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Abstract

As for the periodic differential equations, M. Urabe [8] developed Galerkin
method for numerical analysis of periodic solution.

But, in the autonomous cases, the period of periodic solution is also un-
known. Hence, how to deal with the unknown period is a problem.

In the previous papers [4], [5], the author has proposed a Galerkin method
for calculating the periodic solution and its period simultaneously to autonomous
cases by making use of a boundary value problem.

It is clear that, when x(¢) is a solution of autonomous differential equation
x(t+a) is also a solution for an arbitrary constant a. The fact tells us the
Galerkin approximation to x(t) is not uniquely determined by the periodic
boundary condition alone. Hence, in order to determine the Galerkin ap-
proximation uniquely, the author considered an additional linear functional
and gave a rule how to choose the linear functional.

In the present paper we shall give a mathematical foundation to the Galerkin
method for autonomous differential equations, similar to the one for periodic
cases given by M. Urabe [8], and summarize our results obtained in the pre-
vious papers [4], [5], [12].

It is worth stressing that, in autonomous cases, the quantity . (m) appeared
in the inequalities (5.30) and (5.36) may vanish just as in periodic cases if we

2n
choose as I(u)= g x(t)- cos pt dt (p<m) the additional linear functional.
0

§1. Galerkin method for autonomous cases

In the present paper we shall consider a general d-dimensional autonomous
differential equation

(1.1) 25— X (@),

1) This paper was prepared during the stay in University of Pittsburg in order to study with
Professor Werner C. Rheinboldt, supported by Japanese Government.
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where X(x) e Cl[4], 4 being a domain in the x-space.
In order to compute a Galerkin approximation of w-periodic solution x(t) of
(1.1) we transform 7 to t by

wt

(1.2) T = ,,2;{,,

then the equation (1.1) is rewritten in the form

(1.3) _fl_? =& X(w).

The problem then reduced to the one of finding a 2n-periodic solution of (1.3).
But, in our case, w is also unknown. Hence, we consider the differential system

dx _ o X

dt T 2m (),
(1.4)

do

@ Y

where x and w are unknown functions. The periodic boundary condition for (1.4)
is then as follows:

(1.5) x(0)=x(27).

As can be seen, when x(¢) is a solution of the autonomous system (1.3) x(t+x)
is also a solution for an arbitrary constant ¢. The fact tells us that no 27t-pefiodic
solution to (1.3) is uniquely determined by the condition (1.5) alone. Hence we will
consider one more condition, say,

(1.6) l(w)=p,

where u=col (x(1), w) and [ is a linear functional satisfying the isolatedness con-
dition /[col (X(x), 0)]#0 (See Theorem 5) and f is a constant number.
We shall write the set of boundary conditions (1.5) and (1.6) in the form

(1.7) fluw)=0,

where

(1.8) f(w)=col [x(0) —x(27), I(u)—f].

Then the boundary value problem (1.4)-(1.6) can be rewritten as folloWs:
Ay,

(1.9) dt
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where V(u)=col [wX(x)/2n, 0].
In order to get a 2m-periodic approximate solution to (1.9), we consider a
trigonometric polynomial of the form

(1.10) %, () =ay+/2 i (@, (sin nt+a,, cos nt)
n=1

and the (d+ 1)-dimensional vector w,(f)=(x,(1), w,), where a; (i=0, 1, 2,..., 2m)
are d-dimensional vectors and w, is a real number.

By Galerkin method we shall determine the unknown coefficients a,, a,, a,,
cees By 1, Ay, ANd @, sO that

dxm (t) j—
(1.11) = P, X[u,(1)]
and
(1.12) [, (1)=0

may be valid, where X[u,(1)]=w,X(x,(?))/27 and P, denotes a truncation of the
Fourier series of the 2n-periodic operant function discarding all harmonic terms of
the order higher than m. The equalities (1.11) and (1.12) are clearly equivalent to
the system of d(2m+1)+d + 1 equations

2n
Fo(@)= 5| Xl (s)1ds =0,
Fy (@)= ﬁl - gz XTu,(s)] sin s ds + na,, =0,

(113) 1 2n
Fal@)= 75 - go X[, (s)] cos ns ds— na,, =0,

Fa)=f[u,()]=0,
(n=1,2,...,m),

where e =col [ay, @, a,,..., a,,_ 1, Gz ©p]isa (d(2m+ 1)+ 1)-dimensional vector.
In (1.13) the system F(a)=0 essentially consists of a single equation I(u,,(t))—
f=0. Hence the number of the equations (1.13) and the one of the unknown
coefficients are both d2m+1)+ 1.
The system of equations (1.13) is called the determining equations of Galerkin
approximation to autonomous cases. -
For brevity let us write the determining equations (1.13) consisting of
d(2m+1)+1 equations in vector form as follows:

(1.14) F,(a)=0.
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In what follows we consider the product spaces B=4 x R! and Q=1 x B, where
I=[0, 2n] and R! is the real space.
Put

C'IN={x(t)=col [x,(1),..., x, ()] | x(t) (i=1,..., d) are C'-class on I},
C[I]={x(t)=col [x,(1),..., x,(O] | x(H)(i=1,..., d) are continuous on I},
St={u(t)=[x(1),..., x,(1), @] |(t, u(t)) e Q for all tel, u(t)e C'[I]x R'}
and
S={u(t)=col [x,(1),..., x,(t), w]|(t, u(t)) e Q for all tel, u(t)e C[I]xR'}.

In the present paper we shall denote the Euclidean norm by |:--| and define the
norms in the product spaces C[I]x R! and W=C[I] x R4"! by the formulas

(D), =max|ju(s)]

and
lleo ]l = lx()],+ vl

respectively, where w=(x(t), v). Then the product spaces C[I]x R! and W are
evidently Banach spaces with respect to the above norms, respectively.

If g(t) is a vector-valued trigonometric polynomial of the form

g =co+/2 Y (c3,c08 nt+c,,sinni),
1

n=

then by the definition

(115) lgl= | 5 | le@lzar )
we easily have

(116 lel, =171

(117 Il <2+l

where 7 =col (cq, €1, €25+, €21, Co2m) -
Now, the boundary value problem (1.9) is reduced to the one of finding u e C![I]
x R! satisfying the equation
_|ldx o _
(1.18) F(u)= [W 2 X(), f(u)]_o.

In (1.18) we assume that the function F(u) with domain S'< C![I]x R! and range
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W is continuously weak Fréchet differentiable.

§2. General solution to linear boundary value problem

Consider a linear boundary value problem

(2.1) idy[ =A(t)y +g(1),
(2.2) Ly=wv,

where y is a (d+1)-dimensional vector-value function, A(r) is a (d+1)x(d+1)
continuous matrix whose (d+1)th low is zero vector and L is a linear operator
mapping C'[I]x R! into R4*1,

By &(t) let us denote the fundamental matrix of the linear homogeneous system

dy _
e =0y

with the initial condition &(0)=E (unit matrix).

By L[®(t)] we denote the matrix whose column vectors are L[®,(1)]
(i=1, 2,..., d+1), where @(f) are column vectors of @(t).

For the linear boundary value problem (2.1), (2.2), we have

Proposition 1. [f the matrix G=L[®(t)] is nonsingular, that is,
(2.3) det G=det L[P(1)]#0,

then for any continuous (d+1)-dimensional vector-valued function g(t) whose
(d+ 1)th element is zero and for any (d + 1)-dimensional vector v the linear bound-
ary value problem (2.1), (2.2) possesses a unique solution y(t), which is given by

y(t)=H'g + H?v,

where

Hig= <I>(t)g; D-1(s)g(s)ds — D()G~ L[ B(1) S; ®1(s)g(s)ds],
H2v=o(1)G 0.

Here H' is a linear operator mapping C[I]x R" into C'[I]x R! and H? is a linear
operator mapping R into C'[I] x R!.

ProOF. The general solution of (2.1) is given by

(2.4) y(1)=(t)e + ¢(t)3 &1(s)g(s)ds,

t
0
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where ¢ is an arbitrary constant vector. To determine ¢ so that (2.4) may satisfy
(2.2), we substitute (2.4) into (2.2). Then we have

L[@Je+L[O() || 071(s)g(s)ds]=v.
0
From the assumption we have

c=G'v— G‘lL[qﬁ(t)St O1(5)g(s)ds]
0
If we substitute this into (2.4), we end the proof. Q.E.D.

Consider an additive operator T mapping C'[I] x R! into W as follows:
dy
(2.5) Ty= e —A()y, Ly |.

Then Proposition 1 tells us that if the matrix G is non-singular the operator T has
the linear inverse operator 71! which can be written as follows:

(2.6) T-'w=H'g+ H*v

for any w=(g, v)e W. Furthermore we have
(2.7 1T, <max (I|[H],, [H?],),
because of
1T~ awll, <[ Hl, - ligll, + 1 H21l, - o]
<max ([H'[,, 1H?],) (Igl.+lviD

<max ([|[H,, [[H,)- Il

for any w=(g, v)e W.

Let #i(t) be a solution of the boundary value problem (1.9) and suppose that
V (u) in the right-hand side of (1.9) is continuously differentiable.

Let Z(u) denote the Jacobian matrix of F(u) with respect to u. Then the
solution #@(t) will be called to be isolated if the matrix f(@)[®(t)] is nonsingular,
where &(t) is the fundamental matrix of the linear homogeneous system

dy  _ .
e =E[a(1)]y
with the initial condition @(0)=E (unit matrix) and f’(&t) denotes the weak Fréchet

derivative of f(u).
It will be shown that in a sufficiently small neighborhood of a isolated solution
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there is no solution to (1.9). (See Proposition 3).
In what follows, if the condition (2.3) is satisfied, the operator T will be called
to be regular.

§3. Truncation of Fourier series

As can be seen from (1.11), Galerkin method is based on the truncation of Fourier
series. Concerning the truncation of Fourier series we have the following lemma due
to Cessari [1].

Lemma 1. Let g(t) be a continuously differentiable 2n-periodic vector-
valued function. Then we have

(3.1) lg— Pugla<o(m)igl,

(3'2) ”g— ng“qgo-l(m)“gnqs

where- =d/dt and

(3.3) o(m=y2[ 3 27,
3.4) g, (m)=(m+1)"1,

For a(m), it holds that

(3.5) V2 smy< N2

Jm+1 Jm

For the proof, see [8].

In what follows, let us assume that ¥(u) in the right-hand side of (1.9) and its
Jacobian matrix Z(u) are continuously differentiable in a closed bounded region D
of the (d + 1)-dimension Euclidean space R4*!.

By this assumption it is clear that there are non-negative constants K and K,
such that

V() <K,
(3.6)
[E@) <K,

for all we D.
Let () be an arbitrary 2zn-periodic solution of (1.9) such that #@(f)e D for all
te R'. Then applying Lemma 1 to 7@(t), we readily have
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(1) la—a@,l,<Ko(m),
(3.7 (ii) [&—dnll,<Ko(m),
(i) [ — i), < KK, o(m),
where i,,(t)= P,(1).

Suppose that @(t) € D for all t€ R*, where D denotes the interior of D. Since
(1) of (3.7) implies

(3.8) la—i,|,— 0 as m— oo,

it is clear that there is a positive integer m, such that for all m>my, w,(t)e D for

all e R
For any m >my,, it is readily seen from (iii) of (3.7) that there is a non-negative

constant K, such that

(3.9) H%F &, (1] H <K,.

Suppose that 7(7) is isolated. Then by the definition the operator T'is regular.
Since Z(u) is uniformly continuous in D, by (3.8) it is seen that there is a positive
integer m,>m, such that, for any m>m;,, the operator T,, defined by

N da eaA
Tmy:i:’id")ti _‘-‘[um(t)]ya Ly:l

is always regular and moreover the mapping 7! corresponding to T,, is equibounded,
that is, there is a positive constant M independent of m such that

(3.10) 1Tty 1 TR <M.

§4. Jacobian matrices related with determining equations

In the present section we shall consider some basic properties of the Jacobian
matrix J,(a) of the determining equation (1.14) with respect to a. The basic
properties of J,(a) are obtained from the analysis of the linear algebraic equation

4.1) J()E=7,

where a=COl (ao, a;, ad,..., Ay, 1, Ay, wo), E=COI (Co, Ci, Cry.ioy €3y 1,Copys 'u)

and 7 =col (po, P1> P2s++> Pam—15 Pams U)-
Put
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— m
x,(D=ay+/2 Y (ay,cosnt+a,,_, sinnt),
n=1

(4.2) st)=co+ /2 i (¢;,cos nt+c¢,,- 4 sinnt),
n=1

P(D)=po+/2 ﬁl (p2ncCOSnt+p,,_q sinnt),

\

then from (1.18) the equation (4.1) means
fim - [F(u, + k) — Fu,)]
im0 A

- [%, — X )k, fh |

=(¢, v),

where h=(z(t), n) and X (u) denotes the Jacobian matrix of X(u) with respect to
u. Hence we have the following boundary value problem corresponding to (4.1):

ds@) _ P {X,(u,)h}=¢(1),
(4.3) { a

f(u,)h=v.
Consider the following (d+ 1) x (d + 1) matrix

X, (w)
0---0

Concerning the boundary value problem (4.3), we get

Lemma 2. Suppose that (1.9) possesses an isolated solution #(t) such that

a(t)e D for all teR'. Taking m,>m, sufficiently large, consider the boundary
value problem

dh(t) _ P {EGi,)h} + (1),
o { a1
f@h=v

for m>m,, where @,(t)= P,i(t), ¢(t) is an arbitrary (d+1)-dimensional 2n-
periodic continuous vector-valued function such as ¢(t)=(¢(t), 0) and v is an
arbitrary real vector of the form v= (0, v).

Then for any 2n-periodic solution h(t) of (4.4) (if any exists), it holds that

ML+ K) (1] + o))
(49 IMle= T340, + K)o, 0m)
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and

MOt K 7l
~ MK, + KD (m) T

(4.6) HEs

Proor. For brevity, put
A(H=E@,,) -
Then for any 2n-periodic solution h(t) of (4.4), we have

d’;gt) = A, (Dh(t)+ PO +73(D),

where

()= —(I— P, [4.,(DR(D)].

Here I denotes the identity operator.
Put

b(1)=A,(Dh(1),
then by (4.4) we have

b(t) = A, (Oh(1) + A, (1) [ P {E(@,)h} + (D],
from which by (3.6) and (3.9) follows

4.7) 1Bll, < Kllb ,+ K[| B {E@a B}, + 12111
But by Bessel’s inequality,

(4.8) I P{E@@, h} |, < | E@ )R], <K ],
Hence from (4.7) and (4.8) we have

(4.9) 16l <(K,+KDIhl,+ K1l ¢l
Applying Lemma 1 to #(¢) and using (4.9), we have

(4.10) Il <o(m) (K, +KDIk],+ Kl ¢ll,]

On the other hand, from Proposition 1 with Lh=f"(@,)h and from (3.10) we
have

(4.11) IRl <Ml + 71+ llv)
for m>m,>m,. If we substitute (4.10) into (4.11) we get

Ikl <Ml + 0o (mMIUK,+KD)|hll,+ K[ Ll ]+ [0 M.
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Now 1 —-M(K, + K#%)a,(m)>0 for m>m,, since m, supposed to be sufficiently large.
Thus from (4.12) we get (4.5). (4.6) is clear from (4.5). Q.E.D.

In Lemma 2, let the Fourier series of £(¢) be

e OO
£()=ay+./2 21 (@,, cos nt+@,,_sin nt).
n:

Then clearly

() =Go+/2 "{; (@,, cos nt+d,,_ sin nt).
Put
a=col(@y, Gy, @y,..., Gyp_1, Ay D),
then from Lemma 2 the following corollaries follow readily.
Corollary 2.1. For any m>m,,
(4.13) det J,(&)#0.
PrROOF. Suppose the contrary. Then there is a non-trivial vector § satisfying
J(@)§=0.

But this is the equation (4.1) with #=0. Hence, by (4.6) the assumption implies
a contradiction. Q.E.D.

Corollary 2.2. For any m>m,, J; (&) exists and

M(1+K,)

(4.14) 751 (&@) | < l—M(K,+K3)o,(m)"

Proor. By Corollary 2.1 the existence of J,&) is clear. Then the
equation

J(@)E=7
possesses a unique solution
§=J @)y
for an arbitrary vector 7 provided m>m,. Taking account of (4.6), we have the
estimate (4.14). Q.E.D.
Now put
a'=col(ay, ay, az,..., Ay, G5,y O
(4.15)
a"=col (ay, af, a;,..., a;,_,, a3,, ©").
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Let

x(D=ab+2 S (a},cos ni+aj,_, sinni),
n=1
(4.16)
xp(=aj+ /2 3 (ay, cos nt+as,_ , sin nt)
n=1
be arbitrary d-dimensional trigonometric polynomials such that
(4.17) Ou'(H)+(1—u"(t)e D

for all teR! and all 8 satisfying 0<<1, where u'(t)=(x,(t), w') and u'(t)=
(x(1), ®"). Then we have
Lemma 3.

(4.18) ITn(@) = J (@) <Ks32m+1ja’—a”| .

Here K5 is a positive constant such that

1
d+1 - aZVl(u)—‘]Z}f
(4.19) {i,j%i?m [t <K,

where V(u) and u;(i=1,2,...,d+1) are components of vectors V(u) and u,
respectively.

Proor. Take an arbitrary vector §=col(cg, ¢y, €35..., €C1p_1, €2y 1) and
consider

(4.20) s()=co+ /2 3 (€3,COS8 Nt 4oy sin nif).
n=1

Put

(4.21) r'=Ja)g, r'=J(a"§

and let

1 7 ’ ’
T =CO] (P()a PI: PZa-HaplZm-b P,Zm, 'U’),
7”:(:01 (P3> p,I,a pga'“’P;m- 1 Pé’:ms 'U”).

Consider

@' (=pi+/2 ﬁi (p2n cOS nt+ph,_; sinnt),

@' (N=pi+ /2 21 (p4. cos nt + pj,_, sin nt),
n=

and
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@d'(t)=col (¢'(1), 0), ¢"(ty=col (¢"(t), 0).
Then comparing (4.21) with (4.1), by (4.4) we have

O~ P h0} + /1), Fah=v,

A P E@h0} + (), fph=0",

from which readily follows
(4.22) ¢'()—¢"(0)= P{[E(u;) — E(u,)]h(D)} .
However on account of (4.17), by (4.19) we have
IE@) - E@) <K;u' —u"| .
Then by Bessel’s inequality it follows from (4.22) that
"= ", < Kslluy, —unll,- A,
1

Since [lh]l,=[§1 and 7' = 7" ={1¢"'~ "2+ Lf () —f p)Ik|?} 2 =g’ — "],

because of the linearity of f(u), we have

17" = 7"l < Kslwp, —unll, - 1€

Since 7' —y"=[J,(a')—J,(a")]& by (4.21) and & is an arbitrary vector we thus
have

1 m(@’) = J (@) < Kslu — s

from which (4.18) follows readily by (1.17). Q.E.D.

§S. Existence and convergence of Galerkin approximations

Our proof of the existence and the convergence of Galerkin approx1mat10ns is
based on the following proposition due to Urabe.

Proposition 2. Let
(5.1 F(a)=0

be a given real system of equations where a and F(a) are vectors of the same
dlmenszon and F(a) is continuously differentiable with respect to @ in a region

Q of the a-space. Assume that (5.1) possesses an approximate solution a=@
for which the Jacobian matrix J(a) of F(a) with respect to @ is non-singular at
a=a and there are a positive constant 6 and a non-negative constant x <1 such that
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[m Q;,={al|la—a|<5}cQ,
(5.2) l(ii) llJ(a)—J(ﬁ)IIS»»»A—’},~ for any ae€Q;,

(iii) M'r/(1—-x)<9,
where r and M'(>0) are numbers such that
(5.3) IF(@)| <r, [J Ha)I<M".

Then the system of equations (5.1) possesses one and only one solution a=a
in Qs and

(5.4 det J(a)#0
and

- . M'r
(5.5) la—al| < =

For the proof, see [&].
We can now state a theorem which asserts the existence and the convergence of
an infinite sequence of Galerkin approximations corresponding to a 2m-periodic

isolated solution.

Theorem 1. Let (1.9) be a given boundary value problem. We assume that
both V(u) and its Jacobian matrix E(u) are continuously differentiable in D,
where D is a closed bounded region of the (d+1)-dimension Euclidean space.

Suppose that (1.9) possesses a 2m-periodic isolated solution #(t) such that
a(t)e D for all te RY, where D denotes the interior of D.

Then there is a positive integer i such that for any m>m there is a Galerkin
approximation w,(t) of the order m converging to i(t) uniformly together with
its derivatives as m— 0.

Proor. Put #@,(t)= P,i(t). Then we have

din, () _ p

wll) _ p, 480 _ p ya)].

(5.6)

Now #(f) is 2n-periodic and #@(t)e D for all e R'. Therefore there is a positive
number J, such that

5.7 U={u||u—a(t)|<d, forsometeR'}cD.

Then, by (3.8) @,,(t) e U for all te R! and for all m>m;>m,, provided m; is suf-
ficiently large.

For m>m,, equation (5.6) can be written as follows:
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(5.8) Dan®). — P VTan(0]+ Ry(),
where
(5.9) R, (1)= P{VT&(0]~VTin(0)])

Now, if mj is sufficiently large, then for any m>m; we have
VL0~V Tin(0] = — || S0+ 00,(0) ~ @O i (0) ~ a(0)]de.
Hence by (3.6) we have
Va0 = VI, O <K, l|i(t) -, ()] ,
from which by (ii) of (3.7) follows
Va1 - Vg, 0Oll,<KK,o,(m).
Then from (5.9), by Bessel’s inequality, we have

(510) ”Rm”qéK Klal(m)

Let the Fourier series of £(¢) in a(t)=(x(t), &) be

(5.11) () =a, ++/2 i (@,,cos nt+da,,_, sin nt).
n=1

and put

(5.12) R, ()=ro+/2 Y (ry,cosnt+r,,_,sinnt).
n=1

Then comparing (5.8) with (1.11), by (1.13) we get

FO(&) = =Ty,

Fiyp-i(@)= —Fap—y
(5.13)
F2n(é\)= Ty

Ff(é) = U(m),

where @ =col(a,, a,, @,,..., d,,—, a,,, ®)and v(m)=IG{,(t)—u(t)).
By the use of the notation in section 4, we can write (5.13) in vector form as
follows: o

(5.14) F.(&)= = p,,

where p,,=col(ry, ry, rs,..., Pyp_ 1, Ty —0(m)). By (1.16), from (5.10) we have
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(5.15) lonll <K Kyo,(m)+ £ (m),

where Z(m)= 1], l[w,(t) —u(®],.
Take mj so large that the inequality 5, — Ko(m)>0 may be valid for any m > ms,
and consider the region

(5.16) U,={u|llu—1i,t)| <d,—Ko(m) forsome teR'}
for m>m;. Then by (i) of (3.7) it is clear that
(5.17) U,cUcD

for any m>m;. Consider the set

(5.18) Qm:{a|||a—ﬁ|| <éo_—l<"_("ﬁ}

2m+1

then for any a=col(a,, a;, a,,..., @yp_1, Az, W) ER,,, by (1.17) the cor-
responding trigonometric polynomials

X () =ao++/2 f‘, (a,, cos nt+a,,_, sin nt),
(5.19) n=1

wm(t) =Wy

satisfies the inequality
lee,() — &, (D] < 0o — Ka(m),

therefore u,(t) € U,, for all te R1. By (5.17) this implies that F,(a) is well defined
for any a € Q,, provided m>m;.

Now by the definition a Galerkin approximation of order m consists of a trigo-
nometric polynomials of the form (5.19) whose Fourier coefficients a,, @, a,...,
Ay 1> Aoy W Satisfy the equation

(5.20) F,(a)=0,

A

where a=col (ay, a,, a,,..., @zp_ 1, Ay, D). Since & is an approximate solution
of (5.20) for large m as can be seen from (5.14) and (5.15), we shall apply Pro-
position 2 to (5.20) in order to prove the existence of an exact solution, that is,
the existence of a Galerkin approximation of the order ‘m.

For any m>m,, m>m, since my>m,. Therefore by Corollary 2.2 for
any m>ms, J,'(&) exists and

(5.21) I @) <M,

where
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. M[1+K,0,(m3)]
(5.22) M= |_M(K2+K%)013(m3) '

Further by Lemma 3, we have

(5.23) In(@) = J (@) < K3y2m+1]a—al

for any a € Q,, provided m>m;.
Take an arbitrary positive number k< 1, and put

(5.24) 5, =min ( o 9 —Ka(m3)].

Let us take m >m; so that, for any m > i,

M'[K-K,-0,(m)+ <L (m)] < 0

1=« JamE1

This is possible because of

\/A’Zﬁ]'] — 0 and /2Zm+1-2(m)— 0 (as m — o0).
m

Hence we can take a positive number 0,, so as to have

(5.25) MIK-Kpom+2m)] 5 . O
l—«k - \/2m+1

Let

(5.26) Qs ={al|la—@é|<d,}.

Then for any @ € Q; and any m>im, we have

)
P
lo =l < SIm+
< 501~K£(,m}f)
T 2m+1
Op—Ka(m)
J2m+1
which implies
(5.27) Qs =Q,

for m>m. Then for any @ € Q; and m>m, by (5.23) we have

”Jm(a) - Jm(é) ” < K3\/2m:{_ 1am’
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which by (5.24) and (5.25) implies
(5-28) ”Jm(a)_—‘]m(d\)” < “"E"“

for ae; and m>m. Further by (5.15) and (5.25) we have

M/”pm” < MI[KK1O'1(m)+$(m)] Sé

(5.29) l—x = 11—«

for m>m.

The expressions (5.27)—(5.29) show that the conditions of Proposition 2
are all fulfilled. Thus by the proposition we see that equation (5.20) possesses one
and only one solution @ =col (@, @;, @,,..., @y, @y, @) in Qs for any m>im.
This proves the existence of a Galerkin approximation ,,(t) of the order m for any
m>m.

Next, we shall show the uniform convegence of the Galerkin approximation
@, (1) obtained. By our definition, we have

— m
X,()=8y++/2 Y (@,,c0snt+a,,_,sinni),
n=1
6m(t)=60
and a=col(a@y, @,, @,,..., @yp_ 1, Ay, By) is a solution of (5.20) in Q; . By

Proposition 2, we have

M'[K-K,-0,(m)+ £ (m)]

a—al|<
la—a|< e

Then by (1.17) we have

A

< M'[K-K,-0,(m)+2(m)]

. om
mHn——— I—K \/_}71+].

|| m

On the other hand, by (i) of (3.7) we have
Hﬁm—ﬁunéKa(m) .

Thus we have

M'[K-K,-0,(m)+Z(m)]

(5.30) e, —al, < T—rx

2m+ 1+ Ko(m),

which proves that u,(f) converges to #(t) uniformly as m— oo.
Now, since @,,(f) (m > mi) is a Galerkin approximation corresponding to @ € Q;
it satisfies the equation

(5.31) @é"t—(’l = P, V[a,(1)].
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This equation can be written as follows:

(5.32) LDy a, 0]+ 7.0,
where
By (5.31)

d

5 Vi (0]=Z[&, (0] B,V [a,(0)],

therefore by (3.6) we have

L VT | <KiK.

Then by Lemma 1, from (5.33) we have

(534) ”vm”ngKKlo-(m)
Since
A0y,

from (5.32) we have

dac,l,,t(z),,_ ~ djz(” = (VTa, ()] = VTa@®)1} +9.0),

which, for sufficiently large m, can be written as follows;

(5.35) A0 AEHO_ " 21a00) + 01{,(0) ~ 80} ] (1) ~ (1)} A0+ 7, ).

Then by (3.6), (5.30) and (5.35) we have

K\ -M'-[K-K,-0,(m)+Z(m)]
l—«k

(5.36) g, —al, < 2m+1 +2K-K,-6(m)

for sufficiently large m. From inequality (5.36) it readily follows that @,,(t) converges
to ﬁ(t) uniformly as m— co. Q.E.D.

§ 6. Numerical computation of Galerkin approximations

In order to obtain the Galerkin approximations on a computer, it suffies to
solve numerically the determining equation.
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In practical computations, it is convenient to discrete (1.13) as follows:

1

Go(@)= 4y 2 Xluy(1)1=0,
=1 $x i —0
Gy i(a) = :/_TN‘ ig.l [u,(t;)] sin nt;+ na,,=0,
(61) _ 1 2N
Gyla) = '\/‘QN” ;1 X[u,(t)] cos nt;—na,,_, =0
(n = ]’ 2)' b m) M
G2m+ l(a) = l(um(t)) _ﬁ = 0,

where t;=(2i—1)n/2N and N is a positive integer greater than or equal to m+1.
Now put

(62) G(a)ZCOl rGO(a)7 G](a)> GZ(a)r'-'y G2m(a)’ G2m+ l(a)] >
then the determining equation (6.1) can be written briefly as
(6.3) G(a)=0.

If the function X(u) is nonlinear in u, (6.3) is also a nonlinear equation in a.
Hence, for numerical solution of (6.3) the Newton method will be efficient.

Starting from a certain approximation & =a,, we compute the sequence {a,}
successively by the iterative process

J(ayh,+6(a,)=0,
(64) ‘ p77p p
@y =a,+h, (p=0,1,2..),

where J(a) is the Jacobian matrix of G(a) with respect to a.

Note that in order to practice the iterative process (6.4) on a computer, it suffices
to evaluate G(a) and J(a) for a known @. For the details, see [5], [12].

In order to practice the Newton method, it is, however, necessary to find a
starting value a,. When a Galerkin approximation is known, in other words a so-
lution of the determining equation is known for a system slightly different from the
given system (I.1), it can be used as starting value for the given system. In
special, this method can be used effectively for systems depending continuously on
some parameters.

On the other hand, the following method seems to be also useful one of the
methods which can be used for considerable wide class of differential systems.
That is, we solve the determining equation of Galerkin approximations of very low
order, say, of order 1 or 2. The determining equation under consideration can be
solved sometimes analytically or graphically. When it is difficult to solve the
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determining equations under question analytically or graphically, the FORTRAN
program developed by the author [3] can be used effectively. For the details, see [3].

§7. A posteriori error estimation of Galerkin approximations

When a Galerkin approximation has been obtained on a computer, it is important
in practical applications to know whether a corresponding exact peridodic solution
to the given differential equation exists or not, and further to know an error bound
of the Galerkin approximation obtained if an exact periodic solutions exists.

In the present section a method of assuring the existence of an exact periodic
solution and of obtaining error bounds of the approximate solution i(f) and the
approximate period @ will be considered.

In (2.5) we take A(t) and Lsuch that

A =E[a()], L=f(a))
respectively. Then we have

Theorem 2 ([5]). Assume that the boundary value problem (1.9) possesses
an approximate solution u=u(t) in S' such that the matrix

G=f@[e[(1]

is nonsingular, where ®(t) is the fundamental matrix of the following linear system
dy _ oo
7 =Ela()]y

satisfying the initial condition ®(0)=E (unit matrix).
Let y and r be the positive numbers such that

(.1 p=max (|H'],, [H2],)= |77},
(7.2) r= 9 V@), + | f@).

If there exist a positive number 6 and a non-negative number k<1 such that

(7.3) Di={ul||u—al,<é,ueC[I]xR'} =S,
(7.4) IIE(u)—Z(ﬁ)IIn+Hf’(u)—f’(ﬁ)llﬁ»z on Dj,

_Hr
(7.5) - <o,

then the boundary value problem (1.9) has one and only one solution u=1u(t) in
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(7.6) Ds={u|lu—ul,<d, ueC'[I]xR'}

and for this exact solution @(t) we have an error estimation as follows:

i—al, < 4.
(7.7) e, < 5.

ProOF. Let us put

(7.8) F=| % V), f@ .

then F(u) maps S'< C'[I]x R! into W and the boundary value problem (1.9) is
rewritten to the equation

(1.9) F(u)=0.

The weak Fréchet derivative F'(u) can be written as follows:

(7.10) F’(u)y=[d3; - —E(u)y, f’(u)y},

where y is an arbitrary element belonging to C'[I]x R'. Then, by (2.5), (7.4)
and (7.10) we have

(7.11) IF@)-Tl< 5 on Dy=Dj.

For the approximate solution #(t) € S' we have from (7.2) that
(7.12) IF@I = % —v@l,+ I f@l<r.
From (7.3) and (7.6), we have D;— Djs and D<= S. Hence we have
(7.13) D;cSn{CHIIx R} =S

By Proposition 1, the operator T has a linear inverse operator T~! satisfying
(7.1). The facts tell us that the Newton interative process

(7.14) l wy ey =t~ T Flw,),

u0=i_l: (p=0, ,1,2,...)

is well defined in D;.
In fact we shall prove by the induction that

(7.15) e, g — el <t 1y —uo

(7.16) u,. €D,
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for p=0, 1, 2,....
For p=0, the inequality (7.15) is evident. For u,, we have

u, € C[I]x R,
since u; =uo—T~'F(u,). Moreover, from (2.7), (7.1) and (7.2) we have
(7.17) ey —woll, =T~ Fuo) |, <p-r<(1 1) <.

Hence we have u; € D;, which tells us that (7.16) is valid for p=0.

Now let us assume that the iterative process (7.14) yielded the sequence
{ug, uy,...,u,_, u,} and we had (7.15) and (7.16) up to p—1. Then, since u,eD;,
we really have u, ., and from (7.14) we have

(7.18) Uy —upy=u,—u, — T '[Fu,)—Fu, )] (p=1).
Now, by our assumption we have u,, u,_, € D,. Therefore
u, +0(u,—u,_)eD; forall 0 suchthat 0<06<I.

Then, by the mean value theorem we have
1
wpr—u,=T" 1\ {T-F'[u,_+0(u,—u,_,)]} (u,~u,_)do.
0
Then, by (7.1) and (7.11), we have
(7.19) g~y < - Nty =yl =, — 10, .
U
Hence, by our assumption of induction, we have

”up+ 1 —up“nSK kPl “ul _u0||n:Kp”u1 _uO“m

which proves (7.15) for p.
Since

884 = 200l < 28 = 0 Nty =10 [ iy — gl
by (7.15) we have
18y 1= ol S (P 16271 b 1) ey — g, < L [, — g
Hence we have by (7.17) that
(7.20) et 4, 1ol <.

This proves (7.16) for p.
Thus we see that the iterative process (7.14) really yields an infinite sequence
{u,} and for this sequence we have (7.15) and (7.16) for all p.
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From (7.15) and (7.16), we readily see that the sequence {u,} is a fundamental
sequence in Dy;= C[I] x R! with respect to the norm |---|,,.

By the completeness of the space C[I]x R!, there exists a vector function
a(t) e C[I] x R such that

lw,—@l|,— 0 as p—— o0.

P
Since u, € D;, it is evident that

e —al, <o
and

ieDscS.
Hence we have

V(a)—A(tiae C[I]
and
Li—f(@t) e R4*1.
However, by (2.5), (7.8) and (7.14) we héve
Tu,,,=Tu,— F(u,)

=V, —A(u,, Lu,—f(u,)]

and hence we have

(7.21) w,, =T 1[V(u,)—A(u,, Lu,—f(u,)]
for p=0, 1, 2,.... Letting p—oo in (7.21), we have
(7.22) a=T"'[V(@)— AWi, La—f@)].

Since T~! is a linear operator mapping Winto C'[I]x R, the relation (7.22) shows
that ae C'[I]x R!. Hence, by Proposition 2, we see that u=#@ is a unique
solution of (7.9) in D; and we have

(7.23) la—al,< 5. Q.E.D.

The error estimation (7.7) has been used in the papers [4], [5]. But, it will be
natural to give the error estimation which consists of an error bound of periodic
solution and the one of period, separately. For this purpose we shall introduce the
product space C[I]x R! a new norm defined by

le(D)] o = 12D, + || ,
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where u(t)=(x(1), w). Put y=(h(), hy,,) and A(t)=X (u(t)) in (2.5), then the
linear operator T can be written as follows:

-y ]
(7.24) Ty= (_@%ln - A(t)( ® ) LyJ
_ d+1

for any y(t) e C[I] x R'. Then the equality (2.6) defines two projective operators,
such as P! with domain W and range C'[I] and P? with domain W and range
R, by |

Plw=h(1), Pw=hy,,,
where w=(g, v)e W. Thus we have
(7.25) T-1w=(P'w, P2w).
As can be seen, P! and P? are linear operators. We shall put
Hg H;v
Hig=| , Hw= ,
Hg Hyv |

where H,,g and H,,v are d-dimensional vectors, H,,g and H,,v are scalars.
Since

Pi(g, v) )

(T-1(g, v)} = H'g + H? (hlm ) (
LR , V)= v= =
i i P(g, v) |

sy

we have
1P (g, V)n=lhD],=H g+ H,vl,
SIH 1l ligls+1TH2 - 0l
<max (| Hqllp [Ha ) Ugls+llvl).
This inequality implies
(7.26) [P, <max (|Hyylln 1Hayll) -
On the other hand, we have
[P (g, v)|=|hys | =|H128 + Hpp0| <|Hyy| - gl + [ Haol - o]
<max(|Hy,l|, [HpD) (gl + vl).
This inequality implies
(7.27) |P2| <max (|H,,)|, |Hy,|).
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From (7.26) and (7.27), we have

IT™ (g V)l <P+ [P (gl + v])

and
(7.28) 1T o <P+ P,
where |--+||, denotes the induced dperator norm.

Now the weak Fréchet differential of F(u) at u=ii(t)=(x(t), @) can be written
from (1.18) as follows:

(7.29) F'(a)yy = L —% — X, @)y, f’(ﬁ)y],

where X,,(ﬁ):(% X, (%) 21{ X(ae)) is a dx(d+1) matrix, X (%) denotes the

Jacobian matrix at x==% and f'(@)y =col (h,(0)—k,(27), I( y)).
In (7.23) we take A(t) and Ly such that A(t)=X(&(?)) and Ly=f'(@@) y, then
we have T=F’(&) and the following theorem.

Theorem 3. Assume that the equation (1.18) possesses an approximate
solution u=u(t) in S* such that det G=det f'(@)[P()]#0, where P(t) is the
fundamental matrix of the linear homogenous differential system

D sy

satisfying the initial condition ®(0)=E (unit matrix). Let u,, u,, and r be the
positive numbers such that

(7.30) py=max ([Hyqll, 1Hally), Hr=max(|Hy,[, [H,))
and

\ _ dx 7] _ .
(7.31) r> |F@)l = g o X(®)[,+ 1 f@] -

If there exist the positive numbers 0,, §,, and the non-negative number k<1 such
that

(7.32) L={u()] |x()— x|, <5, l0o— 0| <0y, u(t)e C[I]x R} < S,
(7.33) llXu(y)—Xu(ﬁ)HnJr I f - f@| < 7;1%; on Dj,

(739 U “'1”_2; <0y,

then the equation (1.18) has one and only one 2m-periodic solution uw=1(t) in
the region ‘
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Ds={u(n) | |x(t) -2, <0y, |0 —D| <6,, u(t) e C'[I]x R}

and for this solution G(t) we have an error estimation

A
=
b

~

(7.35) 2@ —2@|, < %ﬁ{c— |&—a]

For the proof, see [12].

§8. Isolatedness of solution

In section 2 we called the solution u=1(t) in S* of (1.9) isolated if
(8.1) det f'(i&) [P(1)]1#0,

where f'(it) denotes the weak Fréchet derivative of f(u). This definition comes
from the following proposition.

Proposition 3. If the condition (8.1) is satisfied with the solution uw=1(t),
then there is no other solution of (1.9) in a sufficiently small neighborhood of
u=1lt).

PrOOF. By Proposition 1 the operator T (@&)=F'(t) has a linear inverse
operator T-1. Let ¢ be an arbitrary positive number such that

1

(8.2) E<< Ww "

For this ¢, by the openness of S! and the continuity of T(u), there exist the positive
numbers ¢, and J, such that

(8.3) Ds={u(t)| |x(t)—&(t)], <d;, |w—d| <d,, u(t)e C\[I]x R1} = S!
and
(8.4) IT@)—T@)ll<e on D,
Now suppose (1.9) has another solution u=#'(t) in D;. Then
F@')=F(%)=0.
Hence, by mean value theorem, we have
S; Tla+0@ — )] (@ — @)do=0.

Hence we have

i —a=T"\(a) S; (T(@) - T[a#-e(a' —a)]} (@' —a)do.
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By (8.4) we then have
&’ —dal, <N T @) -&- &' —al .
Since &- ||| T~'@)||| <1 by (8.2), we get @'~ =0, that is, @'(t)=#a(r). Q.E.D.

Theorem 4. The solution u=1(t) obtained in Theorem 3 is an isolated
solution.

Proor. If u=1i(?) is not an isolated solution, then
(8.5) det f'(%) [@(1)]=0.
By (8.5) we then have a non-zero constant vector € € R4*? such that
S @ [e(n]e=0.

Put y = @(t)¢, then evidently we have

B x g =] 1050~ x,@ew =0
and
J'(@y=0.
These facts imply from (7.10) that
F'(ii)y =0.

Then we have
y=T"YT-F'()y.

On the other hand, we have from the condition (7.33) that

I T-F'@)| < E{j—uz— on Dj.
Hence we have
1900 < (s 102) = 19 o =] o
that is,
(1=1) | #],<0.
Since k<1, we have
191 =0,

that is, y(#)=0, which implies ¢=0. This is contradiction. Q.E.D.
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For autonomous systems, the isolatedness of solution means that characteristic
multipliers of the first variation equation are all different from one except one char-
acteristic multiplier. The reason why the terminology ““isolated’’ is employed is that
there is no other periodic solution near the periodic solution in question, if the above
condition is fulfilled.

On the other hand, as can be seen from Theorem 4, the isolatedness of the
solution #(f) of (1.9) means that the condition (8.1) is valid.

The additional linear functional I(u) given in (1.6) is related to the isolatedness
of solution. The fact can be seen from the following theorem given by M. Urabe
[10] without proof.

Theorem 5. The isolatedness of a periodic solution ®(t) of (1.3) is equivalent
to the one of a corresponding solution @(t) of (1.9) if and only if

(8.6) I[X(%)]#0,
where G(t)=(£(1), &(1)).
Proor. Put
d(¢ t
(8.7) @(t)x< ® p® )
q () s

where &(f) is a d x d matrix, p(t) and q(t) are d-dimensional column vectors and
s(t) is a scalar function. The first variation equation of (1.3) clearly reads as follows:

w A A
dy [ K@) 5 X@)
= y.
0 0

Replacing y by ©(t), we have the differential equations in &, p, g, and s. Making
use of the initial conditions

(8.8) @(0)=E (unit matrix), p(0)=q(0)=0, s(0)=1,

we see that
(i) @(1) is the fundamental matrix of the equation

dz w "
(8.9) di = n X, (%)=

satisfying the initial condition @(0)=FE and then we have
_ [0
)=y (2t ),

where @,(t) is a fundamental matrix of the equation
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dz

= X (%)=

satisfying @,(0)=E.
p(1), q(1), and s(1) are obtained as follows:

(il p= 5 2(0) || 07 (OXIHOdL,
(iii) q(H)=0, and s(t)=1.
Now let us note that

| %X[ﬁ(t)]=xx[;e(t)]. © X[a0),

that is, X[£(¢)] is a 2n-periodic solution to (8.9). Hence we have

(8.10) X[2(D]=2P(t)c

for some constant vector ¢#0. Equation (8.10) implies
d-1X[x(t)]=ec.

Hence, from (8.10) we have
_ ¢ N
p()= - X[2(1].

Hence we have

{
() 5 X[R(2
@(t)=< (0 5 X[£(0)] >
0 1
From (8.10) it is evident that
P(2n)ec=c.

By (1.8) we then have

E—®(2n) —c
(8.11) f@e@]= < 1 >
I[®] —2;l[tX(£)]
Let us set
= el

and Q be an orthogonal matrix whose first column vector is ¢,. Consider
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=00,

0 1
then K is also an orthogonal matrix. Write Q as Q=[e,, Q,], where Q, is a
d x(d—1) matrix whose column vector are unit vectors and moreover they are
By (8.11) we then have

) [¢(2n)e;, P(27)Q,]

orthogonal each other.

Q*[E-9(2m)]Q —Q*c

K*f' (@) [0)]K = <

910 5= I[1X(#)]

However

sk

* c}

Cj
of

cf

(8.12)  Q*¢(2m)Q = ( ) ®(2n)(e;, 0y) = <

*
1

)[Clv @ (2m)0,]

of

o

ciP(2n)Q,
Q7P (2n) o

| |

Hence the eigenvalues of @(27) are 1 and those of Q¥®(2n)Q,.

Q*[E-®(2n)]0= (

and

0 —cfo(2n)Q,

|

0 E-Qfe(2m)Q,

1 el
>01IICH = ( )
¥ 0

By the linearity of /(x) we have

[2]0=I[?](cy, Q1)

Hence we have

=(l[Pec,], I[2Q,])

- <Wclﬂ I[X®], l[chJ)?
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0 —cio(2m)Q, —lel

krr@emik=| 0 E-oreGmon 0

o X@7 10001 5 X))
This tells us that
det /(@[] =det [K*f (@)[O]K]
~ I[X(#)]- det [E— Q7 #(2m)Q1].

As can be seen from (8.12), the isolatedness of a periodic solution £(¢) to (1.3) is
equivalent to det [E—QF®(2m)Q,]#0.

On the other hand, the isolatedness of solution to the boundary value problem
(1.9) is det f'(@) [©]#0. Hence the both of conditions are equivalent if and only
if I[X(%)]#0. This completes the proof. Q.E.D.

In his paper [6], A. Stokes has established an existence and error estimation

theorem for non-critical approximate solution to the equation
dx _
w - =X(x)

which is a consequence of (1.1). His theorem is also very important. But he failed
to obtain the Galerkin approximation to van der Pol equation with damping coef-
ficient ¢=1.0. Moreover, in the same example, he gave an approximate period
T=2n/® =2r/0.9620=6.66368152--- with error bound 5x107'3. But this error
bound is not good but its exact one may be 4 x 1074,

As for the numerical results of van der Pol equation, see also the papers [2],

(4], [51, [7], and [12].
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Faculty of Engineering
Tokushima University
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