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§1. Introduction

We shall consider a real nonlinear autonomous differential system with unknown
parameters By,..., B,_; (1 <d<n) of the form

(1.1) ,,,di‘Ef:X(x, Bl:"‘3Bd"1)'

Here x and X(«, By,..., B,_;)e C'[D, x R*~'] are n-dimensional vectors, where
D, is a domain in the x-space and R“"! is the (d — 1)-dimensional Euclidean space.
Let x(t) be a desired w-periodic solution of the system (1.1) depending on the un-
known parameters By,..., B,_;, where w is unknown, too. We transform t to ¢

by r:% t, then (1.1) is rewritten in the form
(1.2) dx _ O x(x B B,
. dt o 5 JERREE) d-1/ *

Then the problem is reduced to the one of finding a 2zn-periodic solution of (1.2).
Hence, the problem is equivalent to

Looking for a function uw=u(t)y=(x(t), By,..., B4_1, ) satisfying the
equation

- d.

where f(u):(‘Z(((B)ix‘B(zn)), B is a d-dimensional vector, and L is a

linear mapping.

In § 3, we shall consider the linear mapping L in detail.
In the present paper we discuss the question of existence and numerical ap-
proximation of periodic solutions of (1.3). Setting u,(f)=(x,(t), By,..., B;_{, ®),

m
where x,()=ay,+./2 2 (a,,-cosnt+a,,sinnt), By,..., B,_, are undertermined
n=1
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parameters and w is an undertermined period, then it may be able to determine these
{n(2m+1)+d} coeflicients by Galerkin method so that u,(t) satisfies identically the
system

dx 1 2n ] m 2z
e _ S X(u,(s)ds+ | § feos mg X (1, (5)) cos ns ds
Z 0 0

n=1
. 27[ .
+sin nt g X(u,,(s)) sin ns ds} ,
Jo

and the equation

Sflu,(1)=0,

or equivalently

Fi (@)= | XGa,()ds =0,

2n
F (@) :’7127? SO X (u,,(5)) cos ns ds —na,, =0,
(1.4) | S

27
X(u,,(s))sinns ds+na,,_,=0,
0

Fip@) =}

Jon

(n=1, 2,..., m),

Gf(a) =.f(um(t)) =0:

where X(u,(s))= %— X(x,(s), By,..., B,_,) and @ is the {n(2m + 1) +d}-dimensional

vector such that e =col [ay, a;,..., @3, 1, @3, By,..., B4_{, w]. Itisto be expected
that for m sufficiently large u,(t) determined by (1.4) may be a reasonable approxi-
mation to a periodic solution @(t) of (1.3).

In the present paper, concerning this point, we also obtain the following two
results similar to the ones given by Y. Shinohara [15] in autonomous cases;

1. The existence of an isolated periodic solution @(t) of (1.3) lying in the
interior of the region of definition of F(u) always implies the existence of Galerkin
approximations w,(t) of any order m sufficiently high, and these Galerkin ap-
proximations u,(t) converge to the exact solution @(t) uniformly as m— co.

2. The existence of a “good’” approximation u(t) always implies the existence
of an exact solution and an error bound for u(t) are given at the same time.

Lastly, in §6, we apply our results to van der Pol equation appeared in the
electrical engineering. The results of numerical computations are original and
useful.

Now, in order to consider the problem (1.3), let us prepare the following
notations.
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Let D, be a domain in the x-space, and consider the product sets B=D; x R?
and Q=1 x B, where I=[0, 2r]. We put

C[I]={x(t)=col [x,(1),..., x,()]; x(1) (i=1,..., n) are C'-class on I},

C[I]={x(f)=col [x,(1),..., x,()]; x(t) (i=1,..., n) are continuous on I},

S={u(t)=(x(), B,,..., By_1, ®); (t, u(t)) e Q for all te I, u(t)e M=C'[I] x R}
and

S’ = {u(t)=(x(t), By,..., By_1, 0); (t, w(t)) € Q for all tel, u(t)e C[1]x R%}.

We shall denote the Euclidean norm in R" by | - |, and define the norms in the
product spaces C[I]x R4 and N=C[I]x R"*? by the formulas

(D))l o = ll(D)| .+ By |+ +|By—y| +|w|  for u(t)e C[I]x R,
and
Inll =le®ll.+lvl,ea  for n=(e(t), v)e C[I]x R"*,

respectively, where ||x(t)||.=sup ||x(t)|l,- Then both the product spaces C[I]x R‘
tel

and N are Banach spaces with respect to the above norms, respectively. Now, the
problem (1.3) is summarized as follows:

Look for a function u(t)e M = C'[I] x R? satisfying the equation
(19) | Fa=| 4~ 2 X(x, By, Bao). fw) | =0,

where L (C[I]x R*—R?) is a linear mapping.

In (1.5), we assume that the function F(u) with domain S<M and range N is con-
tinuously weak Fréchet differentiable. The weak Fréchet differential of F(u) at
u=u(t)=(x(t), By,..., B;_1, @) can be written as follows:

F'(u)hz[ d(Zl — X (u()h, f'(u)ﬂ for any h=(h,(t), h,+ 1o, By €M,

where X,,(u(z))=<_2‘%_ X Bivooos Baet) 2 Xp,(5, Byyoooy By )

w 1
“.?XBd—l(x’ Bl""’ Bd—l) *ﬁ X(x, Bl:-.-, Bd—1)> s

f’(u)h:(hl(O)L_(;:)l(zn)>, X, (x, By,..., B;_,) is the Jacobian matrix of X(x, By,...,
B,_,) with respect to x, and h* denotes the transpose of h.
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§2. Basic Theorems

We consider a linear operator T mapping M into N of the following form:

@2.1) Th=[~d;Tl—A(t)hf, gh] for any h=(Ry(t), hys1reos b ) €M,

where A(t) is an n x (n+ d)-matrix whose elements are continuous on I and % is a
linear mapping C[I]x R¢—R"+4,
M. Urabe has obtained the following theorem about the inverse operator of T.

Theorem 1 (M. Urabe [6]).
If the (n+d) x (n+d) matrix G=2[¥(1)] is non-singular, namely,
det G=det L[¥Y(N]=det (L P, Lh,..., L&, ) >0,

then the operator T has a linear inverse operator T~'.  That is, for any n=(¢(1), v)
€ N there exists one and only one solution h=(h (1), h,, ,..., h,, )M satisfying
the equation Th=n. The solution h can be written as follows:

ht:COI [hl(t)5 hn+1,..., hn+d]=H1¢+H2v’
where
[ Hyp=¥0) | $-16)p)ds— P0G 200(0) || w19 (5)ds].
0 0
H,v=Y()G v, ¢(s)=col [¢(s), 0] (where 0 is a d-dimensional vector),
and by (1) we denote the fundamental matrix of the linear homogeneous system

At —

g _ 79 % (where | 0 | is a d x (n+d) matrix)

“ \ o

with the initial condition W(0)=E((n+d)x(n+d) unit matrix) and by Z[¥(1)]
we denote the matrix whose column vectors are ,?gﬁi(t)(iz 1, 2,..., n+d), where we

put @i =(Pit, Yins 15+ Yinra) = P € M and where ¢p;=col [Dits Vint1seees Winsal are
column vectors of the matrix ¥(t).
Now, we introduce a concept of ““the isolatedness of a solution of (1.3)".

Definition 1.
Let u=4a(t) be a solution of (1.3). Then, the solution u=1(t) of (1.3) is called
an ‘“isolated solution’’ if

det f'(@(1) [¥(1)] =0,

where P(t) is the fundamental matrix of the linear homogeneous system
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S #010) __
= - z (where | 0| is a d x (n+d) matrix)
! 0]
satisfying P(0)=E((n+d) x (n+d) unit matrix).

Proposition 1.
The following statements are equivalent:

[ (a) det f'@)[P()]=0,

(b) there exists the inverse operator of F'(@@).

(2.2)

Proor. We consider the linear boundary value problem
F'@h=| Db X @, f@h (e, v) forany (p(), v)eN.
The solution k=h(t) is denoted as follows; h=h'=col [hi(t), hyty,-.., h,q] and

ho= (e + V(1) g; P-1(5)p(s)ds, b(s)=col [(s), 0]
(0 is a d-dimensional zero vector).

Therefore we get

- SRS o
F@h=f @ O)e+f @20 | P (5)p(s)ds] =v.
This equation shows that if det f’(i) [P(¢)] %0, there exists one and only one vector
c. That is, there exists the inverse operator of F’'(@). Conversely, if F'(i)!
exists, we can determine the one and only one (n+ d)-dimensional vector ¢ for any
vector v. This implies

det f/(@) [ ()] 0. Q.E.D.

According to (2.2), we may define that u=4(t) is ““isolated’’ if there exists the inverse
of F'(@).

Now, we devide the linear inverse operator T-! of the linear operator T defined
by (2.1) into several linear operators. Setting

h=T=ln=T-4(gp(t), v) =(TX@(0), v), TrL(@(0), V)., Tyl (D), v),
that is,

T @), »)=h, @),

Titi(@(©), v) =y

Tt @ (1), ©) = e
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and
H ¢ H, v
Hyp= H1r5+190 , Hyv= H213+1U )
Hl;;+d§0 H2n'+dv
then we have
TT' (¢(1), v)=H 1 + Hyv,
Trii(p(D), v)=Hy,s 19+ Hypi v,
Tila@(D), ©)=Hyysa +Hopr v
Therefore we obtain
ITT e <max (| Hyy ., 1Hz ),
|Tois ] <max (|Hyp,iqls [Haps (D,
| Tidal <max(1Hyyidls [Haued)
and
W= o < NTT A 1Tk + -+ T3l
Then we have the following theorem.

Theorem 2.

Assume that the boundary value problem (1.5) possesses an approximate
solution w=mwu(t) in S such that det G=det f'(u)[¥()] =0, where ¥(t) is the fun-
damental matrix of the linear homogeneous differential system

s < X, (1)

= >z (where | 0 | is a d x (n+d) matrix)

0]

satisfying the initial condition Y(0)=E((n+d)x(n+d) unit matrix). Let pu,,
Unt1s Myt 25-+-5 Hntqa and v be the positive numbers such that

py=max (|H e, [Halle)s
(2.3) u,,ﬂzmax (IH ns1ls [Haps1l),

Upra=max (|Hy,pql, [Hzpigl) s

e4  r2IF@l =%~ X@E By, B

@ e

If there exist the positive numbers 6, 0,415 Opt2s-+-» Oprq GRd a non-negative number
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k<1 such that
(2.5) Di={u(t); |x()—x(0)],<0y, By —By|<dyi15e0s [Bym1 —Bi 1| <0pta—1s

Iw_@l gén+da u(t) € C[I] XRd} CS,:

2.6 X, () - X, @) |+ | f @) = f @) || ysa < K on Dy,

@6 1Xu) =X, @+ I @) = @ ra S e o Ds
Ky Hpt1? Hpya?

(27) 11—k Sél’ 1 —x S5n+17"'s 1—x S6n+ds

then the boundary value problem (1.5) has one and only one 2n-periodic solution
u=1u(t) in

Ds={u(t); |lx() — ()|, <6y, lBl—Bl|Sén+1,“-a IBd—l"Bd—1|§5n+d—1,
Iw—ajléén+d’ u(t)GM}

and for this solution @i(t) we have

b

18() = %@ | <1, 1B, = By| <4l By — Byy| < Fatect”
(2.8)

|6 —o| < Kn+a?
=T

PrOOF. The proof of the theorem is similar to the one of the Theorem 2 in [14].
See [14].

§3. On choice of the boundary and additional condition f(u)

According to the previous sections, we may choose f(u) such that the (n+d) x
(n+d) matrix f'(u)[¥(¢)] is non-singular. Particularly, when f(u) is the form

; )_( x(0) —x(27)
L(u)—B

we consider how to choose the linear mapping L.

Let u=u(t) be a solution of (1.5). Firstly, we seek for the fundamental matrix
P(1) of the linear homogeneous system

ac (0

> , where L(C[I]x R*—>R?) is a linear mapping,

= )z (where | 0 ] is a d x (n+ d) matrix)
o\ o]

satisfying the initial condition ¥(0)=E((n+d) x (n+d) unit matrix). Now, we put
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o) p
¢@=< “ P®>,
@0 50

where &(1), P, g'(t) and 3(t) are (n+d—1)x(n+d—1) matrix, (n+d—1)-dimen-
sional column vector, (n+d—1)-dimensional row vector and real-valued function
(scalar), respectively.

Then (%) is the fundamental matrix of the linear homogeneous system

A

- - Y

(3.1) %=< 2
0((d—1) x (n+d—1) matrix)

satisfying the initial condition &(0)= E((n +d—1)x(n+d—1) unit matrix). And

@=0,30=1, p0y =00 | o 1(5)( X@, Biyeo., Byoy) )dc. As
0 ((d— 1)-dimensional vector)
X(%, Bl, Bd-1)>

is a 2zn-periodic solution of (3.1), we can write

X(£9 Bl;"': Bd—l) -
=d(t)e
0

for some constant vector ¢x0. Especially, in this case, the vector ¢ can be expressed
in the form c=<(c)1>, where ¢, is an n-dimensional vector and 0 is a (d — 1)-dimen-

sional vector.
Since X(&(t), By,..., B;_,) is 2n-periodic in 1,

¢, =X(%0), B,,..., B,_)=X(&(2n), B,,..., B,_,).
Moreover, as we can put
- - - . B,,() R B ,(2)
P()=(2,(1), 2,(1)), P,()= , Do) = ;
0 / d—1
where @,,(¢), 0, ®,,(t) and E,_, are nxn matrix, (d—1)x n matrix, nx(d—1)
matrix and (d—1) x (d — 1) unit matrix, respectively. Ultimately P(¢) is the form
- - t PPN ~
D11(8) 9,0 ?X(xa By,..., By_y)
P@)=(P,0) P20) Prra(®)= 9 :
0 Ed—l .
0
0 0 1

because p(f)= @(z)g Aeaz= @(t)c_Ln<X(§’ By, Bd-1)>. Here P, ()
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-~ a ’_t'_—X(&’s Bla"'a Bd—l)
¢, [P0\ o
=< O ), qu(t) =( Ed—l > and an+d(Z) == (.) . Therefore,
0 0 :
0
1
. E,,—@ll(Zn) ’"@12(275) — €
@Yol =< _ N . )
L(¥y) L(¥,) L(¥ y+a)

So, we may choose L such that detf'(@)[P(t)]=0. Specially, when X =-.-=
XBd—l =0’
(3.2) detf'(@) [P(n]=det (E,_ — 01%,,(21)Q,)
X(&, B,,..., B;_)
x det (L(P,) L 0 ).
0

Hence, in this case, we can choose L such that

X(%, B,,..., B;_))

det (L(¥,) L ) =0.

o © W

§4. Existence and Uniform Convergence of a Galerkin Approximation

Let x(t) be a continuous periodic vector-function of period 27, and let its Fourier
series be

— R
x(t) ~€o++/2 Y (€3, COS nt+¢,,8in nt),
n=1
where ¢, ¢4, ¢,,... are n-dimensional vectors. Then the trigonometric polynomial
. m .
Xp(D)=co++/2 Y (€341 COS nt+c,, sin nt)
n=1

is a truncated trigonometric polynomial of the given periodic function x(f). In the
sequel we shall denote such a truncation of a periodic function by P,, and write a
truncated polynomial x,(f) of a periodic function x(¢) as follows:

x,()=P,x(1).

In this section, we use | - ||, defined as follows:
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Il =] 5 | Itz 2.

Now, if we put 7, =col[cy, ¢4, €,,..., €3, 1, €3,], then

1 2 m
lemllé="rg l®nDllzdt=lleoli+ 2 (lesi— i3+ ezl D) =174, I72m+1)-
T Jo i=1

We owe to Cesari the following proposition concerning continuously differen-
tiable periodic functions.

Proposition 2.
Let x(t) be a continuously differentiable periodic vector-function of period
2n. Then

lx— Px]| < o(m)| ]l < o(m)]£] ..,

(4.1) ]
IIx—meHqgal(m)Hxllq,
where - =% and
_»l 1 1 1
G(m)_‘/ZL (m+1)2 T (m+2)2 +"']2’
1
o1(m)= m+1 "
Also

V2 J2
P <0(m)<\/—n7.

Here, we introduce the following notations;
For any vector function u(t)=(x(?), By,..., B;_{, ®) € M, we define u,(t) = P,u(t)

u,(t)=P,u(t)=(P,x(t), By,..., B4_1, 0)=(x,(1), B;,..., By_1, ),
and define the norms || - ||, and | - ||, by
lu( = 2Ol +|By|+ - +[By—y| + ],
()l = 2@+ By |+ + 1By |+ ] .
For any n(t)=(¢(t), v)e N=C[I]x R**4,
lin)ll,=lle@®ll;+ vl
lIn) | =@l + vl a

By Proposition 2, we have the following results;
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() — Ppte(D)] o = [ 2(t) — P (D). < a(m) | %], = o(m) ]| ;< o (m) | %] . = o (m) ||,
() — Poua(D)ll = %) — Ppa(D)ll,< o1 (m) | %], = o ()|,

Moreover, we use the following norm ||| - ||";
FOI' um(t)=Pmu(t) =(me(t), Bl)“'? Bd-l? Cz))=(xm(t), Bl""? Bd—l’ CO), Where

— m
%, (H)=co++/2 3 (€y,—, COS nt+c,,sin nt), we put
n=1
ruMZCOl [CO, Cl, 027"" CZm—la sz, Bl""’ Bd—l’ w:l .
Then we define the norm || - || as follows;

7w I =17 g lnzm+ 1y + 1Byl + - + By -y |+ .
At once, we have the following result.
ln(Ollg= POl ;= (Dl g+ By [+ -+~ + By [ + ]|
=7 epllnzm+ 1y Byl + - +[By—y[+ ol = 7., [I"

By | * ll4+a.n We denote the norm of a continuous linear operator which maps from
R"*¢ to R*. Similarly, by |||, Wwe denote the norm of a continuous linear
operator mapping from the product space C[I] x R¢ with the norm | - || , to R4 with
the norm |- |, and by ||-],4 we denote the norm of a linear operator mapping
from C[I]x R4 with the norm | - ||, to R with the norm | - |,.

Let D, be the closed bounded region of the x-space and D, be the closed

bounded region of R4, We put E=D,xD,. We assume that X(u)E—%X(x,

) 1
g Xees g X

1

Bi,..., B4—1) and Xu(u)E<§)—nXx(x3 By,...; By_1) %XB

B,,..., Bd_1)> are defined and continuously differentiable with respect to u on E,

and f(u) is defined and continuously Fréchet differentiable on D’, where
D ={u(t); (t, u(t))e I xE for tel=[0,2n], u(t)ye M=C[I]x R%},
D'={u(t); (t, u(t)) e IxE for tel=[0,2n], u(t)e C[I]x R4}.

If we apply Proposition 2 to a periodic solution of (1.5), then we easily get the fol-
lowing lemma concerning its truncated trigonometric polynomials.

Lemma 1.
Let K and K, be non-negative constants such that

K=m§1x [ X(@)ll,, K, =max [ Xu@) -+ a,n-

If there exists a 2m-periodic solution u=1(t) of (1.5) lying in E, then



66 Norio YAMAMOTO
(i) [d—a,l,<Ko(m),
(iii) |ld—,]., < KK o(m).

ProoF. By Proposition 2, we have

A

1= Gl o= | & — %l < T (m) 2], -

Since

d) A D )
?X(x, By,..., By-1)

I41,=]

,~IXEl= (2= SZ |X(@)| ﬁdt>% <K,

then @ —d,| ., < Ka(m). This proves (i).
Similarly,

“u_um”q= ||:‘\:_£m|lq£O-l(m)”x”quO-l(m) .

Now @=(X(%),0,0,...,0), then @—a,=(X(@)—P,X(®@),0,0,...,0), where ,=
P, ai=(P,X(#@), 0, 0,..., 0).

Therefore
lé—,l,=|X@)—P,X@)]|.<o(m)| X@)], .
However
dz
J dt
= X(@) =X, (8) 0 | then
0
7 (u) < ||Xu(u)”n+d,n’ 7 '“‘”Xu(u)“n-(-d,n”X(u)”ngKK]'
dt IIn dt n
This implies
ld—a,|, <KK, o(m). Q.E.D.

This lemma yields the following corollary.

Corollary 1.1.

If u=1(t) is an isolated periodic solution of (1.5) lying inside E, then there ex-
ists a positive integer mg such that, for any m>my,

(i) a,()eE;

(i) The linear operator T,, defined by
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T,h=| DX (@), f @)

has a linear inverse operator T, and there exists a positive constant
M, such that

ITR <M, IT5 o <M,
where h* denotes the transpose of h, that is,
h' =col [hl(t)a hn+1""’ hosals

(ii1) %Xu(iim(t)) is equibounded, that is, there exists a non-negative con-

stant K, such that

<K,.

n+d,n

-2 X, (@0

Proor. ||@,(t)—a(t)|,—0 as m— + oo from (i) of Lemma 1. Then, there exists a
positive integer m, such that, for any m >m,, 4,(?) lies inside E. ~Since #@(?) is an iso-
lated solution of (1.5), then the linear operator T defined by

Th= [%1" —X, (@), f (ﬁ)h]

has a linear inverse operator T-! and there exists a positive constant M’ such that
| T, <M’'. Moreover, if m, is sufficiently large, then there exists T,! for any
m>m,. Namely, for any n=(¢(t), v)e N=C[I] x R**¢, there exists one and only
one h(t) e M such that T,h=n=(¢(t), v). Then we have

Th=T,h+(T—T,)h=n+(T—T,)h.
Since h=T"n+ T-Y(T—T,)h, then
IRl o <IN Tl llmlll + 1T oo Il T— Tl 1o -
Here, if m, is sufficiently large, for any m>m,,
I~ oo I T— Toulll <1.
Therefore
(L= T o | T= T IDIR o < HT=H o 172l 5

and this implies

1T llnl
Wl < 1 —p7=ry JiT= 70l
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177 o
L= Tl T Tl
can show that | T,'|,<M..
By the definition of X (d,(1)),

Now, we may take as a positive constant M_. Similarly, we

Z D ¥ (& B B 2 0 l v o & .
X, @0) =(2 X Brovors Bud) 2 X2 Xy, L X, Bl,--.,Bd_1)>.
Firstly
d l X B B = 1 X B B d:em
7{—{% X(xm’ Bl’“" Bd_l)}.—z—n-Xx(xm: B],n., Bdwl) dt .
dx,,  dx dzg, dx
AS o = +< dt df>and
ax dz | , | d&, _d# N } dx, _ di
- < n — = —m __ T
' dt n_, dt ,+” dt dt |, IX@®+] =7~ "
<K+ KK,0(m),
then
HL{LX(& B B )}“ < FI'(K+ KK, 0 (m))
dt 277: mos 15> d—1 ”_ 1 ,
where
1 X B B Y
Besides, since
d 2 A . N o R i
7%%X3i(xm’ BI:-.», Bd—l)}= 20;5 XBix(xm, Bl""’ Bd_l) ;tm ,
then
“i{ix (&, B,,..., B )},] <M"(K+ KK, o(m))
dt | 2@ T Bi\m Pl Ba-1ff = 1 ,
where
’l ;T Xy (&, By, Byoy) " nSM”'
Lastly, as
d d) A — aXx A F=3 a~ d-ﬁmku
d—t{ 27[ Xx(x"u Bls P Bd-—l)}_kg,l axk (xm, Bl"“9 Bd"‘l) dt ,

then
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H dt {QEXx(&ms Bla"'a Bd—l)}

These follows that there exists a positive constant M(?) such that

’ <M"(K+KK,o(m)).

“% {Xu(ﬁm(t))}n < MUK + KK o(m)). Q.E.D.
n+d,n

The Jacobian matrix of the determining equation of Galerkin approximations

We put

. m
x()=as+/2 Y (@,,-,cosnt+a,,sinnt),
n=1

um(t):(xm(t)b B]’ BZ""’ Bd—ls Cl))
and
a=Col [ao, al,.--, a2m_1, azm, Bl’ Bz,..., Bd‘*l’ a)] .

Now, the determining equation of Galerkin approximations is the system

2r
Fio (@)= | " X(a,() ds=0,

2n
F (@)= \/77{ SO X(u,,(s)) cos ns ds —na,,=0,

(4.2) F (a) ~7~g " X(u, (5)) sin ns ds+nay,_, =0,

(=1, 2,..., m),
%,,(0) — %,,(210)
L)~ B >_0'

The system (4.2) is constructed by {n(2m+1)+n+d} equations, but the last equation
G (a)=0 are essentially equivalent to d equations L(u,(t))— B=0. Then we will
solve the following {n(2m+ 1)+ d} equations;

G(a)=f(u, ()= (

2z
i (@)= | X, () ds =0,

g'::)l(a)—\/z g X(u,,(5)) cos ns ds—na,,=0,

Fm(a)=—=— \/2 S X(u, (s))sinns ds+na,,_; =0
(n=1,2,..., m),

Fim(a) =L(u, () —B=0.
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Put FU")(@)=col [F§"(a), F " (a),..., F§1) (@), F{)(@), (FL)y,..., (F1),], then the
determining equation can be written breifly

Fo(@)=0,

where F{"(a)=col [(F}),..., (Fy),].
Let J,(a) be the Jacobian matrix of F()(a) with respect to @. Then the
elements of J,(a) are of the following forms;

L9 X ((s), By, By y)d
27_[ o *2—7%— x xm Y ) Toeens d—1 S,

1 2T W
J2n So %—Xx(xm(s), By,..., B;_;) cosns ds,

(the elements with respect to a,)

1 2n w i
Nz So —2?Xx(xm(s), By,..., B,_;)sinns ds,

Lltye, () (1<i<n),

where umaoi(t) = (xmao,-(t)a 0,..., 0)> xmam(t) = 1 <.
0

27

2z
L g o X, (x,(s), By,..., B4_,) cos ks cos ns ds,
T J)o 27

(the elements with respect to a,;_,)

2r
LS —w—Xx(xm(s), By,..., By_,)cos kssinns ds+nE,,
T Jo 271

L(w,g,,_, (D) (I<i<n),
0
where w,,,, _ (0)=(Xpa,,_ (), 0,..., 0), 2., _ ()= \/fcfos kt | <i, and E, is the
. 0
n X p unit matrix.

L Sznﬂ_X(x (s), By,..., By_,)sinks ds
J2r o 2@ TRV Tt Bl ’

2n
LS &Xx(xm(s), B,,..., By_y)sinkscos ns ds —nE,,
mT Jo 27
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% Szn % X, (x,(s), By,..., By_;) sin ks sinnsds,
(the elements with respect to a,;)
LWy, () (1<i<n),
0
where w4, ()= ®may (D Oseevs 0), Xpayy (D=1 /2 siin kt | <i.

0

I (*
21 SO WXBi(xm(S)9 Bl,..., Bd._l)dS,

2n
wor SO 2 Xy (%(5), Bryoors Bary) COS 7S d,
(the elements with respect to B; (1<i<d—1))

an

1 .
J2n go 5 X% (8), By, Byy) sinns ds,

L(umB;(t)) (lélgd_ 1)9

where u,5(1)=(0, 0,..., 0, 1, 0,..., 0).

2n
_2?30 —Z%X(xm(s)s Bl""9 Bd—l)d‘s’

2
D S S
T go L X(w,(5), Biy-.os Ba-y) cosns ds,
(the elements with respect to w)

(7 1 ,
2n So 27 X(xm(s), By,..., Bd_l) sinns ds,

L(u,,, (1)),
where u,,,(1)=(0, 0,..., 0, 1).
To find the basic properties of J,(@), let us consider the auxiliary linear system
Im(@)§+7 =0,

where

EZCOI [vO: Viseeos Uo—15 Uomo Vlﬁ"" Vd—la W]a
4.3)

7'=COl [C(), Cl,..., Com—1> Coms _Cl""’ —Cd—l’ ‘—W].

If we put
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y(t)=v5+/2 2 (V,y,- cOs nt+v,,sin nt),
1

n=

o(t)=co++/2 3 (€3n— 1 €OS nt+c,, sin nt),
(4.4) =1

uy(t)=(y(t)a Vl)"'a Vd—l’ W)5 u¢(t):(§0(t): Cl"": C'd—17 W)a

nq,{go(z), (3}) ', where w=col [C...., Cy_y, W1,

then the equations J,(&)§ + y =0 are equivalent to

O P X )ty (07T, f ), ) | =, = 20, ()]
or

Y X (), (011, L, ) |=[p®), w],

where u (1) is the transpose of u,(1).
First, we shall prove the following lemma.

Lemma 2,

Assume that the conditions of Lemma 1 are satisfied and that (1.5) has an
isolated periodic solution w=1(t) lying indide E. Taking m, sufficiently large,
we consider the differential system

4.5) Lé_{_ P [ X, (G(0)u, (0], f (amm)u,(r)] =y = [W)a (fm

for m>myg, where @t,,(t) = P,u(t) and where ¢(t) is an arbitrary continuous periodic
Junction of period 2m and w is an arbitrary vector of R¢. Then, for any periodic
solution u=u (1) of (4.5) (if any exists), we have

M (lu,l,+ Kio,.(m)lle @) ,)
=M. (K,+K$)o,(m)

|y, <

and since
g lll, < lupll, <vdlingll,» 1@, < lin,ll,,
then we have

—M (K, + Ko (m) "o

(4.6) syl <

Proor. For brevity let us put

Ap(t)=X,(@,(1) -
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Then for any periodic solution u=u,(f) of (4.5) we have

Ty, = = 4,0, 0, f @@, 0 | =] 90 +70), ;) )|, namely,

Lg,, = A,(Ou, () + 9 @) +7(1)

F 0,0 =( ),
where (t)= —(I—P,)A,(Hu,(t)'. Here I is the identity operator. Put
()= A,(Du, (1)
Then
(1) = A (Ou, (1) + 4,,0) ( EnlAn (O, O () ) ,
\ 0
from which, it follows that
1311, < K lluy |+ K L Pl A0, (01, + (D] -

But by Bessel’s inequality,

P LA (D ()] < | A (D, (0 |, < K Il |
Therefore, we have

1], < (K3 +KDlu,ll,+Kile®l,

Since [(t)[l,<o(m)|3], by Proposition 2 (4.1). we have then

9Dl <oy (m) [(Ky+ KD llu,ll,+ K 1e0l,].

On the other hand, u(t) is an isolated periodic solution of (1.5), so if m, is sufficiently
large, there exists T},! and ||T;,![|, <M, for m>m,. Then

lwy ll, <M {llug(Dll,+ 190}
and
ey ||, <M [Ny, +0(m) (Ky+ KD u,ll,+ K [e@®],]].

Since 1 — M (K, + K%)o,(m)>0 for sufficiently large m, then

M, (llup @) |+ Ky0, (M)l @) ,)
[=M.(K,+ K?)o,(m)

eyl <
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< M.(Jdlim,ll+ Ki0:(m) |9 @) ],)
- I —=M.(K,+K})o(m)

T I=-M (K + K)o (m) T

Q.E.D.

Let
A -~ _ . .
a(t)=(&(1), By,..., B4y, @) (Where £(1)=dao++/2 Y, (@3- COS nt+d,, sin nt))
n=1

be an isolated periodic solution of (1.5) lying inside E, and let us consider the Jacobian
matrix J,(@&) where & =col [@q,..., @3p—1, @2 B,,...,B,_,, ®]. Then the lemma
above yields the following corollaries.

Corollary 2.1.
There exists a positive integer mg such that

det J,(&)=0
for any m>my,.

PrROOF. For u,(1), n,(t), § and g of the form (4.3) and (4.4), the differential system
(4.5) is equivalent to the linear system

(4.7) T (@)E+7=0

as mentioned in the beginning of this section. Now put y=0. Then n,(t)=0,
and this implies u,=0 by (4.6). Then §=0 by (4.3), (4.4). Thus, in (4.7), y=0
implies §=0. That is, det J,(&)=0. Q.E.D.

Corollary 2.2.
There is a positive integer m, such that, for any m>m,, J,; (&) exists and

M. (1+ K 0,(m))

174 ' <
I DN <=3 %, T Ko, 0m)

Proor. By Corollary 2.1, J,'(&@) certainly exists for m>m,. Further for u(1),
n,, § and y of the form (4.3), (4.4), the differential system (4.5) is equivalent to the
linear system (4.7). Hence §=-J, (&)y. Since [u,®|,=El", lu,®l,=
llzll" and @), < lupl,=l7ll", then

M (Juoll,+ K 0,(m)llp D,)

e 574 ¥ G TN ()

and so

M (1+K,o,(m) 7]’
I =M (Ky+K}a,(m)

g <
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Namely,

M.(1+ K,0,(m))

J-H @) | < )
I3 @ <3 e e o

Q.E.D.

Lastly, for the difference J,(a’)—J,(a"), we shall prove the following lemma.

Lemma 3.
Under the conditions of Lemima 2, let K, be a positive constant

n n+d n aXﬁl 2 d-1 aXﬁl 2 aXﬁl 2 %
(4.8) K42|:ml§lxk§1 =1 {;;1< 5x,, > +i=z1< 0Bi ) +< Jw >}] ’

where Xkl(u) (k=1,..., n; I=1,..., n+d) are the elements of the matrix

|
Xu(u):<%Xx(x7 By,..., B4_y) %XB{“%XB‘,_. FX(x, B,..., Bd—1)>

and x,(p=1,..., n) are the components of the vector x. Then, if both

W (1)=(x'(1), Bi,..., By_y, ) (where x'()=ay+/2 3. (a},_, cos nt-+aj, sin nf))
1

n=

and
uw'(0)=(x"(), B},..., Bj_;, @") (where x”(t)=a6+w/2_él (a4, _ , cos nt+aj, sin nt))
belong to E together with Ou'()+(1 —0)u"(t) (0<6< 1), then
(4.9) I m(@) =T (@)’ < Kyllu' —u"|| . <Ky /2m+ 1@’ —a"||,
where a’' =col [ay, a,..., a5,,_,, a5, B},..., Bj_{, ®'] and
a’"=colla;, af,..., a%,,_ 1, a3, Bi,..., Bj_,, "].

Proor. Take an arbitrary &=col[vg, vq,..., Vs, 1, Vo Viseerr Vaoq, W], and
consider

w, ()=(y(1), Vis..., Vaey, W). where y(H) =y +./2 él (03, 1 COS Nt +v,, sin n7).
Put
(4.10) 7 = — (@&, 7' = —Jn(a")E,
and let
7' =cOol[€h, €1yrer €om1s Chmr— Clrevey —Clh_yy = W', w' =col[C,..., C_y, W],
and

" __. s 4 1" 4 " " " " __ 14 1 "
r ——COl [cO, Cl""’ sz_1,02m, - JEXXETY _Cd_l, - W :I, w —CO][Cl,..., ‘;_1, W ]'
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If we put
— 7 / 7 ’ _ ’ 0
u(p’_(so (t)’ | ERRRS Cd—l& w ), n(p’_ @ (t)s w’ ’ and
n " 1 " n 0

u¢/r=(¢ (l), Cl"“’ d—1s W ), n¢1'= ¢ (t), wl/ P

(where @' (f)=cp+/2 i (€5,- 1 cos nt+c5, sin nt), and
n=1

@' () =cl+/2 3 (€4, cOS nt+cy, sin b)),

n=1

then by (4.5) and (4.10) we have

[:‘%_ P IX, ' (0)u, ()], (u'(t))u,(t)] =n, = (9"(’)’ <£>

1
©
=
o

LCZ — P, [ X, " ()u, )], f' (W (t))uy(t)} =n,.

I
S
3

~

N’
TN
8\ =]
~—
| —

From this it readily follows that

o= 00 ()]

=[-P,[(X, @ @) - X,@"(0))u, ('], 0],

that is,

') —@"(O=—P,[(X, (' () — X, ®))u, ()],

<£,> —<£,,> =(0 (these equations are equivalent to w'=w").
Let us put

e()=¢'(t)—¢"(t) and y=7'—7"=col[¢;—cg,..., €3, — €3, 0., 0].

Then we have

(4.11) ()= — P, [(X, (' () — X, @"())u,(1)]
and
(4.12) 7=—a(a)—J,(a")]&.

n ntd
Now [|IX,('(1) = X (@ (OD)5ran< X 2 (XM (1) — X @'(1)))?, where X{(u'(1))
k=1 i=
and Xkl(u'(f)) are the elements of X, (u'(t)) and X,(u"(?)), respectively. Since
u'(1)+ 0w/ () —u"(t)) e E0O<0<1) by the assumption, the quantity in the right
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member of the above inequality is estimated successively by means of Schwarz’s
inequality as follows:

[XEH @' (0)— X' (1)]?

(Y& 0XE (W +0(u —u")) ” L OXE (" 4+ 0(u —u”
_Bo{p; o, (x7, x)+2 3B,

Y (8;-57)

Xkl(ulr+0(u _u//)) (w,’_w” }d@:tz
Jdw

_ z laXﬁl ' 1" 16Xu ’ ” aXu ” 2
_LZ_ISO A (e )+zg T do (B~ B)+S X ab(o’ - )}

< £ (S 2 (0, T ao) (o)

n d—1
X[ (xp=xp)*+ 2 (Bi—B)*+ (0" —")?]
1 i=1

SEANCEOEIMING DERNG X
<[/ =" O3+ S (Bj=B)?+ ('~ )]

SEANC LA ING SEANC DX
<[l =124 %, (Bi— B+ (0 —")?]

" n 1 aXﬁl 2 d—1(1 (9Xﬁl 6X R
S{gl gO( axp > d0+,;1 So( aBl ) d9+g < a > dﬂ]x ”u HOOQ

Then

= X' @) — X @ ()]

11" n aXﬁl 2 d—1 aXﬁl 2 aXﬁl 2 s
ggoLE{EK 0x, > +i§‘1 ( 0B, > +< o )}]dgx lu" —u”| 2,

< K3luw —u']2, .

Hence
(X, (@ @) — X, @"(#)u, @),
<X @' () — X @ (D) | ya, nllte, @) s

<K lu "‘u"“oo”uy(t)t”n+d .
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Then by Bessel’s inequality it follows from (4.11) that
loMl, < Kailu' —u’l,llu,l,
Since [I71l'=l¢ll, and [I§]l'= [, |, from (4.12) we have
I (Jw(@) =T (@NEN = ll7Il' =@l < Kl —u" | o u, [l = Kallw” —u" | [ §1],
which implies
/(@) = Jn(@”) I’ < Kyllw' —u"|o .
Put @ =a’—a”, and suppose a=col [ay, &,,..., @yp_1, A2y, Bys..., B4, ®]. Then
u(t)=(x,(1), By,..., B4_1, ®)=u'(t)—u"(t)
= (2, () —*,(1), By —Bi,..., By_y —Bj_;, o' — "),

from this implies
— m
%, () =x,(t) —xp(D=ag++/2 2 (@y,-; cos nt+a,,sin nt),
n=1

B,=B;— B (i=1, 2,...,d—1),
w=0—uo",
and therefore

=1
[u@) o= u —u"|o=a" =2"| -+ 5 |Bi= Bi| +]o' =o'
53 2 42 2 7 ol ! " I "
S{Zk: [laol ++/2 ;1 VB +a3nl?}? + _;1|Bi—B,-|+1a) — "
m 1 -1
< {; (1 +2m) [a(z)k+ ;1 (a%n-lk-i_a%nk)]} Z+ gllBll_Bll’|+|w’_Cl)”|

1 m 1l d-1
— 4 Dol + 3, (a4 las1 D12+ 5 18— Byl + 10— o]
<SImT il —all". Q.E.D.

The existence of a Galerkin approximation

The existence of a Galerkin approximation to an isolated periodic solution is proved
by the following theorem.

Theorem 3.
Let

(4.13) [%-7‘% X(x, By...., Bdgl),f(u)J=0
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be a given boundary value problem, where w=(x(t), B,,..., B;_{, ), f(u)=

<x(0) —x(27)

Liu)— 8 > and where x and X(x, By,..., B;_) are real n-dimensional vectors,

and B is a d-dimensional constant vector. We assume that —;-L;—X(x, Bi,..., B;_)

and its first partial derivatives with respect to uw are continuously differentiable
with respect to w in the region E=D, x D,, where D, is a closed bounded region of
the x-space and D, is a closed bounded region of R¢. Moreover we assume that
a linear operator L(C[1]x R*—R?) is continuous, namely, there exists a positive
constant K5 such that ||L|,, ;< Ks, where || - | 4 denotes the norm of a continuous
linear operator mapping from the product space C[I]x R? with the norm || ||, to
R? with the norm || - ||,. If there is an isolated periodic solution u=u(t) of (4.13)
lying inside E, then there exists a Galerkin approximation u=u,(t)=(x,(t), B,
...y By_1, @) of any order m>my lying in E provided m, is sufficiently large.

PrOOF. Setting
Pnzﬁ(t)=lprn$e(t)a Bl’-'-’ Bd—la (b):(&m(t)’ Bla"'a Ed*]ﬁ (b):ﬁ'm(t)a

we have

A

A, _p 4% _ p ¥z <Where X(@) =2 X(#(), By..... Bd_1)>.

(4" 1 4) dt m W

Now let us take a small positive number J, so that

x—x(f)

U= u=(x, By,..., By_y, »); | [ pea <o for someteR )= E.

This is possible because uw=7(t) lies inside E by the assumption. Then by Lemma
1—(1), @,(t) e UcE for all t e R and for any m > m, provided m is sufficiently large.
For such m equation (4.14) can be rewritten as follows:

dx,,

(4.15) - = PnX (@, (1) + R, (1) ,
where

R, (1)=P,[X(@(1))— X(@,(1)] .
Now

A

X(ﬁ(t))—X(ﬁm(t))=S:Xu(ﬁm(t)+9(ﬁ(t)—ﬁm(t)))( ; '")de,
\
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and || X, (@, (1) + 0(@(t) — (Ol + an < K1
hence

A A
X—X

IIX(ﬁ(f))—X(ﬁm(t))HnSKll( 0 m>lln+d=K1H£~ﬁmHn-

Then by the proof of Lemma 1 —(ii) we have
1 X(@() — X (@, ()] , <K |8 — &, [, < KK,0,(m).
Hence, from Bessel’s inequality, we see that
“Rm||q§KK1O'1(m)~
Let us put
a(t)=@R(0), Bysr., By_y, ), 8(1)=dg+/2 S (@1 COS Nl+3g, sin ni)
n=1
and
R, ()=r{"+ 23 (r§n cos nt+ryy sin ni).
n=1

Now setting

) L(0)—2,C1) | [0
(4.16) S, ()= A = ( ,
L(um(t)) _/8 v

since

=>

(0) —&(2m)
L(a)—p
v=L(#,() - (L@@)—p) =L, —u@)].

From this equation and the assumption of the theorem, we see that

f@(@))= < ) =0, then we have

lolla<IL e, allt, (£) — () Lo < K|, () —a(2) |l o -

From (4.15) and (4.16), we have

. 0
(4.17) L — P X (@ 0), f(izm(t))} — {Rm(t), < ﬂ .

v /

Then (4.17) is equivalent to the following system:

2n
(Foo @)=, | X un0)de=—ri,



(4.18)

where
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Fm

2n l(a) -

\/27'5

aA:COI [(io, Q:'I,...,
p(m)zcol [7‘8"), rg )
i, (0) = (%,(2), By,...,

£, () =ay+/2 Z (@5,_ COS Nt + @,, sin nt)

n=1

27
g X (4, (1)) cos nt di—nivy, —
0

(m)

Put F(&) =col [F{ (&), F{™(a),...,
then (4.18) can be rewritten as follows:

where, F{™(&)=col [(F.);,..

Then

Urp—15 Aoy Bl""’

s Fom=15 Tams — Uy,

Foa)= L ¢2 S X(@, (1)) sin nt di+né,, =

F (@)=L, (1) — B =Ll (1)~ ()] = v= (

(m)

B,_,, ®), and

Fg) (&), FONa), (Fu)y-..

F(m)(d) = _p(M) s

- (Fr)al-

Bd——ls d)] ’

o™ "= F (@] = |, () Iquré1 ol < IR, @)1, ++/d]vl4

< KK;0,(m) +/dKs]lt, @) — ()| .

Now, for m>m, and m, sufficiently large, let us consider the region

For any u=(x, B,,...,

u=(x, Bl""’

Bd—la (U),

lnsa <1

—&m(t)
B,—B,
| :

w—a0

B, ,, w)eV,, then

- £m(l‘)

Bd—l—ﬁd—l

[ nta < 00—

ﬁm(t) _"/"\:(t)
Bl— 1
” ntd + ” . - N ”n+d
Bd—l _Bd—l
O—6 )

81
_rgr;'i)1>
-,
(}’l=1, 29‘“5 m)>
vl>
vy,
) _Ud:l:
(FL)d]9

Ko (m) for some R }.
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x—x,(t)
B,—B,

= o lisa+ 18, () =2 [, <60 — Ko (m) + Ko (m) = .
By =B,

w—0
This implies u=(x, B,,..., B,_,, w)e UcE. That is,

V,cUcE for any m>my,.

Consider
00— Ka(m)
Q. =la;||la—a ’<—°~———}
p= e lla—allr <205 et
where a =col [ay, a,,..., @y, 1, @3, By,..., By_{, 0].

Then, as is shown in the proof of Lemma 3, for
w(f)=(x(t), By,..., By_y, @) (where a(f)=ao++/2 3 (@z,_; cOS nt +a,, sin nt))
n=1

with e =col [ag, @q,..., @pp_1, A2y Bys..., B4_1, @] €2, we have

x (1) —x,,(0)

B, — B, ‘ o _
I P lura < () = ,(@0) | o < 2m+1lla— &l <do— Ko (m)
Bd—l—Bd—l

A
w—w

for any m>m,,
and hence u(t)=(x(t), B,,..., B;_,, w)eV,,cE. Thus, it is proved that F("(a) is
well defined for any @ € Q,,..

From (4.18) we note that a Galerkin approximation is a trigonometric polynomial
whose Fourier coefficients satisfy the equation

(4.19) Fm(a)=0.

Since @ =@ is an approximate solution of the above equation, we shall apply Pro-
position 3 (M. Urabe [5]) to the above equation in order to prove the existence of
an exact solution, namely, the existence of a Galerkin approximation.

Let us take m, sufficiently large. Then by Corollary 2.2 of Lemma 2 for any
m>m, J,,}(&) exists and

M. (1+ K, 0,(m))
I —M.(K,+K$)o(m)

75 (@) I <
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This implies that

(C.1) I @) l'<M’  for any m>my,
where
(4.20) M = M (14K, 0,(my))

T 1-M(K,+ K)o, (mo)
Further by Lemma 3
(@) =T @)’ < Kan/2m+ 1@ —&||’

for any a € Q,, provided m>my,.
Take an arbitrary number x such that 0<x <1, and put

51 = min <K::§‘4# 3 50 - Ka(m0)> N

Let us take m, >my so that, for any m>my,

M'{KK6,(m) +/dKs||i, () — &) ||} < 0

4.21 .
“.21) 1—x J2m+1
This is possible because

J2m+1

J2m+10,(m)= P

— 0 as m — + 00,

and
\/Wﬁﬂﬁm(t)—ﬁ(t)llw—m as m—— +00.

By (4.21) we can take a positive number J,, such that

M'{KKlal(m)+\/Z—K5||ﬁm(t)—u(t) oo} <5< 5,
1—x T 2m+ 1
Let us consider the set
Q5. ={a; lla—al|'<é,}.
For any a € Q; we have
]”a___‘a\ 51 < 50_Ka(mo) < 50—K0'(m) (mzmlzm())’

<
"= 2Zm+1 T 2m+1 T (2m+1
and consequently,

Qs <Q,,.

83
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Then, for any @ € Q; , we have

K

A ’ -y K
(C.2) (@) = T (@) I’ < Kya/2m+ 15, < K461 < K, KoM =M

Further,

(C.3)

M o™ M'{KK0,(m)+/dKs|it, () — ()]} <5
l—x a 11—k =Tm:

The expressions (C.1)—(C.3) show that the conditions of Proposition 3 (M. Urabe [5])
are all fulfilled. Thus, by that proposition we see that the equation F ¢ (a&)=0 has
one and only one solution & =a lying in &, . This proves the theorem. Q.E.D.

Uniformly convergence of a Galerkin approximation of a periodic solution of
(4.13) (or (1.5))

Theorem 4.

Assume that the conditions of Theorem 3 are satisfied. Let u=1(t) be an
isolated periodic solution of (4.13) lying inside E and u=u,(t) be its Galerkin
approximation as stated in Theorem 3.

If my is sufficiently large, then for any positive integer m>m,,

2Zm+IM'{KK 0,(m) +/dKs|it,—it].,}

= x + Ko (m) ,

2m+1IM K {KK0,(m) +/dK;s| i, — @l .}

(4.23) i, — ], <2KK o (m)+ o

b

where i is an arbitrary fixed number such that 0<ik <1, K and K, are the numbers
defined in Lemma 1, M’ is the number defined in (4.20), and K is the number such
that ||L|,  <Ks.

ProOOF. Put
i,(1)=(%,(), By...., By_y, @) (Where &,()=ao++/2 3 (@y_; COS nt+dy,sin nt)).
n=1

As shown in the proof of Theorem 3, a=col [@&,, @;,..., @ypn— 1, @zp» Bi,-.., B4_1, @]
is a solution of F ™ (a)=0lying in Q; , and by Proposition 3 (M. Urabe [5]) we have

M'{KK0,(m) +/dKs| i) ()]}

(4.24) lla—all < s

where @ =col [a,, @,,..., Gopm_ 1, @2y, By,..., B4, @] is such that

i ()= P, i(f)=(&,(1), By,..., By_,, @), and
Bn(D) =P, 3(0) =g ++/2 3. (@3- ; COS nt+ s, sin nf).
n=1

From (4.9), we have
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8, () =, (D)l o < 2m+ 1@~ & ||’

M'{KK,0,(m) +\/dKs it () —0(0) |}

<{2m+1 -

On the other hand, by Lemma 1 — (i)
l,() — ()] n < Ko(m).
Thus,
22, (8) — @(t) | oo < 1|88, () — Gy () | o0 + |, () — 2(2) ||

M'{KK,0,(m) +/dKs|w,(t) — ()]}

<2m+1 D

+ Ko(m) .

This proves (4.22).
Since @ is a solution of F " (a)=0, for u,(t) we have

L djt'" B PmX(lzm(t)),f(lim(Z))] —0

<Where X (@i (1)) =2 X (& 0), By Bd_1)>.

This can be rewritten as follows:

(429) K CRONCROTS PRONIS

where 2,,(t)= —(I - P,)X(&,(1)), and I is the identity operator.
Since

d - _ - dx,,
L X(a,(0) = X (@ (1)) 4
(where X, (@ (0) = 5 X.(&0(0), Byyeoos Bao) )
=Xx(l;'m(t))PmX(am(t)) s
by Bessel’s inequality we have

|5 X 0| <K IPu X (0)]y< K| X (0], < K K.

Then, by Proposition 2 we have

[ (Oe= 10 = Po) XG0} < o) |- - X ()| < KK 0(m).
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On the other hand, @(t)=(x(t), By,..., B,_,, &) satisfies

(4.26) ij; —X(a),f(a)}zo <where X (@) = 2“; X, B,,.., Bd_l))

Now, we have

da, di [ dx,  di
dt dt _< dt dt > 0, O”"’O>'

By (4.25) and (4.26), we have

d;m _ cg = {X(@,,(1)) = X(&(®)} +7,(2)

x,,(t) —%(2)
1 . _ R BI.—BI
~{ X@0+0@,0-a0)| T |d0+n,0),
0 Bi—1—B4
w—0
and consequently
%, (8) —%(2)
; . B,—B
d d e
| ;tm —_‘%” é“X-u”n+d,n|| . N ||n+d+””m(t)”n'
" Bd~1_Bd—l
w—d
Since
x—m(t)—&(t)
EI_EI _ — ~ _ o~
” _ : N ”n+d£”xm(l)—'%(t)”n_l_lBl_Bl|+“'+le—1de—1|+|@_(£) >
Bd—l-Bd—l
w—a0

then we have

<K {||%@) =&+ 1B, — Bl + - +|Byey— By |+ — 0|}

c

[ o i
dt dt

+ 12O < K[|, () — @)  + KK 0(m) .

Thus, by (4.22), then we have

d%,  di

00:’7 7 SKIHum_u”oo’Jf‘KKla(m)

4

i
dt dt




Galerkin Method for Autonomous Differential Equations 87

\/2m+1M’K1{KK1 o1(m) +/dKs| i, () — ()| .}
l—k

+ KK o(m)+ KK c(m)

2Zm+TM K { KK 01(m) + ./ dKs ||, (&) — () | I
l—k

=2KK,0(m)+

This proves (4.23). Q.E.D.

§5. Appendix

We show that the solution u=1(t) guaranteed by Theorem 2 in §2 is an isolated
solution. Namely, we show that

det f'(a(t)) [P(1)] =0,
where P(¢) is the fundamental matrix of the linear homogeneous system

ds ( X, (@)

22 = o z  (where| 0 |isa dx (n+d) matrix)
@\ o]

satisfying the initial condition ¥(0)=E((n + d) x (n +d) unit matrix).
PrOOF. Suppose that uw=1(¢) is not an isolated solution of (1.5). Namely,

det f'(@) [P()]=0.
Then, there exists a nonzero vector & € R""¢ such that
fw[P()]e=0.
Put f= P(1)é. Then by the definition of P(f) we have
X (@) X, (@) .
dh_ d (e 4P o < - )vf(t)é:( "k,
10 0]
and
S @R]=f @[?@»]e=0,

where h=col [lAzl(t), Bpsir--n hyeg], and l~z=(lAzl(t), Bytyseens Byrg)€M. Therefore

Fr@h=| b - X, Gk, £ @ 0] |-
Then
(5.1) h=h—T-'F'(@h=I—-T"'F'@@))h (I is the identity operator).

Since
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=T 'F' (@) <|T 'l T—F'@)]||

K
< F e+ T U, ) =K,
('ul s Hod :u1+:un+l+'“+,un+d

(5.1) implies
Rl <w|h|.,.

As 0<k<I1, (1—K)|hk|,<0. Hence |k|,=0. Therefore h=0, namely, h=0, it
follows that € =0, which is a contradiction and the proof is complete.

Proof of (3.2) in §3.
In §3, we have obtained

/ En—@il(zn) _@12(2@ —Cy )

(5.2) f’(a)['f”(t)]=< . R R
L(¥)) L(P3)  L(¥,0a®)

/

where E, is an n X n unit matrix.

Let set ¢= and an nxn matrix Q be an orthogonal matrix whose first

<y
lesll,
column vector is ¢. And we put
] 0
K= ((n+d) x (n+d) matrix)
0 Ey
then, K is also an orthogonal matrix. Write Q as

Q=[¢, 0,1,

where Q, is an n x (n— 1) matrix whose column vectors are unit vectors and moreover
they are mutually orthogonal. By (5.2), we then have

K- @) [P O1K=K'f' @[ @)K
(Qt(En_‘1311(27T))Q _Qt(éIZ(zn)acl) >
L(P)0 (L(P,), L(P,.(0) |

where K* and Q' denote the transposed matrices of K and Q, respectively. Now,

we have

A

ct

Af

C
t ><1311(2n)(é, Q1)=< )(6, ¢,,(2m)0y)

1

Qt@n(zn)Q=<

t
1

1 ét‘ﬁll(zﬂ)Ql
= ~ , (where ¢* is the transposed vector of ¢)
0 019,,2m)Q, ,
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therefore,

N 0 _At@u(zn)Ql
Q’(En*¢11(27t))Q=< R :
0 E,_,—0{?,,2m)Q,

Moreover, we have

~ ét N ét ~ Hcllln
Q'(9,(2m), ¢)) = (@,(2n), ¢))= < @ ,(2n),
101 0f . 0

/

and

LPNQ=LP)) (@ 0)=(L(P,2), L(P,)Q))
= (Jerp Lol By Ba)), LIP)OL).

el

o " X(&, By,...., B4-y)

where Xy(x, By,..., B;_{)= 0 .
0

Hence we have

K'f'@[¥(@)]K
0 —'ét@”(Zﬂ')Ql ¢! . - Hclnn
R - ?,(2m)
= 0 E, —0i1%,,(2n)Q, o4 0
To, Lo, Bireooy Bl L(P)Q, LPD) LV pa0)

Thus, we get

det G=det {K'f'(@1) [P()1K}

= lleqll, ——'c’@,,(2n)Q1 ol N 0
R - 12(2m)
0 E,_,—019,,2m)0, 0i

=det 1 N _]
L(X,(%, B.,..., B,_ . - — L(X, (%,
e, L Fo® Buos By (90, L#y) e, Ko
+L(¥In+d(t)) Bla"'a Bd—l))

Particularly, when Xz =---=Xj_ _ =0, in this case, as ¥,,(21)=0, then

et G=— ley - det(E, -, 01 1,(2m)Q,) x det {L(P3), 11 LXKk, Byvvos By- 1)

ll
=det(E,_; — Qt1q31 1(2m)Q,) x det {L(q)z), L(X (%, Bu- - Bd— D}
However, det (E,_, — 01®,,21)Q,) =0.
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This tells us that det G >0 is equivalent to
det {L(¥,), L(X,(&, B,,..., B;_ )} =0.
This completes the proof of (3.2) in §3.
Lastly, we write the Proposition 3 (M. Urabe [5]) quoted in §4.

Proposition 3 (M. Urabe [5]).
Let

(5.3) F(a)=0

be a given real system of equations where a and F(a) are vectors of n-dimensional
and F(a) is a continuously differentiable function of defined in some region Q of
a. Assume that (5.3) has an approximate solution @ =a for which the determinant
of the Jacobian matrix J(a) of F(a) with respect to @& does not vanish at a =& and
there is a positive constant é and a non-negative constant k<1 such that

(1) Q={a;lla—al,<o}=Q,

(ii) ||J(a)—J(a?)H,,§WK—, for any aeQ,,

M'r

(i) —% <4,
where r and M'(>0) are numbers such that

IF(@)],<r and |J'(@)[,<M".

n—

Then the system (5.3) has one and only one solution a=a in Q; and

- . M’y
a—al, < ——:
la—al, <=~

§6. Numerical Example

We seek for the largest amplitude of periodic solutions of van der Pol equation

d*x 5.1 .o dx _
6.1) e Al —x?) J +x=0.
We transfrom 7 to t by ’L‘=% t, then
d’x o 4., 5 dx (iy _
(6.2) ‘di*z— 7 i(l X )7'{‘ o x=0.

By the result of M. Urabe, H. Yanagiwara and Y. Shinohara [3], there exists
J between 3 and 3.5 for which the periodic solution of van der Pol equation has the
largest amplitude. Later, H. Yanagiwara [17] has computed the largest amplitude
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to be 2.0235 in van der Pol equation (6.1) with A=3.2651. But, he did not give any
error estimates of his numerical results. Hence it is not clear how many significant
figures his numerical results contain. In the present paper we make clear this point.
Let a periodic solution and its period of (6.2) be x =x(t, 1) and w=w(4), respectively.
Then we set x; =x(t, A) and x5 =x,(t, 1), where x,(t, A) is the derivative of x(¢, 1) with
respect to . Then we get the following system

dx, —
dl 2

2
dd-x;Z — _<_§0_TC> X4 + ;(;'L' )\.(I _x%)xZ’

dx; _
(6.3) g Y
dxs __J( @ 2+£}xx X3+ -2 (1= xD)x,+ L2 01 —xP)x
d 2n g Y23 g VAT on 12
) -
o (I whm =t

where w, is the derivative of w=w(1) with respect to A. In this case, we consider
xo(=x(0, 2)), 2 and w, as the unknown parameters B,, B,,..., B;_,(d=4) in Theorem
2 in §2. Since the case satisfying the condition x;(0)=x,(0, 1)=0 is the one of re-
alizing the largest amplitude, we adopt the following conditions

x1(0) — xg
x,(0)
(6'4) L(u) ——/9: =0 (u: (xa X0, ﬁ'a w,, CO))
x3(0)
x4(0)
as the additional conditions. Then, in this case,
x(0) —x(2m)
x1(0) —xo
x(0) —x(27)
6.5) flw)= ( > —| x,(0) =0,
L(u)—p
x3(0)
x4(0)

We apply our Galerkin method with unknown parameters to the problem (6.3) and

(6.5), and we caluculate the largest amplitude x,. The results of numerical com-
putations are as follows;
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Xo=2.02342 22556 06113, 1 =3.29401 26635 69712, @ ,=1.32864 47643 62845,
@ =9.24555 82365 78715, det G= —0.214x 101, r=0.13 x 10~13,
11, =83500.0, pt, =2.0, 3 =600.0, p1, =25.0, us=22.0, k=0.4x 101,
§,=0.114% 1078, 5,=0.271 x 10-13, 3, =0.813x 1011, §,=0.339 x 10-12,
§5=0.300x 10~12,

Applying Theorem 2 in §2 to the above numerical results, then we have the following
error estimates:

130 = 2@ <7 <5,=0.114x 107,

<8,=0.271 x 10713,

N - Uar
Xo— Xl <
[£o—Xol < [~ x

[2—1] g»lﬁ‘_%g@:o.m x 10711,

|6, — @, < ]“j’K <6,=0.339x 10712,

|6 —@| < l“_S’K <85=0.300% 10"12,
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