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§1. Introduction

There have been gotten many interesting results on spectra of the Laplace-
Beltrami operator on Riemannian manifolds. These results answer what extent the
spectrum of this operator determines the geometric or topological structures of the
manifold. See [2], [7] for example.

The present article is concerned with the spectra of more general operators.

The motivation of our study is the following. Let M be a C® manifold. A
second order elliptic operator D on M is expressed in a local coordinate neighbour-
hood as

D=a*(x) 04 bi(x) -0 te(x),
O0xJox* 0x/
with respect to the coordinates (x/), where a’/*, b/ and ¢ are C* complex-valued
functions. Here and hereafter we adopt the convention of summing over repeated
indices unless indicated otherwise. If a=(a’¥) is real and positive definite, we can
regard g=a"!=(a;) as a Riemannian structure on M. Moreover, considering the
trivial complex line bundle over M, we can see that coefficients b/ and c are concerned
with intrinsic objects of the line bundle. That is, b/ and ¢ determine a linear con-
nection and an endomorphism of the line bundle, respectively.

Let E be a vector bundle over a Riemannian manifold (M, g), and give a linear
connection d on E. Then, noting the above discussion, we can define a natural
elliptic operator of second order called the Laplacian on E. We study in this paper
how the spectrum of the Laplacian on E is related to the geometric or topological
structures of (M, g; E, d).

The paper is organized as follows. In §2 we introduce the Laplacian on vector
bundles, and study in §3 the basic properties of its sepctrum, in particular concerning
the zero eigenvalue. In §4 we consider the relationship between the sepctrum and
the gauge transformation on the vector bundle. Section 5 treats the spectra of the
line bundles over 2-sphere and the trivial line bundle over flat torus, which will be
guiding examples in our studies. In §6 we give estimations of the non-zero first
eigenvalue by the curvatures. Finally in §7 the Minakshisundaram’s expansion is
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considered.

§2. Laplacian on vector bundles

Let (M, g) be a compact n-dimensional C* Riemannian manifold without
boundary, and E be a C* complex vector bundle over M with rank r. We assume
that E has a C* Hermitian structure { , >. Let A?(M), (p=0,..., n), denote the
set of C* p-forms on M, and AP(M, E) the set of E-valued C* p-forms on M, that is,
AP(M, E)=C*(E)® rAP(M), where C*(E) is the set of C* sections of E. We have
A%(M, E)y=C*(E).

Let d: A%M, E)—AY(M, E) be a linear connection on E compatible with the
Hermitian structure (cf. [11]). For the linear connection d, we define c?p: AP(M, E)
—AP*1I(M, E) by d(s®0)=dsA0+s®db, where se C*(E) and 0e AP(M). We
introduce inner products in 47(M, E) by

(s®0, @05 ,=Cs, 55,40, 0, ., xeM,

and
(o= o,

where {, >, is the natural inner product of A?(M) and dV, is the volume element of
M induced by the Riemannian metric g. Let Sp: AP (M, E)—>AP(M, E) be the
adjoint operator of 67,, with respect to the inner product ( , ), and set

(2.1 L,=6,d,+d,_ 5,
which is called the Laplacian acting on A?(M, E). The Laplacian is a positive,
formally self-adjoint elliptic operator of second order.

We study the spectrum of the Laplacian L= L, acting on. C*(E).

We write the operator L by the local coordinates of M and the local frame of E.
Let (x1,..., x") be local coordinates of M, and (e,,..., ¢,) be a local frame of E, i.e.,
a system of linear independent local sections of E. Then, every section s e C®(E)

is written as s=s*e,=e-s, where we set

.
J, e=(eq,..., e).

S"
For a linear connection d, we have
dea=w£eﬁ,

where w=(w’) is an r x r matrix of 1-forms, called the connection matrix of d with
respect to the frame {e,}.
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Lemma 2.1. Set H=(H,;)=({e,, €g>). Then, the connection d is compatible
with the Hermitian structure on E if and only if dH=H® +'wH.

Proor. See [11, p. 78].

Set w=w;dx/, where w; is an rxr matrix.

Proposition 2.2. The Laplacian Lis expressed as
(2.2) Ls=—gi*p;his—2g7*w; s — g/ " (Vi + w;wp)s,
where V is the Levi-Civita connection induced by g.

PrOOF. For s=e-se C?(E) and t=e-tec A'(M, E), we can easily get

(2.3) (ds);=Vs+w;s,
(2.4) St=—giM( Pt + o).
These formulas lead to (2.2). Q.E.D.

Remark. As to (2.4) we show more general formula in §6 (Lemma 6.1).

Example. Suppose E is the trivial line bundle, i.e., E=M x C with the natural
inner product in €. Then, for the global section e=1, the connection matrix is given
by a 1-form w=ia=ia;dx/ on M, where a;’s are real (Lemma 2.1). Moreover, the
Laplacian is expressed as

(2.5) Ls=—glkp;F,s—2ia’ V;s+(aal —iV;a’)s,

which acts on complex-valued functions on M.

Next, we represent the Laplacian by covariant differentiation of E-valued
tensors. Let T2(M, E) denote the set of E-valued tensor fields of type (p, q) on M.
An element T of T?(M, E) is written as T=s®¢, where se C*(E) and £ is a usual
tensor field on M of type (p, q). We define covariant differentiation 7. THM, E)—
T?,,(M, E) by

P(s@&)=ds@®E+5@F &
Let {e,} be a local frame, and Te T#(M, E) be given by

0 0
oxt & O g

T=e -TiM™dx'"® - @dx/®
where T’,‘,Z::'}-’ are r-column vectors. Then, we have
(2.6) PTom= P T+ o, T

and the Laplacian Lis given by
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(2.7) Ls= —gf"ﬁjﬁks.

In the remainder of this section, we discuss about the curvature of the linear
connection on E. For a connection matrix w of a linear connection on E, we define

Q=do+owAr o,

which is an r x r matrix of 2-forms. The matrix Q is called the curvature matrix
associated with the connection matrix w. It is easy to see that Q is an element of
A*(M, End (E)), where End (E) denotes the bundle of endomorphisms of E.

A linear connection d on E is called flat if the curvature of d vanishes.

The following properties of the curvature are basic.

Lemma 2.3. (1) If the connection is compatible with the Hermitian struc-
ture, then the curvature matrix is skew-Hermitian for an orthonormal frame of
the bundle.

(2) For se AP(M, E), d?s=Qs.

(3) (Bianchi identity) dQ+wAQ—QAw=0.

(4) (Ricci formula) Set Q=% Qdx? A dx*, and

(2.8) AN EA ﬁaT’;,:::';=Rl;ang;;;r;;+ sk Rm Tl
= Ry T~ = Ry T+ Qo T,

where R§.; is the Riemannian curvature tensor associated with the metric g.

§3. Basic properties of spectrum

The Laplacian Lis a positive, formally self-adjoint elliptic operator of second
order. Therefore, Lhas an infinite sequence

(OS) /11 Sizg"'g)ukg---Too

of non-negative eigenvalues, each eigenvalue being repeated as many times as its
multiplicity indicates. We denote this set of eignevalues by Sp (M, g; E, d).
Different from the case of the Laplace-Beltrami operator on (M, g) acting on
functions, the Laplacian L generally has not zero eigenvalue. The section s satisfy-
ing Ls=0 is called harmonic. Obviously, the condition Ls=0 is equivalent to
ds=0. Thus a harmonic section is a parallel section.
We have the following propositions converning the zero eigenvalue.

Proposition 3.1. (1) If L has zero eigenvalue with multiplicity k(<r), then
E=E®T, (Whitney sum), where T, is a trivial bundle of rank k.
(2) If Lhas zero eigenvalue with multiplicity r, then E is a trivial bundle and
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the curvature Q of the connection d vanishes.

Proor. (1) Let fi,....f; be k independent parallel sections of E. Set T,=
{(x, v); xe M, v=Yk_, v*f(x), (v*: const.)} < E, and T, is a trivial subbundle of E.
By setting E’'= T} (the orthogonal complement of T,), we have E=E'®T,.

(2) We have only to show Q=0. Let f;,..., f. be r independent parallel sec-
tions of E. Then, we have Qf, =d2f,=0 for a=1,..., r, which leads to 2=0.

Q.E.D.

Let Sp(M, g) denote the spectrum of the Laplace-Beltrami operator 4=
—gJ*V,F, acting on functions on M.

Proposition 3.2. If L has zero eigenvalue, then
Sp(M, g; E, d)=>Sp(M, g).
In particular, L has zero eigenvalue with multiplicty r, then
Sp(M, g; E, d)=r-Sp(M, g),
where r-Sp (M, g)=Sp (M, g)U --- U Sp (M, g), (r times).
ProOF. Since 0€Sp (M, g; E, d), there is f € C*(E) such that
G.1) Vif=;f+;f=0.

It is obvious that f nowhere vanishes. Suppose AeSp (M, g) and Ap=4i¢. Set
s=¢fe C*(E), and we have

Ls=(4¢)f— $F IV, f=27,) (7 f) — 2000 (Pb) f
—20/¢7,f—wiwbf—(Pio)df
= (A¢)f=2df=1s,

using (3.1). Thus AeSp(M, g; E, d). Next, suppose fi,..., f, are independent and
each f, satisfies (3.1). Let 4,,eSp(M, g) and 4¢,,=4,$,, (m=1,2,...). Sets,,=
¢ f.€ C*(E), (e=1,..., 7). Then, s,,’s are independent and Ls,,=4,5,, holds.
We have only to show that {s,,; m=1,2,...,a=1,..., r} is a basis for L%(E) (the
Hilbert space of L2 sections of E). We regard {f,; «a=1,..., r} as a global frame of

E. For each se L%E), we have s=Y"’_,s*f,, where s* is a L? function on M.
Since the eigenfunctions ¢,; m=1, 2,..., of 4 form a basis of L?(M), we have
se=>%_, am¢,, (am*: const.). Therefore, we get

§= Zu: Safaz= z‘x: (% ama(bm)fa: gn amaqufa:az;n ™S g

Q.E.D.
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§4. Gauge transformations and spectra

A gauge transformation on a vector bundle E with the Hermitian structure is
a diffeomorphism y: E—E which maps each fibre E, isometrically and linearly onto
itself. For a linear connection d on E, we define a new connection Yrd =y todoy
(Y being regarded as a map: A(M, E)—A”(M, E)) by a gauge transformation i
on E. Obviously, y*d is compatible with the Hermitian structure. Take a local
frame {e,} of E. Then, for a gauge transformation i, we have

Y(e,)=Yiep,

where ¥ =(¥%) is an r x r non-singular matrix satisfying H='WYH¥. Let w be the
connection matrix of d with respect to {e,}. Then, the connection matrix Y*w of
y*d is given by

(4.1) Yro=P-1d¥ + ¥ loP.

Two connections d and d’ on E are called gauge equivalent to each other (denoted
by 67(";)67') if there is a gauge transformation ¥ on E such that d’ =y*d.

Proposition 4.1. Suppose d and d' are two connections on E. If JG)J’ holds,
then Sp(M, g: E, d)=Sp(M, g; E, d).

Proor. Let L and L' be the Laplacians defined from d and d’, respectively.
Let Y be a gauge transformation such that d’=y*d. Suppose Ls=1s. Set s'=
Y~1(s)e C*(E), and we get L's'=As" by straightforward calculation. This proves
the proposition. Q.E.D.

Remark. The converse of Proposition 4.1 is false. In fact, we can easily give
a counterexample (see §5).

We define a more natural equivalence relation between connections.

Let E be a vector bundle with the Hermitian structure over a Riemannian
manifold (M, g). A diffeomorphism y: E-E is called a weak gauge transformation
on E if (1) y maps each fibre E, isometrically and linearly onto one of the fibre
E,.,and (2) y: (M, g)—>(M, g) defined by ¥(x)=x' is an isometry.

Two connections d and d’ on E are called weakly gauge equivalent to each
other (denoted by d y;;,d’) if there is a weak gauge transformation y on E such that d’

=y*d =y Vodoyy.
Similarly to Proposition 4.1, we get

Proposition 4.2. If d 5;d’ holds, then Sp(M, g; E, dy=Sp (M, g; E, d).

PROOF. Since ¥ is an isometry of (M, g), the proof is on the same line as



On Spectra of the Laplacian on Vector Bundles 7
that of Proposition 4.1. Q.E.D.
The following problem is fundamental.

Problem. When Sp(M, g; E, d)=Sp(M, g; E, d') holds, is d' weakly gauge
equivalent to d?

This type question for the Laplace-Beltrami operator on (M, g) was answered
negatively by Milnor [8]. Concerning the above problem, however, we don’t know
whether there is a counterexample or not.

In the remainder of this section we discuss the case of line bundles.

First, we give a definition. The injection ¢: Z—R induces a homomorphism
e: H{(M; Z)-> H*(M; R) between cohomology groups. A class ye H*(M; R) is
called integral in case y lies in the image H*(M; Z) of the map ¢. A real closed
k-form @ is called integral if [0]1e H*(M; Z). Tt is easily shown a real k-form 0

is integral if and only if g 0 is an integer for every k-cycle ¢ of M.

Let E be a line bundle over (M, g), and d, and d, be two connections on E.
Let @, and w, be the connection 1-forms of d, and d,, respectively, with respect to
a local section e of E. For a change of frame e—e’=fe, f being a non-vanishing
function, we have w;=w;+f"1df, (i=1,2). Hence, w;—w;=w;—w,. Thus,
W, —w, is a global 1-form on M. Moreover, we have the following.

Proposition 4.3. d
I-form.

d, holds if and only if (w,—w,)/2ni is an integral

o))

PROOF. Suppose d,=y*d, by a gauge transformation ¥ on E. In this case
Y is regarded as a non-vanishing complex-valued function on M, and we have
w, =Y 'dy+w, from (4.1). Let ¢ be any closed cuve on M. Then, we obtain

g (wz—w1)=g Yy =2nki, k: integer.

Conversely, suppose (w,—w,)/2ni is integral. Fix pe M, and set Y(x)=exp
{g (w, -—wl)}, where y(x) is a curve from p to xe M. Let y'(x) be another curve
7(x)

from p to x. Then, y'(x)=y(x)+¢, ¢ being a closed curve, and we have

eXp {gv'(x) (w;— wl)} =eXp {S?(x) (W, —wy) + gc (w,— w])}
=oxp{| (@-ofen| @-af

=ep{] (@-o)f.

Thus, ¥(x) is well defined, and w, —w, =y ~!dy holds, which fact shows that d,=
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y*d,. Q.E.D.
Noting Propositions 3.1, 3.2 and 4.3, we obtain the following.

Theorem 4.4. Let E be a line bundle over (M, g), and d a linear connection
on E. Then, the following conditions are equivalent to each other.

(1) 0eSp(M,g; E, d),

(2) Sp(M, g: E, d)=Sp(M, g),

(3) E is a trivial bundle and d(fgv)O, where O denotes the connection whose
connection form is identically zero.

(4) E is a trivial bundle and w[2ni is an integral 1-form on M, where w is
the connection form of d. Moreover, if M is simply connected, the above conditions
are equivalent to the following.

(5) The curvature Q of d vanishes.

Proor. About the equivalence of the first four conditions we have only to
prove that the condition (1) derive (4). If 0eSp(M, g; E, d) holds, there is a non-
vanishing fe C*(E) such that df+fw=0. Hence, w= —f"1df, which shows that
w/2ri is integral. Next, under the assumption that M is simply connected, we show
that (5) derives (3). This is directly obtained from the following propositon.

Proposition 4.5. (Kostant [5, p. 135]). Assume M is simply connected and
assume Q2mi is an integral 2-form on M. Then, up to gauge equivalence there is
a unique line bundle with connection d such that the curvature of d is equal to Q.

§5. Examples

5.1. Spectra of line bundles over S2
Consider (S?, g,), the 2-dimensional sphere in R3:

S2={(x!, x2, x7) e R¥; (X2 + (x4 (x32 =1},

with the canonical metric induced by the Euclidean metric of R3. Let (6, ¢) be
the polar coordinates of S? given by

x'=sinflcosp, x*=sinfsing, x3=cosf, (0<OZm, 0<@=<2n).
The volume element @ induced by the metric g, is given by @ =sin 0d0 A dp. For

each integer m, set

(5.1) Qm=%m@:%msin 0d0 A do.

Then, the 2-form Q,/2ni is closed and integral. Since H2%(S?; Z)=H%(S2; Z)=
Z holds, each m associates a line bundle E,, over S? and by Kostant’s theorem
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(Proposition 4.5) there exists a unique connection d,, whose curvature form is equal
to Q,. In particular, (Eo, do) is a trivial bundle with flat connection. The Laplacian
on the line bundle (E,, d,,) is (locally) given by

cosfO 0O m? cos? 0

(5.2) Ly=datim G620 T2 sinZ6’
where

R T N

4:=~5n 0 a9 ¢ 0 5p) “sinT 0 947

is the Laplace-Beltrami operator on (S2, go).
The above line bundles with connection (E,,, d,,) are induced from the principal
Si-bundle over S? called the Hopf fibre bundle. Consider Lie groups

zw
SU(2)=[{ } |zl2+|w|2=1,z,WGC]%’S3CR4

W Z
and
St={e(t)=e'"; 0Zt<2m}.
St acts on SU(2) on the right:

z w [ et 0 7]
hs(t)': s
z || 0 et

| —w Z

and this action derives a principal S!-bundle:
P: SU(2)=S3 = SU(2)/St =52

over S2. If we choose the coordinates (6, ¢, ¥) of SU(2) as

cosg eiloty)/2 isin% gilo—v)/2 1
h= e SUQ2),
ising e~ ile—¥)/2 Cos_g_ e~ ilety)/2

L

(0<60=n, 0=¢=2n, 0=y =dn),
then the projection n(h)=(x!, x2, x3) € §? is given by
x!=sinfcos @, x*=sinfsin¢, x3=cos.

Thus, the fibre over (8, @,) € S? is the submanifold {(0y, o, ¥) € S*; 0=y =4n},
and its tangent space is generated by 0/dy. We define a vector X € T;(S%), he S*
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to be horizontal if X is orthogonal to (0/dy), with respect to the canonical metric
go on S3 induced by the Euclidean metric of R*. This notion of horizontal vectors
on S3 define a connection on the principal S'-bundle P. Next, for each integer
m, let p,, be a representation of S on C defined by

pule(®)z=¢(t)""z, zeC.

Let E,, denote the associated line bundle with P by the representation, p,,, that is,
the quatient manifold of S3x € by the equivalence relation (h, z)~ (he, g"z), e S'.
For each he §3, define g,: C—»7~'(n(h)) by z—[(h, z)], where #: E/—S? is the
projection. Let Ci(S?) be the set consisting of every C* function f on S3 such that

(5.3) f(he)=emf(h)

for every he S® and e€ S!, which is called an equivariant function with respect to
pm- For se C*(E,), define a C* function gfs on S3 by (gis)(h)=q;(s(n(h))),
heS3. Then gjs belongs to C2(S®) and g gives a one-one correspondence
between C*(E,) and C2(S?). A linear connection d/, on E; associated with the
connection on P is defined as the covariant derivative:

Vxs=(qz)""X?q5s, se C*(E,), X € T(S?),

where X# is the horizontal lift of X. We find by straightforward calculations, that
the curvature form of dj, is equal to Q,,. Therefore, by virtue of Kostant’s theorem,
we have (E,, d.)=(E,, d,).

Now, define an operator L, on CZ(S3) by

Li=qiL,(q})".

Then, Sp(S?, go; E,» d,,) consists of eigenvalues of L?, and each eigensection s
associates to grs. Using coordinates (0, ¢, }) of S3, we get
i _ 0% cosf 0 1 0% ,2cosf 0* cos?f 02
o O

202" sin® 80 sin?0 3¢% *§in20 dpoy  sin20 ay2

and therefore

62

oy’

where 4; is the Laplace-Beltrami operator on (S3, g,). Noting (5.3), we have
of|oy =(i/2)ymf for fe C2(S3). Therefore,

(5.4) Lif=tdyf ="

holds. Thus, if L} f=/f, then (1/4)4;f={A+(m?/4)}f, that is, f is an eigenfunction
of 4;. It is well known that eigenvalues of A4, are
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u,=n(n+2), n=0, 1, 2,...

and the eigenfunctions corresponding to p, are

n i(J 1 0 * 9 d a
Y, =eilotki)/2 <sm 7) <cos 7) PP (cos 0),

ljl, lk|=n, n—2, n—4,...20 (see Fig. 1),
a=k—jl/2, B=1k+jl/2, y=(n—a—p)/2,
where P{*#)(x) is the Jacobi polynomial (cf. [3, Ch. X]).

EHERE
|
& o

L X X ]

—n o0 0 O LA N J

—n

Fig. 1

Since Y1, /0y =(i[2)kY?,, Y7, belongs to CR(S®) if and only if k=m. From
(5.4), we have

2
LEY", = {g(% + 1)—1%} Y,

n=\|m|, |m|+2, |m|+4,...

j=n,n—2,..., —n+2, —n.

Noting that Sgg n Yr,d0dedy =0 if kxm, we see that {(g;)~'Y},} forms a com-
plete system of eigensections of L,

As a consequence, we obtain the following.

Theorem 5.1. Let (S2, g,) be the 2-sphere with canonical metric, and (E,,
d,), meZ be a line bundle with connection whose curvature form is Q,=
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(i/2)m®, O being the volume element on S? induced by g,. Then,

2, go: Eypy d,) = _m? o _|ml |m|  |m| }
SP(S2, o By dy) = {10+ 1) =25 1= 1]y Ll

and the eigensections associated with I(I+1)—m2/4 are given by (q%)~ 1y, j=2l,
21-2,..., =21+2, =2I.

Remark. W. Greub and H.-R. Petry [12] obtained the same result under the
discussions about the quantum-mechanical motion of a charged particle in a magne-
tic monopole field.

5.2.  Spectrum of line bundle over flat torus

Let (M, g)=R"/I" be a flat torus, where I' is a lattice, i.e., a discrete abelian
subgroup of the group of Euclidean motions on R*. Let E be a trivial line bundle
over (M, g), and d be a flat connection on E. Then, d is defined by a closed 1-form
w=ia (a: real) on M (see §2, Example), and the Laplacian is given by

(55) - L=-— Zl axkz —2i Z ak + Z <akak %%) s

where (x*) are the coordinates induced from R”, and a=a,dx.

First, we consider the case where a,=const. (k=1,...,n). Let I'* denote
the dual lattice, consisting of all x € R” such that (x|y)=>7_, x*y* is an integer
for all yeI'. For £ el'*, we set

s:(x)=exp (2ni(x | £).
Then s¢(x) is a function on M and we have
Lsy(x) =4n%(£ | ©)sdx) +4n(a | E)s«x) +(a | a)sy(x)
=[2r8 +als(x),

where |x|?=(x|x), (x e R"), and a=(a,,..., a,) e R". Thus, s¢ is an eigenfunction of
L with the eigenvalue [2n¢+a|?. It is well known that {s¢; CeI'*} is the complete
set of eigenfunctions of the Laplace-Beltrami operator on (M, g). Therefore,
it is also complete set of eigenfunctions of L.

Next, we consider the case of a general closed 1-form «. Note that the set of
harmonic 1-forms on (M, g)=R"/I" consists of a* =a,dx* with a,’s being constants.
By the Hodge-de Rham theorem, there is a unique harmonic 1-form o* = a,dx* which
is cohomologous to «. That is,

(5.6) 00— or* =

holds for some function ¥ on M. Let d* be the connection on E induced by the
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I-form w*=io*. Form Propositions 4.1 find 4.3, we have d G)(;l* and accordingly,
Sp(M, g; E, d)=Sp(M, g; E, d¥)={2né+al?>; E€I'*}. We find the eigenfunc-
tion associated with the eigenvalue |2né+al|?. By setting ¥ =exp (i), we have w=
Y-1d¥ + w* from (5.6). Therefore, as shown in the proof of Proposition 4.1,
s(x)=¥1sx)=exp {2mi(x | &) —iY(x)} is an eigenfunction of L for the eigenvalue
[2n& +al%.

Thus, we have obtained the following theorem.

Theorem 5.2. Let (M, g)=R"/I" be a flat torus and E be a trivial line bundle
over (M, g). Suppose d is a flat linear connection on E defined by a closed
1-form w=ia (x: real) on M, and suppose o— a,dx*=dy, where a,=const. and
is a real function on M. Then,

Sp(M, g; E, d)={]2n¢+a|?; EeT*},

where a=(ay,..., a,) € R*, and the eigenfunction associated with |2n&+al|? is given

by
exp {2mi(x | ) —i(x)} .

Given a vector a=(ay,..., a,) € R", we denote by d, the connection on the
trivial line bundle which is defined by the 1-form w=ia,dx*.

By virtue of Theorem 5.2, we have the following theorem concerning the first
eigenvalue.

Theorem 5.3. Let (M, g)=R"/I" be a flat torus and E be a trivial line bundle
with a flat connection d. Suppose ., be the first eigenvalue of the Laplacian on
E, and V=vol(M, g) is fixed. Then, the following holds.

(1) For any large N € R, there are I' and d such that ., >N.

(2) Let m(4,) denote the multiplicity of Ay. Then, m(A,)<2". Moreover,
if m(A,)=2", then I is a rectangular lattice and

(5.7) Ay =>nn¥ (V=2
where the equality holds if and only if I is cubic and 67(7)5,,, a=@V-n, .., gV,

Remark. A lattice I is called rectangular if there is a generator {y,,..., y,} of
I' such that (y;|y;)=0if i=j. Moreover, I' is cubic if it is rectangular and [y,|=
=1l

ProoF. (1) Let D, denote the fundamental domain of the lattice I'.  When
vol (M, g)=[vol (Dr)]~! is fixed, there is I" such that one of the side lines of D,
has an any long length. By setting a to be the half of the maximal side line and
d (?)67“’ /., takes an any large value.
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(2) Note that I' is rectangular if and only if I'* is so. It is obvious that m(4,)
takes the maximal value 2" if and only if I' is rectangular and d G)Ja, a being the
center of D,,r.. Moreover, 4,=|a|? if m(4,)=2". When I'* is rectangular and
vol (D,,r+) 1s fixed, the length of the diagonal lines of D, takes the minimal value
2anl/2[vol (Dy+)]'/" if and only if I'* is cubic, i.e., I" is cubic. Therefore, we have
(5.7). Q.E.D.

We conclude this section by giving a counterexample for the converse of
Proposition 4.1. Let I'={(p, q)eR?; p,qeZ} and (M, g)=R?/I". Obviously,
I'*=I holds. Set a=(a,, a,) and a’'=(a,, —a,), where O0<a,<n is satisfied.
Then, for £eTl, we have |[2ré+a’|=|2rn€+a|, where E=(&,;, —&,) el for £=(¢,,
&,). Therefore, Sp(M, g; E, d,)=Sp(M, g; E, d,) holds. But, for a=adx'+
a,dx?, o' =a,dx'—a,dx?* and a closed curve c=c¢(t)=(0, 1) e R?, (0<t<1), we have

1 S ’ a,

2 c( ) T’
which is not an integer. Hence, from Proposition 4.3, d, is not gauge equivalent
tod,.

Remark. In the above example, d, is weakly gauge equivalent to d,.. 1In fact,
the map y: R2xC—»R?xC, (x, s)—(—x, s) induces a weak gauge transformation
on E=(R2/I') x C, and obviously d, =y*d, holds. Thus, we propose the following
conjecture. Let d and d’ be two flat connections on the trivial line bundle E over
a flat torus (M, g). Then, Sp(M, g; E, d)=Sp (M, g; E, d’) holds if and only if
dgyd'-

§6. Estimations of first eigenvalue

In this section, we estimate the non-zero first eigenvalue of the Laplacian by the
curvatures. These are generalizations of Lichnerowicz’s result (cf. [6], [9]).

Let (, ) be the natural inner product of T (M, E), that is, for a frame e={e,} of
E,

6.1) (T, T') =§M Ty HT'mdV,,

where T¢)=¢-T®),..dx*® - @dx™ e T(M, E), and H=(H,;)=({e,, ¢;).

Lemma 6.1. The adjoint operator 4 T,+1(M, E)y->T(M, E) of 7 with respect
to(,) is given by

(6.2) F*T) = =P T

Proor. We have from (6.1),
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(ﬁss T) =SM ﬁmtSj...kHT"'jmdeg

J

- SM [ 7S, HTm k4 ‘Sj...k’co,,,HT’"f""‘] av,

— SM [—S,. 4 (P H)Tmik 18, H 7, Tk

+1S;. ' 0, HT™¥]dV,.

Since the connection is compatible with the Hermitian structure, we have F,H=
Hw,,+'w,H (Lemma 2.1). Therefore, we obtain

(‘;S, T): —SM [tSijameJk+tSJkHVme'lk]dVg

- _g tsj“‘kHﬁmejmdeg’
M

which means (6.2). Q.E.D.
We define covariant differentiation v THM, End (E))-T?, (M, End (E)) by
VKLt =VKid+oKid— Ko,
where Ki7 7 is an rxr matrix. Then, for K e THM, End (E)) and se T?(M, E),
FAKs)=(FK)s+K(F:s)
holds good.

Remarks. [. The Riemannian metric g is regarded as an element g® [
of T,(M, End (E)), and Fg=0 holds.
2. The Bianchi identity in Lemma 2.3 is expressed as I%-ka+ ﬁka it 17,,,9 i =0.

Definition. A linear connection d on E is called a harmonic (or Yang-Mills)
connection if (5Q)j=l7"ij=0 holds for the curvature Q of d. See [13], for details.

Remark. Suppose E is a line bundle. Then, the curvature Q of the connection
d is a closed 2-form on M such that Q/2ni is integral. Moreover, d is hormonic if
and only if Q is a harmonic 2-form. The connections d,, studied in §5.1, i.e., (82,
dos E,, d,,), are harmonic.

Now, let Lbe the Laplacian on E, and assume Ls=A1s holds for se C*(E) and
A>0. Then, we have the following formulas.

(6.3) s, s)=(Ls, s)= —(F s, gs)=(Fs, Fs),

(6.4)  (F*P25),=—F*kP F.s=AV,s—g™R,, Vs —2g™Q,; P .s—(FmQ s,
J J J J J mj
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where R is the Ricci tensor of (M, g).
In fact, (6.3) is immediate from the definition of L. As to (6.4), using the
Ricci formula (2.6), we have

_ﬁkﬁkﬁ}s= ——ﬁkﬁjﬁks—ﬁk(gkjs)
= — ﬁjﬁkﬁk:s—*'gka]i‘mj ﬁis_gkmgmjﬁks
_ijﬁks—(ﬁkgkj)s
=},ﬁjs—gmkRkj ﬁmS—Zg"‘kaj ﬁms—(ﬁkgkj)s-

We define two endomorphisms p and © of the bundle EQ T*(M) by p: v;—
g™ R v, and O: v;>g™*Q, v, respectively. It is easily shown that p and © are
Hermitian operators.

We set

5 A
—p2
u=F*s+ p gs,
and assume that the connection is harmonic. Then, from (6.3) and (6.4), we have

(u,u) = (F2s, Ii2s)+%§(gs, 172s)+<'1 >2(gs, gs)

n
2]

= (Fs, 17*172s)——n— (Ps, ﬁs)+% (Ps, Vs)

= <A—%>(ﬁs, Fs)— (Ps, p Ps)—(Ps, 20 Fs).

Since (1, u)>0 and (Fs, F5)>0, we get the following.

Proposition 6.2. Let E be a vector bundle over (M, g), and d be a harmonic
connection on E. Assume Ls=A1s holds for se C*(E) and .>0. Then,

(6.5) s> n (Fs, (p+20)Fs)
-l (ﬁs, I7s)

Let @f (resp. ©%) denote the maximum (resp. minimum) of the eigenvalues
of the operator @ | E.Q T*(M), (x € M).

Theorem 6.3. Let E be a vector bundle over (M, g), and d be a harmonic
connection on E. Assume that R, >kg;, and ©; >c hold for every xe M, where
k and c are constants subject to k+2c¢>0. Then, the non-zero first eigenvalue
of the Laplacian L satisfies
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(6.6) - [ (k+20).

Remark. The above theorem does not assert that the first eigenvalue 4, satisfies
(6.7) A 2’%(“2@.

If we assume E is a line bundle and Q20 besides the assumptions of the theorem,
then (6.7) is satisfied.

Next, we give another estimation without the assumption that d is harmonic.
Set

w=ﬁzs+~f;~gs—9s=u—95.

Then we have
(w, w)y=(u—Qs, u—Qs)
=(u, u)—(Qs, u)—(u, 2s)+(R2s, Qs).

It is easy to see that (Q2s, u) is real and

(Qs, w)=(u, Qs)=(F2s, Qs)

=1, @fs)+—é— (Fs, (5Q)s).
Therefore we obtain

(6.8) (w, w) =£’1-;_1) (Ps, Ps)A

—(Fs, (p+ O) Fs)+(Qs, Qs).

Choose a local coordinate system (x?) of (M, g) orthonormal at xe M, and a
local frame e of E orthonormal at E,. An element « of E,® T*(M) is written as o=
e-(a;+ib;)dx/, where a@; and b; are real r-column vectors. We set

'a=('a; -'a,'b;--'b,),

and a is a 2nr-column vector. Moreover, for Q=4 +iBj (A, Bj: real (rxr)
matrices), we set
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0 — Ay — 4y, 0 Bygeeeee B,
— Ay, 0 —A4,, B,, 0 eeees B,,

— A, —A, 0 B, B, 0
0 BZl """ Bnl 0 _AIZ"'_Aln

By, VRN B,, —ds 0 — Ay,

B, By 0 A A0
Lemma 6.4. The matrix C is a real symmetric (2nr x 2nr) matrix and
(6.9) {a, O,0> ="aCa
is satisfied.
PROOF. Since 'Q;, = —Q;, holds, we have
"Aj=—Aj, 'By=Bj.

Hence, C is a symmetric matrix, and (6.9) is derived by direct computations.
Q.E.D.

Next, set
Z,= JZk( —ApAp+ByBi),
Zz - ,Zk (BjkAjk + AjkBjk) >

and

( z, 7,
7=
-7, Z, |

Then, similarly to Lemma 6.4, we have

Lemma 6.5. The matrix Z is a real symmetric (2r x2r) matrix, and for
s=e-(s;+is,)ekE,,

(6.10) (0s, Qs>x=7‘( tsZs

holds, where 's=('s,, 's,).
Lemma 6.6. Tr(C?)=Tr(2).

Proor. By straightforward calculatons, we have
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Cll """ Cln Dll"'D.llr
Cnl """ Cnn Dnl"'Dnn

C2=
—Dllu._D.ln (;11'“(;171

nl'“—D'nn C"nl'“énn
and Z, =>4, Cy, Z,=>1_, Dy Therefore,

Tr(€)=23 Tr(Cy) =2Tr (X Cy)
k=

=2Tr(Z)=Tr(2). Q.E.D.
The following lemma by Tanno [10] is useful.

Lemma 6.7 (Tanno [10]). Let H be a symmetric linear operator of a vector
space W with inner product. Then, for every integer k>1 and every we W, we
have

(CHw, w2 < [Tr (H¥) VR w, w2,
Set

9P == Tr (3, 242 =Tr (3, 2’20

:a,%,kggjkﬁgjﬁén(zy

Lemma 6.8. (A) If |O%|<c, then |Q|><nrc? and {Qs, Qs) . <nrc*{s, sy [4
hold for every se E..

(B) If {Qs, Qs),<d*(s, s), for every seE,, then |0%|<2/2rd and |Q*<
4rd? hold.

(C) If |Q)><d? then |0F|</2d and {Qs, Qsy,<d*¢s, s),/4 hold for every
seE..

PrOOF. (A) The condition [@F|<c¢ leads to Tr(C?)=Tr(Z)<2nrc?. It
is easy to see that the matrix Z has eigenvalues d,,..., d,, each multiplicity being two.
Thus,

2(d, + - +d,)<2nrc.

Hence max {d,} <nrc?, which completes the proof.

(B) The condition {Qs, Qs> <d*{s, sy means that the eigenvalues of Z are
lower than or equal to 4d2. This leads to the conclusions using Lemma 6.7.

(C) If [Q?<d? we have |©F|<./2d by Lemma 6.7, and the eigenvalues of
Z are lower than or equal to d2. Thus the proof is completed.
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Using (6.8) and the above lemma, we have the following theorem.

Theorem 6.9. Let E be a Hermitian vector bundle over (M, g) and d be a
connection on E. Assume that Ry >kgy, k being some positive constant. Then

we have the following estimations for the eigenvalue A of the Laplacian.
(A) If |©%|<c holds for every x e M, then

A< +1) {(k=c) =k =) = (n—1)c?}

2(n
or
A> 2(n {(k )+ J(k—c)?—(n—1)c?}.
(B) If<Qs, Qs),<d*{s, sy, for every xe M and every se€ E., then
A< 7(’1 ){(k 2J2rd) — N (k—2./3rd)? — < %)dZ}
or
= ){(k 2 J2rd) +\ (k—22rd)> — < %)dz}.
(©) If|Q|2<d? for every x€ M, then
Aty {(k S3d) A (k- J2d)? - < %)é}
or

kgt {(k J2d) + N (k= y2d)* - (—%)dZ}.
Proor. (A) From (6.8) we have

0<(w, w)

— ~ ~ ~ ~ 2
gi’ifllz(m, Ps)— (k=) (Fs, Fs)+ ™" (s, 5)

. .. ~ o~ 2~ o~
= =D (s, Py = (k=) (s, Py + 25 (Fs, 7).

Since (s, Fs)>0 and >0, we get

(=) g g >0,
n

From this inequality we obtain the estimation,
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The other results are similarly obtained. Q.E.D.

Corollary 6.10. Besides the assumptions of Theorem 6.9, we assume E is a
trivial line bundle. Then,

I €ty (=) = (k=)= (i= e},
(A)

_n _ TN (o — 1V 2
Ay > S=T1) {(k—c)+/(k—c)*—(n—1)c*}.
In the cases (B) and (C) the similar estimations hold good.

PROOF. Let o be the connection 1-form of d, and w,=tw, (0<t<1). Let d,
be the connection defined by the 1-form w,, and L, be the Laplacian. Obviously,
C,=tC holds, where C, is the matrix similarly defined from d, as in Lemma 6.4.
Therefore, the eigenvalue A(¢) of L, satisfies

10 < iy (=10 = k=107 = (1= D)%}

or

PY() P La— {(k te) +/(k—tc)*—(n—1)(tc)?} .

Since the coefficients of L, are analytic with respect to ¢, 4,(f) varies analytically (cf.
[9, Lemma 3.15]). On the other hand, we have Lo=4 and 4,(0)=0, 2,(0) > nk/
(n—1). Hence we get the corollary. Q.E.D.

§7. Minakshisundaram’s expansion

In [4] P. B. Gilkey studied the asymptotic expansion of Minakshisundaram’s
type for the general self-adjoint elliptic operator of second order on the vector
bundle over M. That is,

X 1 n/2
(7.1) > eXp(—tzk),%(H) (@o+a,i+ast+ ),

where n=dim M. In the case of the Laplacian on the vector bundle E over (M, g),
one has the following formula for the coefficients a,, a; and a,.

Proposition 7.1. (Gilkey). Let r=rank E, and we have

(7.2) a,=rvol(M, g),

(1.3) a="4\ v,
M
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=" 2|R|2=2|pl|? 2 _'_S 2

(7.4) a:=—e5 | CIRE=2ipP+59av,— L jopay,,

where t© is the scalar curvature, |p|?>=R; R/, IR|?=R; 4, RY*™ and |Q|?= —Tr-
(9, 87%).

Using the above proposition, we get the following.

Theorem 7.2. Let (E, d) and (E’, d') be two vector bundles with connection
over a Riemannian manifold (M, g). Suppose Sp(M, g; E, d)=Sp(M, g; E’, d).
Then, rank E=rank E’, and if d is a flat connection, so is d'.

PROOF. a,=ag leads to rank E=rank E'. From a, =a}, we have S |Q|2dV, =
M .

g |Q'|2dV,. Hence we have only to show |Q|2=0 for every connection. Take a
M

orthonormal basis of (M, g) and a orthonormal frame of E. Then, since ‘O = —Q
holds. we have

Q> = —Tr(Q;Q7*)=Tr (*Q2,,2/*)
= ¥ QUuQuu= 3% 1940220 Q.E.D.
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