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§1. Preliminaries

The present paper is the continuation of the serial papers concerning a Finsler
manifold modeled on a Minkowski space ([9], [10], [12], [13]). We shall, here,
treat a {V, G}-manifold M where Vis a Minkowski space and G is a Lie group con-
sisting of all the linear transformations leaving the norm of V invariant. In our
case, the manifold M admits a G-structure and thereby admits G-connections relative
to the G-structure. But the G-connection can not be determined uniquely unless G
is totally disconnected. In the present paper, first, we shall find the relation between
the G-connections in our {V, G}-manifold. Next, we shall treat Killing vector fields
with respect to the {V, G}-Finsler metric, and affine Killing vector fields with respect
to the G-connection on M. There, we shall be concerned with a new tensor Q;;*,
which plays an important role in the following discussion. Our main purpose is to
clarify the relations between the Lie group G, the G-connections, the Killing vector
fields and the tensor Q;;" in a {V, G}-manifold.

Now, let us begin with recollecting the definition of a Minkowski space.

Let V be an n-dimensional Minkowski space, that is, an n-dimensional linear
space on which a Minkowski norm is defined.

The Minkowski norm on V means a real valued function on V, whose value at
¢ e V we denote by |||, with properties:

(1) Let {e,} be a fixed base of V, then the norm of any vector {=¢"e, eV can be
represented by ||&] =f(&!, €2,..., &) (For brevity we write f(&', &2,..., &%) as f(&%)
or f(£)). Now, the function f(£) is 3-times continuously differentiable at =0,

@ 1¢120,

(3) |I¢]l=0 ifand onlyif (=0,

(4) |k&ll=k|&l for any k>0,

(5) & +&N=NE 0+ S

Now we put

(1.1) G={(99 (93 € GL(n, R), f(gpch)=f({*) forany <CeV},
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then G is a Lie group [9]. Let , be the Lie algebra of G.

Next, we consider an n-dimensional C®-manifold M admitting a G-structure
where G is given by (1.1). Let {U} be a coordinate neighbourhood system and {X,}
be an n-frame on U adapted to the G-structure, and y be any vector in T,(M) with the

expression y =y _6%2 =¢*X, where pe U. Putting

0 _ . i 0
(12) '&T_/‘ti(x)Xa or Xa—’la(x) axi s

we have proved, in the paper [9], that the function
(1.3) F(x, y)=f()=f(ui(x)y")

gives M globally a Finsler metric. This Finsler metric is called a {V, G}-metric.
When M admits a {V, G}-metric, we say that M is a {V, G}-manifold. Inthe {V, G}-
manifold, the tangent Minkowski space T,(M) at any point p € M is congruent to the
given Minkowski space V.

Moreover, we consider a linear connection I'%;(x) on M. Adopting I'} ;(x)y™
as a non-linear connection, we can define the h-covariant derivative ¥, for any Finsler
tensor S. If we assume, for instance, that S is of type (1,2), F/,S¥; is given by

(1.4) VkS?jzakS?j—6mS?jFTk)’r+F3:kS§'}"Sﬁzj T =St T

Hereafter we call /7, the h-covariant derivative with respect to the linear connection
Ti(x).

§2. G-connections

Let V be a Minkowski space and let G be the Lie group defined by (1.1). As to
the {V, G}-Finsler metric g;; and the G-connection relative to the G-structure, the
following theorem has already been proved in the paper [9].

Theorem 2.1. In a {V, G}-manifold, if a linear connection I'\(x) is a G-
connection relative to the G-structure where G is the Lie group defined by (1.1),
then the metric tensor g;; of the {V, G}-Finsler metric is h-covariant constant with
respect to I':((x), i.e., Vg;;=0.

Conversely, let M be a {V, G}-manifold and I'},(x) be any linear connection on
M, and assume that

(2.1) nglj=0

holds where ¥, denotes the h-covariant derivative with respect to the linear con-
nection I'i,(x). In this case, (2.1) leads us, by virtue of V,yi=0 and f2=g;;y'y/, to
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(2.2) Vif (ug(x)y*)=0.

Now, let {U} be an admissible coordinate neighbourhood system of the {V, G}-
manifold, and {X,} be a frame adapted to the given G-structure on U. Let @ be the
representation of the restricted holonomy group of I'i\(x) at any pe U. Let £ be
a piecewise differentiable curve beginning and ending at p and homotopic to 0, and,
for any v, € T, (M), let v(t) be a vector field on ¢ which is defined by the parallel

displacement of v, along ¢ with respect to I'},(x). Then we have dv (t) +TIt k(x(t))

vJ(t)v—-—-—O On the other hand, from (1.3), we have ||v(t)”=
f(u,(x(t))v"(t)). Putting u%vi=£*, we find, by virtue of (2.2), that

A TOIEE AN E R

} vt

_ 9(©) <0ku, d; i d2k>

Hence the length of o(¢) is constant along 4. Thus the element of & is a linear
isometry on T,(M). For any ¢ e®, if we put ¢(X,)=g5X,, the matrix (g8) is a
representation of ¢ with respect to the frame {X,}. Hence, for any £ =£2X,, we have
9(E)=EghX, and X, =|E°g8X,|. Thus we get f(E9)=f(g3c*), that is, (g5)
€ G. Therefore we obtain

(2.3) dc=G.

On the other hand, by virtue of the well-known theorem with respect to holonomy
groups (see, for example, [22] p. 206), the manifold M admits a @-structure and the
given linear connection I'i,(x) is a G-connection relative to the @-structure. Hence,
from (2.3), we find that I';,(x) is a G-connection relative to the G-structure under con-
sideration. Thus we obtain

Theorem 2.2. Let M be a {V, G}-manifold where G is the Lie group defined
by (1.1). Let I'i\(x) be a linear connection on M and let us denote by V, the h-
covariant derivative with respect to the linear connection I'i(x). If V,g;;=0
holds on M, then the linear connection I'ii(x) is a G-connection relative to the
G-structure.

In the sequel, we shall only deal with a {V, G}-manifold whose structure group
G is the Lie group defined by (1.1). And we shall use, in the present paper, the term
G-connection as a G-connection relative to the G-structure specified on the {V, G}-
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manifold.

§3. The tensor Q, ;"

In a Finsler space, we can define a tensor field Q;;* such that
G.1) Qi =2C 5 p" + gl + g 0!

This tensor is homogeneous of degree 0 with respect to yi.

Now, we consider the tensor Q,;" in a {V, G}-manifold. It is well-known that
the G-connection can not be determined uniquely unless the Lie group G is totally
disconnected. Now, let ' i(x) and Ii(x) be two G-connections on a {V, G}-
manifold M, and let D¥, be the difference of these connections, i.e.,

(3.2) Le=T1—T,.

Of course, Di, is a (1, 2)-tensor field on M. We denote by V and V the h-covariant
derivative with respect to I'%; and I, respectively. Then we have

’7kgij=ngij—zciij'r"ky'—gerrik_girD_rfk
=ngij_Qijmr vk -
Taking account of ¥,g;,=0 and F,g,,=0, we find
(3.3) Qijm DY =0.

Conversely, we assume that I'},(x) is a G-connection on a {¥, G}-manifold and D (x)
is a (1, 2)-tensor field on M satisfying the condition (3.3). If we put ['i, =TI, +Di,,
then I%, is a linear connection on M and satisfies 7,g,;=,9,;— Q;;"Dr. Hence
our assumptions lead us to /,g;;=0, that is, r ‘i is a G-connection. Consequently
we obtain

Theorem 3.1. Let M be a {V, G}-manifold. The difference D%, of two G-
connections on M satisfies Q;;,"Dm =0. Conversely, let I':\(x) be a G-connection
on M and let D%, (x) be a (1, 2)-tensor field satisfying Q,;,"Dyi,=0, then I'%, 4 D%,
is a G-connection on M.

Next, let I be a G-connection and {X,} be a frame adapted to the G-structure.
If we denote by I'§, the components of I" with respect to the frame {X,} and we put

— Ji a a — — i a —
X, =24x) i <or W—,u,-(x)X,Z), then, for any vector field v=v S = Xy
we have, by virtue of the definition, ¥, X,=vI";;X, and v I';;€ , where , is the
Lie algebra of the Lie group G ([9], [22]). On the other hand, it follows, from the

relation v"=/1;v”, that
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0 " 0
oxJ + 4 Voi‘ W)

VvXa=vi<6,-/li

i j mypJ J
=PV (5,/1;+/11F,],,,) W.

Hence v#I'},70 =0 ;2] holds good, that is, I';,4 =247 A1 holds. Thus we obtain
(3.4) Flp=24 Aju,
or equivalently
Moreover, for any suffix j, we have
(3.6) I, ui=unl ;A5 € 4.
Let I be another G-connection, then we have, for any j,
Bk =1 AR e 5.

Hence (fgy—l“;;y)u}=u;"n(7j/lg’— Viig)e » hold for any j. Since V;Af=0;A7+

Iy 2y, it follows that

Vihm—p Jm=Imin—Tmis=Dmjr.
Hence we obtain
(3.7) unDyAy € » for any j.
That is to say,

Theorem 3.2. Let I and I be two distinct G-connections on a {V, G}-mani-
fold, and let D be their difference tensor such as Dj.k=fj-k—1“§k. Then, for any
suffix j, uxDm iy belongs to the Lie algebra # of the Lie group G.

Moreover, we shall prove

Theorem 3.3. Let Ai(x) be a (1, 1)-tensor field on a {V, G}-manifold M.
The following two conditions are mutually equivalent:

(N QijmrA;n=0;
(2) ,ug;,A;"/lg € 4.

Proor. First we shall show the condition (1) leads us to (2). Let v,(x) be any
covariant vector field on M, and let us put D}, =A%v,. Then, (1) implies Q;;, D,
=0. Hence, from Theorem 3.2, we have ujAry A€ » for any v,. Thus the con-
dition (2) is satisfied. Conversely, we assume that the condition (2) is satisfied.
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If we put Bj=pu%Ari; and B=(Bj), then we see Be , and exp(tB)e G. Thus we

have f(exp (tB)-&)=f(£). Differentiating this equation with respect to ¢t at {=0,

we find (%) B?¢s=0. Now we put &*=pu¥(x)y’, then we get g.~=—1— () us -

oy o i ’ Yoo ggroch

# where g, is the metric tensor of the {V, G}-Finsler metric (1.3). This leads us to

" of 0

Gy =S Lt that s, f- 5L = Hgym. Hence A(0)gpmml(x)AYx)y=0.

which implies g,,y"A4%(x)ys=0. Differentiating this equation with respect to y/,

we have g,;A%yS+g,,y"A5=0. Moreover, differentiating this equation with respect

to yi, we obtain 2C;;, A"yS+ g, ;AT + ginA" =0, that is, Q;;,'A7=0. Q.E.D.

J

It follows obviously, from these results, that

Corollary 3.4. Let I'((x) be a G-connection on a {V, G}-manifold M, and let
Ai(x) be any (1, 1)-tensor field on M satisfying pj,Ay23 € 4. Then for any covariant
vector field s(x) on M, [}, =TI'i, + Ais, becomes a G-connection on M.

§4. Killing vector fields

Let I'(x) be a G-connection on a {¥, G}-manifold M, and v(x) be a contravariant
vector field on M. Let us denote by x4 and V, the Lie derivative and the covariant
derivative with respect to I'(x) in the direction of v(x) respectively. Then, it is well-
known that A(v)= V,—< is a tensor field of type (1, 1) [14]. For any vector X,

0

ox7

AW)X=F X~ LX =0} (3, X + [} X™) —2 — (010, X7 — Xi0,07) %

0

=(amvj+17;1rvr)Xm Oxi *

Hence, with respect to the canonical coordinate system, A(v) takes the form
4.1) Z(v)j.=8jvi+Fj-,v'.

Let v(x) be a vector field on M and let ¢, be a local 1-parameter group of local
transformations generated by v(x). If ¢, is, for any ¢ and for any point of M, an
isometry of {V, G}-Finsler metric, v(x) is called a Killing vector field on {V, G}-
manifold.

The condition that a vector field v(x) be a killing one is, as is well-known, ,?gi ;
=0, where Z9gi; takes the form

(4.2) o?gij =0"0,9;;+2Y" 00"C;jm+ g im0 V" + G jmOi"™.

In connection with these, we shall now prove
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Theorem 4.1. Let I'i(x) be a G-connection on a {V, G}-manifold M. With
respect to a vector field v(x) on M, the following conditions are mutually equiva-
lent:

(1) v is a Killing vector field;

2 -’?gij=0;

() Quu Aw)r=0;

4) pnA@)2p € 4, where 4 is the Lie algebra of the Lie group G;
(5)  GimAQ)ryiy) =0.

Proor. It is obvious that (1) and (2) are equivalent. From Theorem 3.3,
the conditions (3) and (4) are also equivalent. To prove the present theorem, it suf-
fices to show that (2) and (3) are mutually equivalent and so are (3) and (5).

To show the implication (2)—(3), we rewrite #g;;=0, by using the relation
Vig9:;=0, as ’

(43) ‘vr(zcijmrzlryh + gimFTr + g}m[”n) + 2yrarvmcijm-i_ gmjaivm -+ gimajvm = 0

This implies 2C;,,y"(0,0™ + I'Mo") + g, (0 ;0" + TF0") + g, (O™ + T'107) =0.  Thus we
obtain (3). Conversely, if (3) is satisfied, (4.3) holds good. Moreover, by virtue of
V.9:;=0, (4.3) can be written in the form

00,9, +2y"0,0"C, 1+ G im0 V™ + G, ;0™ =0.

Thus we obtain (2).
Next, for the implication (3)—(5), we rewrite (3) as

(2Cijmyr + gim5; + gmjél})A(U)r =Vu.

Multiplying this equation by yiy/ and contracting with i and j, we obtain (5).
Since Z(v)j. are functions of x* only, by differentiating the equation (5) with yi, we
obtain g,,A(v)"ys+ g,,A(v)"y*=0. Moreover, differentiating this equation by yi,
we obtain

2Cm A1V + iAW)} + ¢ A0)7=0.
Thus the implication (5)—(3) has been also verified. Q.E.D.

The consequence of the present theorem and Corollary 3.4 lead us to

Theorem 4.2. Let v(x) be a Killing vector field on a {V, G}-manifold M and
let I'(x) be a G-connection on M. Then, for any covariant vector field s(x) on M,
[i= L(x)+ A(v)is(x) is a G-connection on M, where A(v)i is the (1,1)-tensor
field given by (4.1).

Next, we shall show
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Theorem 4.3. Let v(x) be a Killing vector field on a {V, G}-manifold M and
denote by A the matrix (Z(v)j) where Z(v)j is the tensor given by (4.1). Then,
exp tA is an element of the isotropy group of the {V, G}-Finsler metric F(x, y)=
Sug()yh).

Proor. If we put A=(A}), we have A '=(u%). Thus the equation (4) of
Theorem 4.1 can be rewritten as A~1AA € ». Hence exp #(A"1AA)e G. On the
other hand, exp (A 'AA)=A"'.exptA-A. Therefore we have f(A™!-exptA-
A-A"1Y)=f(A"1y), ie., f(A1-exptA.y)=f(A"ly), which implies F(x, expt4-y)
=F(x, y). Q.E.D.

§5. Affine Killing vector fields

Let I'(x) be a G-connection on a {V, G}-manifold M. A vector field v(x) on M
is called an affine Killing vector field with respect to I'(x) if, for each x € M, a local
1-parameter group of local transformations ¢, generated by v(x) preserves the linear
connection I'(x), more precisely, if each ¢, is an affine mapping. Now we shall de-
note by @,(I') the induced connection from I' by ¢,, and put

(5.1) 25, =tlim (L5 =T

t—0 4

3

then we have

. o2 . . . .
(5.2) LT = Fﬁagx_k + 00,y + TE 0,07+ T, 0,07 — T 8,01,

Apparently the condition for v(x) to be an affine Killing vector field is
(5.3) £I,=0.
It is well-known that the following relation holds good ([14], [20]):
(5.4) LT =V AW)+0 Ry,

where R}, is the curvature tensor of '}, i.e.,

(55) Rjikrzarr‘i'k—akri'r+rrinr ;nk_ rink[‘Tr'

J
In the case where the manifold is Riemannian, any Killing vector field is an affine
Killing one with respect to the Riemann-Christoffel’s connection {jl k}‘

In a {V, G}-manifold, however, under the only assumption that I'(x) is a G-
connection, a Killing vector field is not necessarily an affine Killing one with respect
to I'(x).

Next, we shall show
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Theorem 5.1. Let I'(x) be a G-connection on a {V, G}-manifold M. Let
v(x) be a Killing vector field on M and let ¢, be the local 1-parameter group of local
transformations generated by v(x). Let ®(I') be the induced connection from
I(x) by ¢,. Then, ®(I') is a G-connection on M.

Proor. Let {U, x'} and {U, x¢} be coordinate neighbourhoods of M and let
us assume @ (U)=U. If we put &(I')=T", then, as is well-known, we have

~. i 2%a _ b v
(5.6) }kzax { 0%X oxb oOxc }

57 \awioxt T1be 5x7 a5k

By /7, we denote the covariant derivative with respect to I, we see

ox™  0%x¢ ,, 0x™ 5, -, OX€
(57) kg” akgz] 6mgij{a)—ca ax’ax" y + a)_C“ F’bcy axk’}
_ {Qxﬂ 0*x¢ 8x’"F ox® 626}
Imi\exe Bxiox* ' 0x® | e ox' ox*
{ax"' 0%xa ox™ Ia ox? 83?0}
0x® Oxiox* ' 0x¢ "’ oxJ Oxk
Since v is a Killing vector field, we have
__ . 0x* Oxb
(5.8) 9ij=Yab 550 pyd
and also we have x¢=Xx¢%x!) and y°= gi; y™.  Hence we get
0x* 0xb 0x°¢ | 4 0xe ox® 0%°x¢

akgijzacgab Ox! OxJ Oxk + 0aF ab oxt OxJ/ Oxmoxk e

0%x¢ 9xb | _  0xe 0*xt
+Ga Ox¥oxt Ox/ 1 9as oxi O0x*ox’ °

4o g 0% 0% o%t
mglj cYab axm axi axj .

Substituting these into the right hand side of (5.7), we obtain

0xe Oxb 6xc

Vd1) = 55t o

{acgab 5dgabl:gc)_)e_gdb1:gc_gadfgc} =0.

Therefore, from Theorem 2.2, we see that the linear connection [’ is a G-connection.
Q.E.D.

Here let us assume that I'(x) is a symmetric G-connection. Then, @(I') also
becomes a symmetric G-connection. On the other hand, if I'(x) is a symmetric G-
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connection, the relation F,g,,=0and I'i;, =T} hold*good. These relations show us
that I'i, coincides with the Cartan’s connection I'i, ([5], [13]). Since I'i; are
functions of position only, the given {V, G}-manifold is nothing but a Berwald
space. Moreover the relation @,(F):F holds good. Consequently ¢, is an affine
mapping with respect to I'*. Thus

Theorem 5.2. In a Berwald space, a Killing vector field is, at the same time,
an affine Killing vector field with respect to the Cartan’s connection.

Remark. More generally, it has been proved (see, for example, [7], [16]) that
a homothetic Killing vector field in a Finsler space is an affine Killing one with
respect to the Cartan’s connection.

§ 6. Killing and affine Killing vector fields

Let I'(x) be a G-connection on a {V, G}-manifold M. We shall consider a
condition for a Killing vector field to be an affine Killing vector field with respect to
I'(x).

Let T(M) be the tangent bundle over M. Let g,;(x, y) be the metric tensor of
the given {V, G}-Finsler metric. Let us put

(6.1) =I5 (x)y™,
then I'% is a non-linear connection and gives T(M) a horizontal distribution. If we
put

JXi: O —r» 2

oxt aym
(6.2)
_ 0
1 Y=gy

then {X;} form a base of a horizontal distribution on T(M), and {Y;} form a base of

the vertical distribution on T(M).

As to a vector field v=1v¥(x) —607 on M, we denote by v* and v* the horizontal
lift and vertical lift of v respectively. In the canonical coordinate system (z4)=
(x!, y9), v" and v are, as is well-known, given by v"=v'X; and v*=0v'Y; and take

the form

' vl ) 0
(6.3) v”=< ), v“=< >
_[”invm y bt

Moreover the complete lift v¢ of v takes the form
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Ui
(6.4) vf=< .
ymamvi

Now, let us introduce an inner product of vectors in T(M) by
<X X;> e =9:i1(x, ¥),
(65) <Xi5 }Ij>(x,y):O’
<Y'” Y>(xy) gl]('x y)

Then, T(M) becomes a Riemannian space. The metric has been called a lifted metric
of the Finsler metric g;,(x, y) with respect to the non-linear connection I': ([8], [15],
[22]). The components of this Riemannian metric with respect to (ZM=(x, y)
takes the form

[ Gij’ GU_ gij+grsr,l:rj" Fri"gmj
(6.6) (Gup) = K > = < ,
Gij, Gij giml™s  Gij
where i=n+i. For a vector field V on T(M), ,‘ZGAB is given by
oG ove ove
FCan=VGgzc +Cacozm *Cengza -

As to a vector field v on M, calculating the above equation in the case where V=1¢,
we can verify

J ZCi=Z9i

(6.7) \ %ijzr'}’?gir-l_girymﬂ?rrmj,

L %Gij=e?gij+Frirz'%grt‘l‘ymgrtrlv?rfnj‘l‘ymgnrf%rfni-

Therefore, if we assume ,?GAB—O (6.7); shows fgu—o and (6.7), shows y"'.zr;,u
=0. Since .,SPF,‘,” are functlons of x* only, it follows that ,SPF,‘U =0. Conversely,
if Z9i ;=0 and .fl“" =0 hold, (6.7) implies XGAB—O Consequently we obtain

Theorem 6.1. Let M be a {V, G}-manifold, g;; be the {V, G}-Finsler metric
tensor, I't; be a G-connection on M, and T(M) be the tangent bundle over M.
Let G be the lifted metric of g;; to T(M) with respect to ri;ym. In order that a
vector field v on M be a Killing vector with respect to the {V, G- -Finsler metric and,
at the same time, be an affine Killing one with respect to I'";, it is necessary and

sufficient that the complete lift of v is a Killing vector field on T(M) with respect
to G.

Moreover, similar calculation gives us
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ph

J #Gi;=0,

(6.8) }’)thgf zvmyrgithhjnw

;%Gij:;;fgij+yhgrirgvahtjm+yhgrtF§vahtim7

which implies

Theorem 6.2. Under the same assumption as in Theorem 6.1, a necessary and
sufficient condition for the horizontal lift of a vector field v on M to be a Killing
vector field on T(M) with respect to G is that v is a Killing vector field with respect
to the {V, G}-metric and satisfies v"R %, =0.

Furthermore, after the similar calculation, we find

’( ;ZG;]=2CU,”U"’,

(6.9) 3 LG =2I5C, 0" + GinV V7,

L gGuzzcumvm+2cmn1)mF’;F§+grtrff710t+grtr§’7l0r.
Thus we obtain

Theorem 6.3. Under the same assumption as in Theorem 6.1, a necessary and
sufficient condition for the vertical lift of a vector field v on M to be a Killing vector
field on T(M) with respect to G is that v is a parallel vector field with respect to

L(x) and satisfies C;;,,v™=0.

Department of Mathematics,
College of General Education,
Tokushima University

References

[1] E. Cartan; Les espace de Finsler, Actualités 79, Paris (1934).

[2] P.Dombrowski; On the geometry of the tangent bundles, J. reine angew. Math., 210
(1962), 73-88.

[3] A.Fujimoto; Theory of G-structures, Publ. of the study group of geometry, Vol. 1 (1972),
QOkayama Univ.

[4] M. Hashiguchi; On Wagner’s generalized Berwald space, J. Korean Math. Sci., 12 (1975),

‘ 51-61.

{51 M. Hashiguchi and Y. Ichijyd; On some special («, 8)-metric, Rep. Fac. Sci. Kagoshima
Univ., (Math. Phys. Chem.) 8 (1975), 39-46.

{6] M. Hashiguchi and Y. Ichijyd; On conformal transformations of Wagner spaces, Rep.
Fac. Sci. Kagoshima Univ., (Math. Phys. Chem.) 10 (1977), 19-25.

[7] H. Hiramatsu; Groups of homothetic transformations in a Finsler metrics, Tensor (N.S.)
3 (1954), 131143,



[8]
[91
[10]
(1]
(12]
[13]
[14]
sl
(16]
[17]

(18]
[19]

[20]
[21]

[22]

On the G-connections and Motions on a {V, G}-manifold 23

Y. Ichijydo; Almost complex structures of tangent bundles and Finsler metrics, J. Math,
Kyoto Univ. 6 (1967), 419-452.

Y. Ichijyd; Finsler manifolds modeled on a Minkowski space, J. Math. Kyoto Univ.
16 (1976), 639-652.

Y. Ichijyo; Finsler manifolds with a linear connection, J. Math. Tokushima Univ. 10
(1976), 1-11.

Y. Ichijyd; On special Finsler connections with the vanishing Av-curvature tensor, Tensor
(N.S.) 32 (1978), 149-155.

Y. Ichijyd; On the Finsler connections associated with a linear connection satisfying P, ",
=0, J. Math. Tokushima Univ. 12 (1978), 1-7.

Y. Ichijyd; On the condition for a {V, H}-manifold to be locally flat or conformally flat,
J. Math. Tokushima Univ. 13 (1979), 13-21.

S. Kobayashi and K. Nomizu; Foundation of Differential geometry 1, Interscience tract
No. 15 (1963).

M. Matsumoto; Connections, metrics and almost complex structures of tangent bundles,
J. Math. Kyoto Univ. 5 (1966), 251-278.

M. Matsumoto; Foundation of Finsler geometry and special Finsler spaces, VEB Deutscher
Verlag der Wissenschsften.

M. Matsumoto and H. Shimada; On Finsler spaces with I-form metric, Tensor (N.S.)
32 (1978), 161-169.

H. Rund; The differential geometry of Finsler spaces, Springer (1959).

V. Wagner; On generalized Berwald spaces, C.R. (Doklady) Acad. URSS (N.S.) 39 (1943),
3-5.

K. Yano; The theory of Lie derivative and its applications, North-Holland Pub. Co.
(1955).

Y. Yano and E. T. Davies; On the tangent bundles of Finslerian and Riemannian manifolds,
Rend. Circ. Mate. Palermo (2), 12 (1963), 211-228.

K. Yano and S. Ishihara; Tangent and cotangent bundles, Marcel Dekker (1973).



