
07w, ' =117+, la2m+ 1)+ Byl + -+ 1Byl .
At once, we have the following result.

||um(t)Hq= HPmu(t)”q= ”xm(t)||q+ 'Bll + et le, = ”rxm“n(2m+1)+ IB1'+ et le’

=17l
By || lls+4,,» We denote the norm of a continuous linear operator which maps from
R to R4, Similarly, by |||, Wwe denote the norm of a continuous linear

operator which maps from the product space C[I]x R¢ with the norm |- |, to R¢
with the norm || - ||, and by || - ||, 4, Wwe denote the norm of a continuous linear operator
mapping from C[I]x R* with the norm || - ||, to R¢ with the norm || - ||,.

Let D be a closed bounded region of the u=(x, B,,..., B;)-space such that
DxI1cQ, and R is the real line, where I=[0, 2x].

We set X(u, t)=X(x, B,,..., By, t) and

Xu(u, t)=(Xx(x, Bl"“’ Bd? t) XBl(x, Bl""? Bd’ t)“'XBd(x, Bl""’ Bd’ t)).

Let X(u, t) be periodic in ¢ of period 2n.  We assume that X(u, 1) and its first partial
derivatives with respect to u are continuously differentiable with respect to u and ¢
in the region D x R, and g(u) is defined and continuously Fréchet differentiable on S’.

Lemma 1.
Let K, K, and K, be non-negative constants such that

K =max HX(u’ t)”n’ Kl =max HX,‘(IL, Z)“n+d,n’
DxR DXR

(2.2)

0X(u, t) H .
ot "

K, =max
DXR
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If there exists a 2n-periodic solution u=u(t) of (1.4) lying in D, then
(1) la—d,l|.,<Ko(m),
(2.3) (i)  [&—d,l,< Ko (m),
(i) 1 — ol < (KK, +Kp)o(m).

Proor. The proofis similar to the one of Lemma 11in [17]. See [17].
This lemma yields the following corollary.

Corollary 1.1.

If u=1(t) is an isolated periodic solution of (1.4) lying inside D, then there
exists a positive integer mg such that, for any m>my,

(i) a,(eD;

(ii) The linear operator T,, defined by

’rmh’= |._ d;'t‘l —Xu(ﬁm(t)s t)ht5 .f/(iim)h}

has a linear inverse operator T,' and there exists a positive constant
M, such that

(2.4 ITo M, <M., | Tyl <M., where h' denotes the transpose of h,
that is, h*=col [h(t), h,y15---> Nysal;

(iii) dL;Xu(ﬁm(t), t) is equibounded, that is, there exists a non-negative

constant K5 such that
d N
(2.5) |4 X @ 0.0 <Ks.
df n+d,n
Proof. The proof is also similar to the one of Corollary 1.1 in [17]. See [17].

The Jacobian matrix of the determining equation of Galerkin approximations
We put

x,(1)=@ay+/2 3" (ay,_, COS nt+a,, sin nt),
n=1
um(t)=(xm(t)’ B17 BZ""v Bd)
and

a=col [aO’ Apyeney Aapp—15 By Bl> BZ""’ Bd] .

Now, we will determine e satisfying the following system
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] 2n
Fi (@)= o | Xy (s), 5)ds =0,
2T o

2r
F{ (a) =7127 S X(u,(s), s)cosns ds —na,, =0,
0
(2.6) Fo (a) =7177{ SZ” X(u, (s), s)sinns ds +nay,_, =0,
21 )o
(n=1, 2,..., m),

xm(o) - xm(zﬂ) >
g(u, (1)

G (@)= f(u, () =<

The system (2.6) is constructed by {n(2m+ 1)+ n+d} equations, but the last equations
G (a)=0 are essentially equivalent to d equations g(u,(t))=0. Then we will solve
the following {n(2m+ 1)+d} equations;

2n
F{(a) =# So X(u,,(s), s)ds=0,

2rn
F{ (a) =ﬁ SO X (u,,(s), s) cos ns ds — na,, =0,

(2.6) o
Fi(a)=—5—\ X(u,(s), s)sinns ds +na,,_, =0,
\/27( 0

(n=1, 2,..., m)

F{(a) =g (w,(1) =0.

A function u,(?) satisfying (2.6) or (2.6) will be denoted as a Galerkin approximation
of order m and the system (2.6) (or (2.6")) will be called the determining equation of
Galerkin approximations.

Put F(a)=col [F{"(a), F{"(a),..., Fi_ (@), F§)(@), (F)...., (F)],
then the determining equation (2.6") can be written briefly as
F)(a)=0,

where F " (a)=col [(F,),,..., (F,)].
Let J,(a) be the Jacobian matrix of F("™)(a) with respect to @. Then the ele-
ments of J,(a) are of the following forms;

1 2n
3 | X9, B, B 9)ds,

2n
L g X, (x,(s), By,..., By, s)cos ns ds, (the elements with respect to a,)
0

\/271
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\/Ifn: Szn X, (x,(s), By,..., By, 5)sin ns ds,
8 (@, (D) (W (D) (1<i<n),
0
where w,,,, () =(%,,,(1), 0,..., 0), x,,, ()= ] ci.
0
-1 SZ" X, (x,(s), By,..., By, s)cos ks ds,

2n
¥—1-g X, (x,(s), By,..., By, s)cos ks cos ns ds,
0

(the elements with respect to a,;_ ;)

2
71r— g X, (x,(s), By,..., By, s)cos kssin ns ds+nE,,
0

8 W, () Wy, (D) (1<i<n),
0

where @, (t)=(%p, (1, 0,...,0), x,,, ()= \/chs kt |ci, and E, is an

0
n X p unit matrix.

"2r
L S X_(x,(s), By,..., By, s)sin ks ds,
27 0

Vv

2z
—71[— S X (x,(s), By,..., By, s)sin ks cos ns ds—nE,,
0

T

2n
. S X _(x,(s), By,..., By, $)sin ks sin ns ds,
0
(the elements with respect to a,;)
&' (W) W, (1) (1<i<n),
0
WHere 1y, ()= (B (s Os-vs 0), %y, ()= | /2sin Kt | <.
0
1 2n
| X (5), Brvees B 5) ds,
2z
S X3p,(x,(5), By,..., By, 5) cosns ds,
0

1
J2n
(the elements with respect to B; (1<i<d))
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—ﬁ gz X (4,(5), Bis..., By, §)sin ns ds,
g'w, (1)) (w,p ()  (1<i<d),
where u,,5(1)=(0, 0,..., 0, l, 0,..., 0).
In order to find the basic properties of J, (@), let us consider the auxiliary linear
system
(2.7) In(@)§+7 =0,
where

E=C01 [voa Vy,..., Vom—1s v21m Vl,..., Vd]’

(2.8)
r=col[eg, €1,..ss €31, €y —Cr,ueey —Cy4].
If we put
y(H)=vo+/2 ﬁ (v,,- cOs nt+wv,, sin nt),
n=1
p()=co+/2 i (€3 1 COS Nt + €5, Sin 1),
(2.9) n=1

u, ()=(y(1), Vi, Vo), up()=((1), Cy,..., C),

n¢=[¢(t), ( 3) > ‘, where w=col [Cy,..., C4],

then the equation J,(a)§ + 7 =0 are equivalent to

4% — P, [ X, (u,, (1), Du ], f (um(z))uy@: =Ty = [9"(’)’ (w ﬂ ’

or

:fl—{_ P [ X (w (0), uy ], g’(um(Z))uy(t): —[o (), w],

where u!, denotes the transpose of u,.
First, we shall prove the following lemma.

Lemma 2.

Assume that the conditions of Lemma 1 are satisfied and that (1.4) has an iso-
lated periodic solution u=i(t) lying inside D. Taking m, sufficiently large, we
consider the differential system

(2.10) [%;i = P [X, (@ (D), Dut ], f (ﬁm(’))“y(t)] =y = [’D(’)’ < 0 ﬂ
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for m>my, where ,,(t)=P,u(t) and where ¢(t) is an arbitrary continuous periodic
Sfunction of period 2n and w is an arbitrary vector of R¢. Then, for any periodic
solution w=wu (1) of (2.10) (if any exists), we have

M.l + Kior(m) [ 0)],)
eyl = =20 K+ Ko (m)

(2.11)

and since

gl <yl </ dllngll 4 o @), < limyll,

then we have

M ({/d+ K,0,(m))
(212) ”uquS ]—MC(K3+K%)O'1(m) mn(pmq

Proor. For brevity let us put
A4,(N=X,@,(1), 1).

Then for any periodic solution u=wu. () of (2.10) we have

Tty = = A0y f @), | = [ 004200, (2],
namely,

D=2, 0u+ 00 +90).

F @, 00 =( ) ). where 9() = — (I~ P,) A, (0,

Here I is the identity operator.
Put

z(t)= ﬁm(t)u; .
Then

b

L X ( P[4, (u, 1+ () )
5() = An(Out, + 4,(0)

from which, it follows that

121, < Kslluyll, + K [ Pul A, (Dut D1, + ()],

But by Bessel’s inequality,

1P LA (10, 1 g < | A (Dt || < Kyl I,
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Therefore, we have

Iz, <(Ks+KDlu,l,+ K, lleOl,.
Since ||7]l,<a,(m)|z[|, by Proposition (2.1), we have then

7@, <o (m) (K3 + Kllu, [, + K [9@l,]

On the other hand, #(¢) is an isolated periodic solution of (1.4), so if m, is sufficiently
large, there exists T, and || T;,!||,<M_ for m>m,. Then

e, I, < M {Hlug(Dll,+ 172D 4} 5
and
e, ||, <M [Ny, + 0 (m) [(Kz+ KD lu,ll,+ K lle®l,I]-

Since 1 — M (K5 + K?)a,(m)>0 for sufficiently large m, then

M, (llupll, + Ky0,(m) [ (D) ,)
I =M. (K3+ K3)o,(m)

M. (JdlIn,ll,+ Ko, (m) |9 @) ,)
I —=M.(Ks+ K)o, (m)

T 1-M(K3;+ K)o (m) T

ey, <

7N

Q.E.D.
Let
i(t)y=(&(t), B,,..., By)  (where £(t)=d,+/2 i (@ay— | COS Nt + @5, sin nt))

n=1

be an isolated periodic solution of (1.4) lying inside D, and let us consider the Jacobian
matrix J,(&) where @&=col[@g, @,,..., @yp— 1> Grms Bys..., By]. Then the lemma
above yields the following corollaries.

Corollary 2.1.
There exists a positive integer mq such that

det J,(a&)=0
for any m>my.

PrROOF. For u,(t), n,(t), § and 7 of the form (2.8) and (2.9), the differential system
(2.10) is equivalent to the linear system

(2.13) T (@)&+7=0

as mentioned in the beginning of this section. Now put 7=0. Then n,(?)=0,
and this implies uw, =0 by (2.12). Then §=0 by (2.8) and (2.9). Thus, in (2.13),
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7 =0 implies §=0. That is, det J,(&)=0. Q.E.D.

Corollary 2.2.
There is a positive integer mg such that, for any m>my, J, (&) exists and

M. (1+ K,0,(m))
1 —M (K3+ K)o (m)

7 @ " <

Proor. By Corollary 2.1, J,,'(&) certainly exists for m>m,. Further for u,(1),
n,, § and 7 of the form (2.8), (2.9), the differential system (2.10) is equivalent to the
linear system (2.13). Hence § = —J,'(&)y. Since |u, ()l,= 11", lw,Oll,= 7l
and [@()|,<llu,ll,=ll7l", then

M, (gl + Kio, (m) |9 @)1 )
I Ol = =R + KD os(m)

and so

M. (14K o.(m) 7l

Nen < I —M_(K;+K2%o,(m)

Namely

M.(1+ K, 0(m))
I =M (K3+ K)o (m)

75 (@) " < Q.E.D.

Lastly, for the difference J,,(a’) —J,(a"), we shall prove the following lemma.

Lemma 3.
Under the conditions of Lemma 2, let K, be a positive constant

ew g E R CRONE

DxR k=11=1 lp=1 536,,

where Xk'(u, t) (k=1,...,n; I=1,..., n+d) are the elements of the matrix
X, (u, )=(X(x, By,..., B t) Xp(x, By,..., By, t)---Xp, (%, By,..., By, 1))
and x,(p=1,..., n) are the components of the vector x. We assume that there exists
a non-negative constant K such that
Ig' () —g'(u")lly0< Kellu' —u"] ,

foranyu',u" €S’
Then, if both

u'(1)=(x'(t), B},..., BY) (where x'()=ay+./2 i (a},— cos nt+aj, sin nt))
1

n=

and
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u'(H)=(x"(t), BY,..., B}) (where x"(f)=a}+/2 Y. (a},—, cos nt+aj}, sin nt))
1

n=

belong to D together with 0u'(t)+(1—0)u"(t) (0<0<1), then
(2.15) 1T (@) =T (@' (K ++/dKe)u' —u"|,
<(K4+dKg)2m+1lla’ = a"]l’,
where &' =col [a), a},..., @, _ 1, @5, Bi,..., By and
a’=col [a}, af,..., a3, _, a3, BY,..., By].

Proor. Take an arbitrary &=col [vy, V1,---» Vam—1> Vo Vis---» Vgl, and consider

u,()=(y(t), Vi,..., Vo), where y()=v,+/2 ni:l(vz,,_ L €Os nt+wv,, sin nt).

Put
(2.16) 7'=—Ju(a)§, v'=—J(a")§,
and let

7' =col [¢p, €1y..., Comoys Copmy —Ch,en, —Cyl, w'=col [Cy,..., Ci],
and

7" =col [¢}, €,..., €31, €omy —C1,..., —Cgl, w"=col [CY,..., CY].
If we put

ty = (@' (1), Clovrry C)y Ty = [(p’(t), ( 9 ﬂ and
ttyr = (" (0), Chovrss C g = 970, (0 ).
(where ¢'(f)=cp+ \/iél (¢y,—, cos nt+c,, sinnt) ,
Q" () =cl+/2 gl (¢4, cos nt + ¢}, sin nt)) ,
then by (2.10) and (2.16) we have

[‘Z—Pm[Xu(u’(t), Dus], £ @ )y ® |=ny =] @' (1 )

[fi_%tv— P [X, ' @), Hull, f' (u”(l))uy(ﬂ =Ny = [90"(‘)’ ( ' ﬂ

where u!, denotes the transpose of u(1).
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From this it readily follows that

ny—ny = ¢'©-9"0,( 5 )= ()]
=[-P,[(X, @' (@), ) - X, @), ))ul], [f' @ @) —f @ (®)]u, @],
that is,
[ 9 ()—9"()=—P,[(X, @), 1) - X, (), 1))u,], and
i w—w'=[g' W) —g'W)]u,Q®.
Let us put
pO)=¢' () —¢"(®) and
r=71—71"=col[¢{—c(,..., €3, — €3, —C1+C1,..., —Cy+Ci].

Then we have

(2.17) ()= —P,[(X,@'(®), ) - X, (" (1), )]
and
(218) = [Jm(a,) _Jm(a”)]e-

n ntd
Now [ X, (' (1), ) =X, (" (@), ) 744, < 2 2 (X' (@), ) — X5 @" (@), 1))?, where
k=11=1
XE(w'(1), 1) and XEN(u'(1),t) are the elements of X, (w'(f), ) and X, (u'(?),?),
respectively. Since u’(1)+0(u'(t)—u"(t))e D (0<0<1) by the assumption, the
quantity in the right member of the above inequality estimated successively by means
of Schwarz’s inequality as follows:

[XE @' @), ) — X " (0), )]?

0 6xp

4 OXE (1" +0(u —

u")) r_ ,',} :|2

tA o5, (Bi— B}
__ n 1 aX’;l — d 1 aXﬁl - 2
- ”gl SO 0x, 40 (x, xP)+i§1 So 0B; 0 x (B Bi):l

[ n 1 gxki 2 d 1 gxkl }2] n , "2 d , "2
< u u — . — .
- _pgl {So 0x, dG} + 121 {go 0B; oy |x [pgl (¥, =) +i§1 (Bi—B)*]
& (1 6X"’>2 Sl<6X"’>2 ] / A2 S (R a2
< u u — . — .
<| 2 () a0+ 5§ (G5 ao [« tiw 0 -~ 13+ £ (51~ 5]
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<[ £ (0 (G5 Y aor £ () (50 a0 |l —a12+ 5, (8- B1)7)

p=1J0 p i=1.J0
n 1 anl )2 d S‘l < anl >2 ‘l , p
< ) df u_ ) 0 —u'l2 .
_|:p;1 SO( (3xp +i§1 0 OB, B X Hu u “OO
Then
> [XE@ @), ) —XE @' (0, )]?
k,l
1 no/QXKINZ &/ OXKEN\? L e i
égo[lcz,z{p;( 0%, ) +§1< 3B, )H‘”’X”u w' )% < Kilu —u'] .
Hence

(X' (), 1) — X, @"(1), )i,
<X @' (®), )= X, @ (D), Dllsanliteyllnra
SKgllw' —w’| o w44

Then by Bessel’s inequality it follows from (2.17) that

leDl, < Kqlu' —u’| ]u, ],

d
Since [[7[l'=ll¢ 4+ ‘21 |C;—Cj| and ||§ | = |z ||, from the assumption of Lemma
and (2.18) we have

I @)= T @DEN = 7 =l + 3 ICi=C

. d
< Kyllw' —u’|| llu, |, +/d [_221 (Ci—CY)]
<Kyllw' —a"||, 1§ 1l +/dKellw —u"[, I €',
which implies
I n(@) = Tn(@)I" < (Ks+/dKe) ' —u"|l ..
Put a=a’'—a”, and suppose a=col [ay, &;,..., @3, —1, G2y, By,..., B;]l. Then
u(t)z(xm(t)> Blﬂ"" Bd)=u‘/(t)—u”(t)=(x;n(t)—x;:1(t)a Bll _B/lls-”a BQ—BZ),
%, (1) = x(8) — (1) =g+ /2 3. (@zn—1 COS N+ @y, sin nt),
n=1
B,=B;—Bj (i=1, 2,...,d),

and therefore
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d ! 4 d 4 "
”u(t)”w= ”xrn(t)”c+ :21 IBI‘ = ”xm—xm|lc+ ;1 lBtﬁle
_m S 1 d
< {§ Llaok! +\/2 zlx/a%n—lk +a3, 1%+ ,;1 | B; — B|
m 1 d
<(TU+2mlagt+ 3 (@i tad0)]}? + 3 15— B
n= i=
1 m 1 d ,
=(2m+1)2[||a,ll3 + ;(Ilazz-l 17+ lles2:17)12 + ; |B; — Bi|

</2m+1|la' —a"||'. Q.E.D.

The existence of a Galerkin approximation

The existence of a Galerkin approximation to an isolated periodic solution is
proved by the following theorem.

Theorem 3.
Let
(2.19) L%—X(x, B.,..., B, t),f(u)]=0

be a given boundary wvalue problem, where u(t)=(x(t), By,..., B), fu)=

(x(O) —x(2n)
g(w)

and X(x, B,,..., By, t) is periodic in t of period 2m, and where g(w) is the appropriate

d-dimensional vector-function. We assume that X(x, B,,..., B;, t) and its first
partial derivatives with respect to w are continuously differentiable with respect to
u and t in the region D x R, where D is a closed bounded region of the u-space
such that D x1<Q, and R is the real line, where I =[0, 2n]. Moreover we assume
that g(u) is continuously Fréchet differentiable on S’ and there exists a positive
constant Ks such that ||g'(u)l| ., 4<Ks for any weS’, and we assume that there
exists a non-negative constant K¢ such that

)and where x and X(x, By,..., By, t) are real n-dimensional vectors

lg'(w')—g'(u")] e < Kol —u’|,

foranyu',u"e€Ss’.

If there is an isolated periodic solution u=u(t) of (2.19) lying inside D, then
there exists a Galerkin approximation u=u,(t)=(%,(t), B,,..., B;) of any order
m>myq lying in D provided my is sufficiently large.

PrROOF. Setting
P, i(t)=(P,&(1), By,..., B)=(&,(1), B,,..., B)= u,(1),

we have



114 Norio YAMAMOTO

% —p, %=P,,,X(ﬁ, ) (where X(&, 1)=X(&, B,,..., B,, 1)) .

(2.20)
Now let us take a small positive number 6, so that
x—x(2)
U=(u=(x, B,,..., By | BIT*E1 lh2a<6o  for someteR ) < D.
B, - B,
This is possible because u=1ii(t) lies inside D by the assumption. Then by Lemma

1-(1), @,,(t) e U =D for all te R and for any m>m, provided m, is sufficiently large.
For such m equation (2.20) can be rewritten as follows:

221) B = P, X (@1, D+ R0,
where

Rm(t) = Pm[X(ﬁ(t): t) - X(ﬁm(t)> t)] .
Now

A

X&), £)— X(@,,(¢), 1) = -—S;Xu(ﬁ(t) +0(1,,(2) — (), t)( m(; >d(9,
and

”Xu(ﬁ'(t) + G(ﬁm(t) - ﬁ’(t))? t) ||n+d,n < Kl »

hence

A A
X—X

1 X(@(), 1) — X(@,(0), t)||n£K1|I< o " >Iln+d=K1II&—ﬁmiln-

Then by the proof of Lemma 1-(ii) we have
I X(@(t), 1) — X(@,(0), Dll, <K% -,/ <KK,0,(m).
Hence, from Bessel’s inequality, we see that
IR, <KK;o,(m).
Let us put
a(t)=(&(t), B,,..., B,), where x(t)=a, +J2’§1(a2n_ 1 COS nt+ @,, sin nt)
and

— m
R, () =r{m"+23 (rin, cosnt+riw sinnt) .
1

n=
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Now setting

£ (0)—%, (27) \ 0
(2.22) f(am(z))=< =< )
g@, ) )

v

Then we have
1
v=g(u,)—g@) = Sog’(ﬁ+9(ﬁm —u)) (@, —u)do,
since

" £(0) —x(2n)

Flai) = ( |
g(@)

From this equation and the assumption of theorem, we see that

vl e < g’ @+ 0@ — @)l all o, — bl co < K5, — ]l o -

From (2.21) and (2.22), we have

@23) [ Lr P X@,0. 0. f@@) | = R (3]

Then (2.23) is equivalent to the following system:
(@) = | X0, 1) di= =1,
(0]
(@)= SO X (@, (£), 1) cos nt di—néiy, = —rm

2n
(2.24) | Fg(a)=—L S X (&, (£), £) sin nt di+néiy,_, = —15m,
0

\/27I
(n yeeer M),

=1,2
Uy

F§m><d>=g(am<t)>=g(ﬁm<t>>—g<ﬁ<t)>=”=< : )
CF!

where
a=COI [&0, (Atl,..., ('i;;_mﬂl, ézm, Bl""’ Bd] s
P(m)ZCOI [r(()m)a r(lm)a'--, r,(’).’rnn)—l» rg%), —Uyg5eens _Ud] )

i, ()= (%,(), By,..., By,

. m
R,()=d,+./2 21 (@, cOS nt + @y, sin nt) .
=
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Put F(m)(aA)zc()I [Fg)m)(d)’ F(IM)(&)"'H Fg’ryrlz)—l(&)a Fg'rnn)(a,\)a (Fg)la---a (Fg)d]’ then
(2.24) can be rewritten as follows:

Fm(g)=—pm,

where, F (&) =col [(F,)y,..., (F,)].
Then

o™ I = I F @I = [R,(0)],+ ¥ [0

<R, (Dll,+~/dlvl
<KK,o,(m)+/dK;|ii,,— @ .
Now, for m>m, and m, sufficiently large, let us consider the region
x—x,,00)
Va={(u=(x, B,..., By); | Blfﬁl | yea<0o— Ko(m) for some teR
B,~ B,

For any u=(x, B,,..., B;)) €V, then

x—x(1) x—%,,(2) %,,(6)—x(2)
| Bi=By |lwsa<ll| Bi=By |lusa+l| Bi—B, lnta
B,~ B, B~ B, B,~B,
x—Xx,(2)
=|| Bi—=Bi |lwsat 2,0 =2D),
Bdiéd

<0o— Ko(m)+ Ka(m)=9,.

This implies u=(x, B,,..., B))e UcD. That is,

V,cUc<D for any m=>=my.

Consider
_ . S0 _(SLTKO-(m)}
2,= a: lla=all' <> 5 200,

where @ =col [ay, @;,..., Gy,,_ 1, A3, By,..., By].
Then, as is shown in the proof of Lemma 3, for u(f)=(x(t), B,,..., B;) (where

— m . .
x(D)=ay++/2 3 (ay,—,cosnt+a,,sinnt)) with @ =col [ag, a,..., @y, 1, @3, By,...,
n=1
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B,1€ Q,,, we have

x(2) = %,,(2)
I| B,—B, lna < (®) = ()| o </2m+1ll@— &' <3 — Ko (m)
B,~ B,
for any m>m,, and hence u(t)=(x(t), By,..., By) e V,,=D. Thus, it is proved that
F(a) is well defined for any a € Q,,.

From (2.24) we note that a Galerkin approximation is a trigonometric polynomial
whose Fourier coefficients satisfy the equation

(2.25) Fm(a)=0.

Since a=a is an approximate solution of the above equation, we shall apply Pro-
position 2 (M. Urabe [5]) to the above equation in order to prove the existence of an
exact solution, namely, the existence of a Galerkin approximation.

Let us take m, sufficiently large. Then by Corollary 2.2 of Lemma 2 for any
m>m,, J, (&) exists and

sy | < — M+ Koo, (m)
W@ ) < (el Kol

This implies that

(C.1) VR (@)l'<M’  for any m>m,,
where
(2.26) M= M1+ K,0,(m,))

B =M K3+ K)o (my,)
Further by Lemma 3
(@) = (@) I < (Ks++/dKg)2m+ 1@~ al|.

for any a € Q,, provided m >m,,.
Take an arbitrary number x such that 0<x <1, and put

K

(Kot JdK)M 5O—Ka(mo)>.

51:min<

Let us take m, >m,, so that, for any m>m,,

M (KK 0,(m) + /K la,~al} _ 5,

(2.27) - T

This is possible because
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V2m+1

— 0 as m—— + 0,
m+1

J2m+10,(m)=

and
2m+ 1|, () -], — 0 as m—> + 0.
By (2.27) we can take a positive number J,, such that

M’{KKlo'l(’n)+\/EK5“ﬁ'm_ﬁ”oo}
11—k

9

<o, < —-21
T 2m+1

Let us consider the set
Q;,,={a; [le—all'<é,}.
For any @ € Q; we have

5] < 50_1{0-(”10) < 60_K0-(m)
m+1 "~ 2m+1 T [2m+]

(m>m,>m,),

lle—afl’ < NE

and consequently,

Qs, =,
Then, for any a € Q; , we have
(C.2) 1 m(@) =T (@) I < (Kg++/dKe)\/2m + 13, < (K4 ++/dK4)d,
— K
<
< (Ka+JaKo) o JaR M
K

< ik
Further,
(C.3) M “Ip(m)“Ir < M'{KKIO'I(m) +\/sz Hﬁm——ﬁ”w} S(sm .

l—x - 1—x

The expressions (C.1)~(C.3) show that the conditions of Proposition 2 (M. Urabe [5])
are all fulfilled. Thus, by that proposition we see that equation F ™ (a)=0 has one
and only one solution @ =a lying in Q; . This proves the theorem. Q.E.D.

Uniformly convergence of a Galerkin approximation of a periodic solution of (2.19)

Theorem 4.

Assume that the conditions of Theorem 3 are satisfied. Let u=1u(t) be an iso-
lated periodic solution of (2.19) lying inside D and u=u,(t) be its Galerkin ap-

proximation as stated in Theorem 3.
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If mq is sufficiently large, then for any positive integer m>m,,

S2m+1 M'{KK0,(m)+./dKs|i,

— _ﬁ'”oo} _}_K'O_(m)’

(2.28) |, — ] <

(2.29) |, — il < (K, +2KK,)a(m)

+ 2m+ 1M K {KK 0 (m)+/dKs||lt,, — @] -}
l—x ’

where i is an arbitrary fixed number such that 0<k<1, K, K, and K, are the
numbers defined in (2.2), M’ is the number defined in (2.26), and K5 is the number
such that ||g'(w)| , < K5 for any ueS'.

PrOOF. Put

(1) = (&, (1), By,..., By) (where &,(1)=do++/2 3, (@z,— 1 COS Nl + sz, sin ni)).
n=1

As shown in the proof of Theorem 3, @=col[day, @;,..., @zp— 1> Gapms Bys---» Byl
is a solution of F(™(a)=0lying in Q; , and by Proposition 2 (M. Urabe [5]) we have

M'{KK0,(m)+/dKs||it,,— ] -}
1—x

(2.30) lle—all’ <

where & =col [@,, @q,..., @sp_1, Gaps By,..., B;] is such that
i, (f)=P,i(t)=(P,&(?), B,,..., B)=(%,(1), B,,..., B,), and |
£ (=P, &)= o+ ﬁ"':z"l (5, | COS Nt + @y, sin nt).

From (2.15), we have
1, = thll oo </ 2m+1]|@— &I’

_ N2m+ 1M {KK 0,(m) +/dK||th, — @]}
- 1—x '

On the other hand, by Lemma 1-(i)
|, — . < Ko(m).
Thus,
2, — 8 oo < |2, — Ty | oo + || 1 — ] oo

- V2m+1IM'{KK 6,(m)+\/dKs||it,,— @l .}
- 11—k

+ Ko(m) .

This proves (2.28).
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Since a is a solution of F)(a)=0, for u,(t) we have

d-m _ i u =
KR CRORNICRO

(where X(i,,(¢), t) = X(x,,(¢), By,..., By, 1)).

This can be rewritten as follows:

231) Lo X, (1), 0, f@(0) | =70, 0,

where 9,,(t)= —(—P,)X(u,(t), t), and I is the identity operator.
Since

S X (1), =X, (0), ) B+ OX G 0), 1)

- - 0X -
=Xx(um(t)5 t)PmX(um(t)a t) +~3%_ (um(t)$ t) ’
by Bessel’s inequality we have

|- X@(0. 0 <K IPXG@E0. 0+ K <KK,+K;

Then, by Proposition we have
7 Oe= 100 = Po) X0, D1 < 0m)|- 5 Xin(0), 1] (KK +Ko(m).

On the other hand, #(f)=(%(¢), B,,..., B,) satisfies

(2.32) [‘;’f —X(#(), ), f(a)] —0  where X(4(), ) =X(&@), B,,..., B,, 7).

Now, we have

di, _div _ [ dz, d&
dt 717“( dt dz’O’O""’O>'

By (2.31) and (2.32), we have

dx,, _ d% _ 7 ii
;f —d—f— [X(um(t), t)—X(u(t)’ t)] +77m(l)

%, (1) — £(2)
=g X, (@(1)+0(@, () —a@) | Bi—B;  |do+7,0),
Bd;Bd
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and consequently

%, (1) —%(7)

[ L= L2 <1 Xlraall | Bi=By [ luwa+ 120 @
Bd_Bd
Since
70— 30)
1 Bi=Br [la=I&a0 =201, + 5 1B~Bil,
B, B,
then we have

[ Lo~ B2 | < K[~ 3+ £ 1B = Bil] + [2a0)].

<K llw, —i| -+ (KK, + K,)o(m) .

Thus, by (2.28), then we have

| L BB L L2 <K iyl (KK + Ko ()
< 2 IR (KK 000 ARV ) g ) + (KK + K)o (m)
(K4 2K, Yo (m) + V/ZZ%?CTJM'KI{zrarqzl_(n’z)+\/Zar‘1<5||am—ﬁuw} _

This proves (2.29). Q.E.D.

§3. Numerical Examples

In this section, we apply our results in §2 to a Duffing type differential equation
appearing in the electrical engineering. So far, it is difficult to apply the usual
Galerkin method (that is, the Galerkin method with no parameters) to the case of
Example 2. But, our Galerkin method (that is, the Galerkin method with unknown
parameters) can be applicable to such problems. And we get the high accurate com-
putational result and the sharp error estimate.

Example 1. We consider the differential equation

d*x

(3.1) —6h—2+k%+x3=Bcost (k=0.2).
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We rewrite (3.1) in the following form;

dx _
a0
(3.2)
dy _ _.3_
=X ky-+Bcost.
In this case, we take B and y,(=y(0)) as unknown parameters Bj,..., B, (d=2) in

Theorem 2 in §2, and we adopt

x(0) —x(2n)
x(0) —x(2n)
y(0) —y(2n) x(2)
Sw=| y(0)—yQ2n) | = , {u=u@)=(x(?), B, yo), x(t)=
x(0) —xo y(®)
g(u)
y(0)=yo

as the boundary and additional conditions, where X, is given. That is, put

1 00 0 %o
L1= ’ I9= s
01 0 —1 0

then the 2-dimensional vector-function g(w) is written in the form

x(0)
x(0) —x,
g(u)=< >=L1 B - 8.
y(0) —yq
Yo

We put

X, (=3 [ay,_;sin2n—Dt+a,,cos 2n—Di]  (m=10).

n=1
Then the results of numerical computations are as follows;
Xxo=—0.626506 (given),
B=0.45999 98475 38564, y,=0.20284 57065 35160, det G=4.1,
r=0.1x10"13, 4, =6.0, t,=3.0, u3=4.0, k=04 x 10711,
0,=0.601x 10713, 5,=0.301 x 10713, §;=0.401 x 10713,

Thus, applying Theorem 2 in §2, we get the following error estimates;

{R@) —%,0))*+ (@) —Pm(t))z}173—1“_1—2C <8,=0.601 x 10713,
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|B—B|< Iﬂ_ﬂx <6,=0.301 x 1013,

|90~ Fol < 2~ <6,=0.401 x 10712,

Example 2. In equation (3.1), we set x=x(t, x,), Where x, is a initial value of
x(1). Setting x,(t)=x(t, xo) and x;()=x,(t, Xo), we have the following system:

dx, _
dt

X2,

dx,
dt

= —x}—kx,+Bcost,
(3.3)
dx; _
d

X4,

d;;“ = —3xix3—kx,+ B, cost,

where x, (t, x,) is the partial derivative of x(t, x,) with respect to x, and B, is the
derivative of B(x,) with respect to x,.

In this example, we take (B, x,, B,,) as unknown parameters B,,..., By (d=3)
in Theorem 2 in §2, and we take

x1(2)
x1(0) — xg
‘ x,(2)
gw)=| x3(0)—1.0 [=0 u=u(t)=(x(t), B, xo, B,,), x(t) =
x3(2)
B,,
x4(8)

as the additional conditions, namely, we set

x(0) —x(2n)
" x(0) —x(27) x,(0) —x,
(3.4 flaw) - ( > -
g(u) x3(0)—1.0
B

X0

In the system (3.3), the case of B, =0 is the case that in equation (3.1), the
stable periodic solution consists with the unstable periodic solution. Then, since
the Jacobian matrix of the determining equation of the usual Galerkin approximation
1s singular, it can not apply to this problem. But, in the case of our Galerkin method,
the Jacobian matrix of the determining equation is non-singular.

We put
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(x)m()= 3 [az0- 1 sin 2n—Dt+a,, cos 2n—1)],
= (m=38)
(x3),(£) = i [Can 1 sin (2n— 1)t + ¢y, cOs (2n—1)1].

Then the results of numerical computations are as follows;
B=0.46139 11552 41294, x,= —0.65391 94080 07279, B, = —0.34 x 10~ 16.

det G=58.0, r=0.11 x 10~19, i1, =20.0, 1, =3.0, pt3 = 3.0, py =10.0, x=0.4 x 1076,
§,=0.221 %1072, 5,=0.331 x 1010, §,=0.331 x 10719, §,=0.111 x 10~°.

Thus, applying Theorem 2 in §2, we get the following error estimates;

12(0) =%, (1) < {47 <8,=0.221 x 1079,

|B—B|< 1“_2’K <8,=0.331x 10719,

Har

Ro—Xol <
|0 Ol_l K

<8,=0.331 x 1019,

|Bry =Bl < 4 <5,=0.111x10~".

In this example, we set B, =0 in (3.3), then the problem (3.3)-(3.4) is equivalent to

dx, —x
dt 2>
da),;Z =—x}—kx,+Bcost,
(3.5)
dx, —x
dt 4
% = —3x3x3—kx,
and
x(0) —x(27)
" x(0) —x(27m) x,(0) —xg
00 ("o | (gm0 )
g(u) x3(0)—1.0 /,
x3(0)—1.0

In this case, B and x, are the unknown parameters, then we set

u=u(t)=(x(t), B, x,) -
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We can apply our Galerkin method to (3.5)—(3.6), and we get the same results in the
case of (3.3)-(3.4).
Furthermore, we can take B as the only one unknown parameter and we can take

g@)=x30)—-1.0=0  (u=u(t)=(x(1), B))

as the additional condition. In this case, of course, we can get the same results of
the above two cases.
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