On a Submanifold of a Submanifold of a Riemannian Manifold and the Gauss Map

Dedicated to Professor Dr. Makoto Matsumoto on his sixtieth birthday

By

Tôru Ishihara (Received April 30, 1980)

The fundamental properties of frame bundles of a submanifold of a Riemannian manifold are described by S. Kobayashi and K. Nomizu in [2]. Using the similar method, we will study frame bundles of a submanifold of a submanifold of a Riemannian manifold. The main purpose of this paper is to associate the Gauss (generalized) map to a submanifold of a submanifold of Euclidean space. M. Obata [3] associates the Gauss map to a submanifold of a simply-connected complete N-space of constant curvature. We will study the relationship between the Gauss map in the sense of Obata and that of our sense in the forthcoming paper.

§ 1. Euclidean spaces and orthogonal groups

Let e_1 , e_2 ,..., e_{n+p+q} be the natural base for the (n+p+q)-dimensional Euclidean space R^{n+p+q} . We shall denote by R^n the subspace of R^{n+p+q} spanned by e_1 , e_2 ,..., e_n , that is, $R^n = \{e_1, e_2, ..., e_n\}$. Similarly we set

$$R^{p} = \{e_{n+1}, e_{n+2}, \dots, e_{n+p}\}, \quad R^{q} = \{e_{n+p+1}, e_{n+p+2}, \dots, e_{n+p+q}\},$$

$$R^{n+p} = \{e_{1}, \dots, e_{n}, \dots, e_{n+p}\}, \quad R^{p+q} = \{e_{n+1}, \dots, e_{n+p}, \dots, e_{n+p+q}\}.$$

Let O(n+p+q), O(n), O(p), O(q), O(n+p) and O(p+q) denote the orthogonal groups of R^{n+p+q} , R^n , R^p , R^q , R^{n+p} and R^{p+q} respectively. We identify O(n) with the subgroup of O(n+p+q) consisting of all elements which induce the identity transformation on the subspace R^{p+q} . In other words

$$O(n) \simeq \left(\begin{array}{cc} O(n) & 0 \\ 0 & I_{p+q} \end{array}\right),$$

where I_{p+q} denotes the identity matrix of order n+p. Similarly we have

$$O(p) \simeq \begin{pmatrix} I_n & 0 \\ 0 & I_q \end{pmatrix}, \qquad O(q) \simeq \begin{pmatrix} I_{n+p} & 0 \\ 0 & O(q) \end{pmatrix},$$

$$O(n+p) \simeq \begin{pmatrix} O(n+p) & 0 \\ 0 & I(q) \end{pmatrix}, \qquad O(p+q) \simeq \begin{pmatrix} I_n & 0 \\ 0 & O(p+q) \end{pmatrix},$$

where I_n , I_{n+p} and I_q are the identity matrices of order n, n+p and q respectively. Let $\mathfrak{o}(n+p+q)$, $\mathfrak{o}(n)$, $\mathfrak{o}(p)$, $\mathfrak{o}(q)$, $\mathfrak{o}(n+p)$, $\mathfrak{o}(n+q)$ and $\mathfrak{o}(p+q)$ be the Lie algebras of O(n+p+q), O(n), O(p), O(q), O(n+p), O(n+q) and O(p+q). Let B be the Killing-Cartan form of $\mathfrak{o}(n+p+q)$. It holds

$$B(X, Y) = 2 \operatorname{trace}(XY)$$
.

Let g(n, p, q) be the orthogonal complement to o(n) + o(p) + o(q) in o(n+p+q) with respect to the Killing Cartan form B. Then g(n, p, q) consists of matrices of the form

$$\left(\begin{array}{ccc} 0 & A & B \\ -{}^{t}A & 0 & C \\ -{}^{t}B & -{}^{t}C & 0 \end{array}\right),$$

where A is a matrix with n rows and p columns, B a matrix with n rows and q columns, C a matrix with p rows and q columns, and ${}^{t}A$, ${}^{t}B$ and ${}^{t}C$ are the transposes of A, B and C respectively.

§ 2. Frame bundles of a submanifold of a submanifold

Let L be an (n+p+q)-dimensional smooth Riemannian manifold with Riemannian metric g. Let f_1 be an immersion of an (n+p)-dimensional smooth manifold N into L. Next let f_2 be an immersion of an n-dimensional smooth manifold M. We also denote by g the metric induced on N as well as the metric induced on M. For any point x of M we shall denote $f_2(x) \in N$ and $f_1 f_2(x) \in L$ by the same letter x if there is no danger of confusion. Thus the tangent space $T_x(N)$ is a subspace of the tangent space $T_x(L)$ and $T_x(M)$ is a subspace of $T_x(N)$.

Let O(M), O(N) and O(L) be the bundles of orthogonal frames over M, N and L respectively. $O(N) \mid M = \{v \in O(N); \pi(v) \in M\}$ is a principal fibre bundle over M with structure group O(n+p). The set of frames $\{v \in O(N) \mid M \text{ of the form } (Y_1, ..., Y_n, Y_{n+1}, ..., Y_{n+p}) \text{ with } Y_1, ..., Y_n \text{ tangent to } M \text{ forms the principal bundle } O(N, M)$ over M with group $O(n) \times O(p)$. Similarly we have the principal fibre bundle O(L, N) over N with group $O(n+p) \times O(q)$. A frame $v \in O(L) \mid M$ is said to be adapted if v is of the form $(Y_1, ..., Y_n, Y_{n+1}, ..., Y_{n+p}, Y_{n+p+1}, ..., Y_{n+p+q})$ with $Y_1, ..., Y_n$ tangent to M and $Y_1, ..., Y_n, Y_{n+1}, ..., Y_{n+p}$ tangent to N. Thus considered as a linear isomorphism $R^{p+q+p} \to T_x(L)$, v is adapted if and only if v maps the subspace R^n onto $T_x(M)$ and the subspace R^{n+p} onto $T_x(N)$, where $\pi(v) = x$. The set of adapted

frames forms a principal fibre bundle over M with group $O(n) \times O(p) \times O(q)$. The bundle of adapted frames is denoted by O(L, N, M). We define a homomorphism $h_1: O(L, N, M) \rightarrow O(M, N)$ by

$$h_1(v) = (Y_1, ..., Y_n, ..., Y_{n+n})$$

for $v=(Y_1,...,Y_{n+p+q})\in O(L,N,M)$. Similarly we can define homomorphisms h_2 : $O(L,N,M)\to O(L,N,M)/O(p)$, $h_3\colon O(L,N,M)\to O(L,N,M)/O(n)$ and $h_0\colon O(N,M)\to O(M)$, where O(L,N,M)/O(p) is the bundle of frames of the form $(Y_1,...,Y_n,Y_{n+p+1},...,Y_{n+p+q})$ with $Y_1,...,Y_n$ tangent to M and $Y_{n+p+1},...,Y_{n+p+q}$ normal to N, and so on. Corresponding the natural projection $O(n)\times O(p)\times O(q)\to O(n)$ we obtain a homomorphism $h\colon O(L,N,M)\to O(L,N,M)/O(p)\times O(q)=O(M)$. Similarly we have $h'\colon O(L,N,M)\to O(L,N,M)/O(n)\times O(q)$ and $h''\colon O(L,N,M)\to O(L,N,M)/O(n)\times O(p)$. The following diagrams illustrate these bundles and homomorphisms:

There are the following natural injections:

$$O(N, M) \xrightarrow{k_1} O(N)|M \xrightarrow{k_2} O(N)$$

$$O(n) \times O(p) \downarrow \qquad O(n+p) \downarrow \pi_N \qquad O(n+p) \downarrow \pi_N$$

$$M \longleftrightarrow M \longleftrightarrow N$$

Moreover we have the following commutative diagram:

where i_1 , i_2 , j_1 and j_2 are the natural injections.

§ 3. Canonical forms and connection forms

Let θ_M , θ_N and θ_L be the canonical forms of M, N and L respectively. θ_M is an R^n -valued 1-form on O(M), θ_N is an R^{n+p} -valued 1-form on O(N) and θ_L is an R^{n+p+q} -valued 1-form on O(M). Put $k=k_2k_1$. Then it holds [2, Chapter 7, Proposition 1.1]

$$k^*\theta_N = h_0^*\theta_M.$$

Set $i = i_2 i_1$. Then we can prove similarly

Proposition 1.
$$(kh_1)^*\theta_N = h^*\theta_M = i^*\theta_L$$
.

Proof. By definition of θ_L , it follows

$$i^*\theta_L(Y) = (i(v))^{-1}\pi_{L*}i_*(Y) = v^{-1}\pi_*(Y)$$
 for $Y \in T_v(O(L, M, N))$.

Since $\pi_*(Y) \in T_x(M)$, where $x = \pi(v)$, we get $v^{-1}\pi^*(Y) \in R^n$. Since $h(v) = v \mid R^n$ and since $\pi_M h = \pi$, we have

$$v^{-1}\pi^*(Y) = v^{-1}(\pi_{M*}h_*(Y)) = (h(v))^{-1}\pi_{M*}h_*(Y) = \theta_M(h_*(Y)) = (h^*\theta_M)(Y).$$

Using the equation (1), we get

$$(h_0 h_1)^* \theta_M = (k h_1)^* \theta_N.$$
 q. e. d.

Let ω^M , ω^N and ω^L be the Riemannian connection forms on O(M), O(N) and O(L) respectively. The following result is also found in [2, Chapter 7, Proposition 1.2].

Proposition 2. Let $\tilde{\omega}$ be the $\mathfrak{o}(n) + \mathfrak{o}(p)$ -component of $k^*\omega^N$ with respect to the decomposition $\mathfrak{o}(n+p) = \mathfrak{o}(n) + \mathfrak{o}(p) + \mathfrak{g}(n, p)$, where $\mathfrak{g}(n, p)$ is the orthogonal complement to $\mathfrak{o}(n) + \mathfrak{o}(p)$ in $\mathfrak{o}(n+p)$ with respect to the Killing-Cartan form. Then $\tilde{\omega}$ defines a connection in the bundle O(N, M).

We have the following direct sum decompositions:

$$o(n+p+q) = o(n) + o(p) + o(q) + g(n, p, q)$$

$$= o(n+p) + o(q) + g(n+p, q)$$

$$= o(n) + o(p+q) + g(n, p+q),$$

$$g(n, p, q) = g(n+p, q) + g(n, p) = g(n, p+q) + g(p, q).$$

Corresponding to the above, we get the following decompositions of connection forms;

(2)
$$\begin{cases} \omega^{L} = \omega_{\mathfrak{o}(n)}^{L} + \omega_{\mathfrak{o}(p)}^{L} + \omega_{\mathfrak{o}(q)}^{L} + \omega_{\mathfrak{g}(n,p,q)}^{L} \\ = \omega_{\mathfrak{o}(n+p)}^{L} + \omega_{\mathfrak{o}(q)}^{L} + \omega_{\mathfrak{g}(n+p,q)}^{L} \\ = \omega_{\mathfrak{o}(n)}^{L} + \omega_{\mathfrak{o}(p+q)}^{L} + \omega_{\mathfrak{g}(n,p+q)}^{L}. \end{cases}$$

Moreover we have

(3)
$$\begin{cases} \omega_{\mathfrak{o}(n+p)}^{L} = \omega_{\mathfrak{o}(n)}^{L} + \omega_{\mathfrak{o}(p)}^{L} + \omega_{\mathfrak{g}(n,p)}^{L}, \\ \omega_{\mathfrak{o}(p+q)}^{L} = \omega_{\mathfrak{o}(p)}^{L} + \omega_{\mathfrak{o}(q)}^{L} + \omega_{\mathfrak{g}(p,q)}^{L}, \\ \omega_{\mathfrak{g}(n,p,q)}^{L} = \omega_{\mathfrak{g}(n+p,q)}^{L} + \omega_{\mathfrak{g}(n,p)}^{L} = \omega_{\mathfrak{g}(n,p+q)}^{L} + \omega_{\mathfrak{g}(p,q)}^{L}. \end{cases}$$

Using Proposition 6.4 in [2, Chapter 2], we can prove the following result as similarly as Proposition 2.

Proposition 3. Put

(4)
$$\begin{aligned} \omega &= i^*(\omega_{\mathfrak{o}(n)}^L + \omega_{\mathfrak{o}(p)}^L + \omega_{\mathfrak{o}(q)}^L), \\ \omega' &= i_2^*(\omega_{\mathfrak{o}(n+p)}^L + \omega_{\mathfrak{o}(q)}^L), \\ \omega'' &= j_2^*(\omega_{\mathfrak{o}(n)}^L + \omega_{\mathfrak{o}(p+q)}^L). \end{aligned}$$

Then ω , ω' and ω'' define connections in the bundles O(L, N, M), O(L, N) and O(L, M) respectively.

There is the following in [2, Chapter 7, § 1]

Proposition 4. The homomorphism $h_0: O(N, M) \rightarrow O(M)$ maps the connection in O(N, M) defined by $\tilde{\omega}$ into the Riemannian connection of M, that is

$$h_0^* \omega^M = \tilde{\omega}_{n(n)}$$

where $\tilde{\omega}_{\mathfrak{o}(n)}$ denotes the $\mathfrak{o}(n)$ -component of the $\mathfrak{o}(n)+\mathfrak{o}(p)$ -valued form $\tilde{\omega}$.

Let $\omega_{\mathfrak{o}(n)}$ (resp. $\omega_{\mathfrak{o}(n)+\mathfrak{o}(p)}$) denote the $\mathfrak{o}(n)$ (resp. $\mathfrak{o}(n)+\mathfrak{o}(p)$) component of the $\mathfrak{o}(n)+\mathfrak{o}(p)+\mathfrak{o}(q)$ -valued form ω , that is

$$\omega_{\mathfrak{o}(n)} = i^*\omega^L_{\mathfrak{o}(n)}, \quad \omega_{\mathfrak{o}(n)+\mathfrak{o}(p)} = i^*(\omega^L_{\mathfrak{o}(n)} + \omega^L_{\mathfrak{o}(p)})\,.$$

Then we have

Proposition 5. The homomorphism $h_1: O(L, N, M) \rightarrow O(M, N)$ maps the connection in O(L, N, M) defined by ω into the connection in O(M, N) defined by $\tilde{\omega}$. Hence the homomorphism $h = h_0 h_1$ maps the connection in O(L, N, M) into the Riemannian connection of M and the following relations are valid:

$$h_1^*(\tilde{\omega}) = \omega_{\mathfrak{o}(n) + \mathfrak{o}(p)}, \quad h^*(\omega^M) = \omega_{\mathfrak{o}(n)}.$$

PROOF. Since $h_1: O(L, N, M) \rightarrow O(N, M)$ is a homomorphism such that the induced mapping $h_1: M \rightarrow M$ is the identity mapping of M, from the well known result [2, Chapter 2, Proposition 6.1], it follows that h_1 maps the connection defined by ω into a connection in O(N, M) whose connection form $\tilde{\omega}'$ satisfies $h_1^*(\tilde{\omega}') = \omega_{\sigma(n) + \sigma(p)}$. Since h_1 maps O(L, N, M) onto O(N, M), in order to show $\tilde{\omega} = \tilde{\omega}'$, we only prove $h_1^*(\tilde{\omega}) = h_1^*(\tilde{\omega}') = \omega_{\sigma(n) + \sigma(p)}$. We have the following commutative diagram:

$$\begin{array}{ccc} O(L,\,N,\,M) & \xrightarrow{\quad k_1 \quad} & O(N,\,M) \\ \downarrow & & \downarrow \\ O(L,\,N) & \xrightarrow{\quad k_4 \quad} & O(N) \,, \end{array}$$

where h_4 is the homomorphism corresponding to the natural projection $O(n+p) \times O(q) \rightarrow O(n+p)$. Corresponding to the decomposition $\mathfrak{o}(n+p) = \mathfrak{o}(n) + \mathfrak{o}(p) + \mathfrak{g}(n, p)$, ω^N is written as

$$\omega^{N} = \omega_{\mathfrak{g}(n)}^{N} + \omega_{\mathfrak{g}(p)}^{N} + \omega_{\mathfrak{g}(n,p)}^{N}.$$

Then we have

(5)
$$h_1^* \tilde{\omega} = h_1^* k^* (\omega_{\mathfrak{o}(n)}^N + \omega_{\mathfrak{o}(p)}^N) = i_1^* h_4^* (\omega_{\mathfrak{o}(n)}^N + \omega_{\mathfrak{o}(p)}^N).$$

From (3) we get

(6)
$$\omega' = i_1^* (\omega_{\mathfrak{o}(n+p)}^L + \omega_{\mathfrak{o}(q)})^L = i_1^* \omega_{\mathfrak{o}(n)}^L + i_1^* \omega_{\mathfrak{o}(p)}^L + i_1^* \omega_{\mathfrak{o}(n,p)}^L + i_1^* \omega_{\mathfrak{o}(q)}^L.$$

Applying Proposition 4, we have

(7)
$$h_4^* \omega^N = i_1^* \omega_{\mathfrak{o}(n+p)}^L.$$

Combining (6) with (7), we obtain

$$h_4^*(\omega_{\mathfrak{o}(n)}^N + \omega_{\mathfrak{o}(p)}^N) = i_2^*(\omega_{\mathfrak{o}(n)}^L + \omega_{\mathfrak{o}(p)}^N).$$

Finally we obtain

$$h_1^* \tilde{\omega} = i_1^* h_4^* (\omega_{\mathfrak{v}(n)}^N + \omega_{\mathfrak{v}(p)}^N) = i_1^* i_2^* (\omega_{\mathfrak{v}(n)}^L + \omega_{\mathfrak{v}(p)}^N) = \omega_{\mathfrak{v}(n) + \mathfrak{v}(p)}.$$
 q. e. d.

The homomorphisms h_2 , h_3 , h' and h'' given in § 3 map the connection defined by ω in O(L, N, M) into connections in O(L, N, M)/O(p), O(L, N, M)/O(n), $O(L, N, M)/O(n) \times O(q)$ and $O(L, N, M)/O(n) \times O(p)$ respectively. We call those connections as the canonical connections in those bundles respectively.

§ 4. The Gauss map

Let G(n, p) be the Grassmann manifold of n-planes in \mathbb{R}^{n+p} . Then we have

$$G(n, p) = O(n+p)/O(n) \times O(p)$$
.

By an *n*-frame in R^{n+p} , we mean an ordered set of *n* orthonormal vectors in R^{n+p} . Let V(n, p) be the Stiefel manifold of *n*-frames in R^{n+p} . Then we have

$$V(n, p) = O(n+p)/O(p)$$
.

A pair (U, V) of n-dimensional linear subspace U and p-dimensional linear subspace V of R^{n+p+q} such that $U \cap V = \{0\}$ will be said to be a direct sum pair of type (n, p) in R^{n+p+q} . Let G(n, p, q) be the set of direct sum pairs of type (n, p) in R^{n+p+q} . The group O(n+p+q) acts transitively on G(n, p, q). The elements of O(n+p+q) which leave invariant the particular pair (R^n, R^p) form the subgroup $O(n) \times O(p) \times O(q)$. Thus we have

$$G(n, p, q) = O(n+p+q)/O(p) \times O(p) \times O(q)$$
.

The homogeneous space G(n, p, q) is considered as a fibre space over Grassmann manifolds. In fact we have three fibre bundles:

$$G(n, p, q)$$
 over $G(n+p, q)$ with fibre $G(n, p)$,
 $G(n, p, q)$ over $G(n, p+q)$ with fibre $G(p, q)$,
 $G(n, p, q)$ over $G(n+p, q)$ with fibre $G(n, q)$.

For example the projection of G(n, p, q) onto G(n+p, q) maps a direct sum pair (U, V) to the (n+p)-dimensional subspace U+V. We have moreover the following seven principal fibre bundles over G(n, p, q):

$$E = O(n+p+q) \text{ over } G(n, p, q) \text{ with group } O(n) \times O(p) \times O(q),$$

$$E_1 = V(p+q, n) = O(n+p+q)/O(n) \text{ over } G(n, p, q) \text{ with group } O(p) \times O(q),$$

$$E_2 = V(n+q, p) = O(n+p+q)/O(p) \text{ over } G(n, p, q) \text{ with group } O(n) \times O(q),$$

$$E_3 = V(n+p, q) = O(n+p+q)/O(q) \text{ over } G(n, p, q) \text{ with group } O(n) \times O(p),$$

$$E'_1 = O(n+p+q)/O(p) \times O(q) \text{ over } G(n, p, q) \text{ with group } O(n),$$

$$E'_2 = O(n+p+q)/O(n) \times O(q) \text{ over } G(n, p, q) \text{ with group } O(p),$$

$$E'_3 = O(n+p+q)/O(n) \times O(p) \text{ over } G(n, p, q) \text{ with group } O(q).$$

Let γ be the canonical 1-form of O(n+p+q), that is, the left invariant $\mathfrak{o}(n+p+q)$ -valued 1-form uniquely determined by

$$\gamma(A) = A$$
 for $A \in \mathfrak{o}(n+p+q)$.

Let ω_E be the $\mathfrak{o}(n) + \mathfrak{o}(p) + \mathfrak{o}(q)$ -component of γ with respect to the decomposition

 $\mathfrak{o}(n+p+q)=\mathfrak{o}(n)+\mathfrak{o}(p)+\mathfrak{o}(q)+\mathfrak{g}(n,\ p,\ q).$ By the well known result [2, Chapter 2, Theorem 11.1], the form ω_E defines a connection in E which will be called the canonical connection in E and will be denoted by Γ_E . Let f_i (resp. f_i') be the bundle homomorphisms of E onto E_i (resp. E_i') defined by the natural projections (i=1, 2 and 3). The homomorphisms f_i (resp. f_i') map the connection Γ_E onto connections in E_i (resp. E_i'), denoted by Γ_{E_i} (resp. $\Gamma_{E_i'}$) such that the connection forms ω_{E_i} (resp. $\omega_{E_i'}$) are determined by $f_1^*(\omega_{E_1})=\gamma_{\mathfrak{o}(p)}+\gamma_{\mathfrak{o}(q)},\ f_2^*(\omega_{E_2})=\gamma_{\mathfrak{o}(n)}+\gamma_{\mathfrak{o}(q)}$ and $f_3^*(\omega_{E_3})=\gamma_{\mathfrak{o}(n)}+\gamma_{\mathfrak{o}(q)}$ (resp. $f_1^{\prime*}(\omega_{E_1})=\gamma_{\mathfrak{o}(n)},\ f_2^{\prime*}(\omega_{E_2})=\gamma_{\mathfrak{o}(p)}$ and $f_3^{\prime*}(\omega_{E_3})=\gamma_{\mathfrak{o}(q)}$), respectively, where $\gamma_{\mathfrak{o}(n)},\ \gamma_{\mathfrak{o}(p)}$ and $\gamma_{\mathfrak{o}(q)}$ are the $\mathfrak{o}(n)$ -, $\mathfrak{o}(p)$ - and $\mathfrak{o}(q)$ -components of γ respectively.

Let P_1 and P_2 be principal bundles over M with groups G_1 and G_2 respectively. Then $P_1 \times P_2$ is a principal fibre bundle over $M \times M$ with group $G_1 \times G_2$. Let $P_1 + P_2$ be the restriction of $P_1 \times P_2$ to the diagonal ΔM of $M \times M$. Since ΔM and M are diffeomorphic to each other, $P_1 + P_2$ is considered as a principal fibre bundle over M. Moreover let P_3 be a principal fibre bundle over M with group G_3 . Then we can construct a principal fibre bundle $P_1 + P_2 + P_3$ over M with group $G_1 \times G_2 \times G_3$. Now we have the following bundle isomorphisms:

$$(f_i, f_i')$$
: $E \simeq E_i + E_i'$ $(i = 1, 2 \text{ and } 3)$,
 (f_1', f_2', f_3') : $E \simeq E_1' + E_2' + E_3'$.

Let N be an (n+p)-dimensional manifold immersed in the (n+p+q)-dimensional Euclidean space R^{n+p+q} . Let M be an n-dimensional manifold immersed in N. We have the following principal fibre bundles over M.

$$P = O(R^{n+p+q}, N, M) \text{ over } M \text{ with group } O(n) \times O(p) \times O(q),$$

$$P_1 = O(R^{n+p+q}, N, M)/O(n) \text{ over } M \text{ with group } O(p) \times O(q),$$

$$P_2 = O(R^{n+p+q}, N, M)/O(p) \text{ over } M \text{ with group } O(n) \times O(q),$$

$$P_3 = O(R^{n+p+q}, N, M)/O(q) \text{ over } M \text{ with group } O(n) \times O(p),$$

$$P'_1 = O(R^{n+p+q}, N, M)/O(p) \times O(q) \text{ over } M \text{ with group } O(n),$$

$$P'_2 = O(R^{n+p+q}, N, M)/O(n) \times O(q) \text{ over } M \text{ with group } O(p),$$

$$P'_3 = O(R^{n+p+q}, N, M)/O(n) \times O(p) \text{ over } M \text{ with group } O(q).$$

The canonical connections in P, P_1 , P_2 , P_3 , P_1' , P_2' and P_3' given as in § 3, will be denoted by Γ_P , Γ_{P_1} , Γ_{P_2} , Γ_{P_3} , $\Gamma_{P_1'}$, $\Gamma_{P_2'}$ and Γ_{P_3} .

We now define a bundle map $g: P \to E$. The bundle $O(R^{n+p+q})$ of orthonormal frames over R^{n+p+q} is trivial, that is, $O(R^{n+p+q}) = R^{n+p+q} \times O(n+p+q)$. Let $\rho: O(R^{n+p+q}) \to O(n+p+q)$ be the natural projection. Let $i: P \to O(R^{n+p+q})$ be the natural injection. Then we define

$$g(v) = \rho i(v)$$
 for $v \in P$.

Since g commutes with the right translation by $O(n) \times O(p) \times O(q)$, g is a bundle map of P into E. The bundle map g induces bundle maps $g_i: P_i \rightarrow E_i$ and $g'_i: P'_i \rightarrow E'_i$ (i=1, 2 and 3). It induces also a mapping $\tilde{g}: M \rightarrow G(n, p, q)$. Summing up, we have the following commutative diagram:

$$P_{i} \xrightarrow{g_{i}} E_{i}$$

$$\uparrow^{h_{i}} \qquad \uparrow^{f_{i}}$$

$$P_{i} + P'_{i} = P \xrightarrow{g_{i}} E = E_{i} + E'_{i} \qquad (i = 1, 2 \text{ and } 3),$$

$$\downarrow^{h'_{i}} \qquad \downarrow^{f'_{i}}$$

$$P'_{i} \xrightarrow{g_{i}} E'_{i}$$

where $h_i: P \to P_i$ and $h'_i: P \to P'_i$ are the natural homomorphisms as given in § 3. Now we have the following fundamental relationship of connections.

Proposition 6. The bundle maps g, g_1 , g_2 , g_3 , g_1' , g_2' and g_3' map the connections Γ_P , Γ_{P_1} , Γ_{P_2} , Γ_{P_3} , $\Gamma_{P_1'}$, $\Gamma_{P_2'}$ and $\Gamma_{P_3'}$ upon the connections Γ_E , Γ_{E_1} , Γ_{E_2} , Γ_{E_3} , $\Gamma_{E_1'}$, $\Gamma_{E_2'}$ and $\Gamma_{E_3'}$ respectively.

PROOF. Since each f_i (resp. f_i') maps Γ_E upon Γ_{E_i} (resp. $\Gamma_{E_i'}$) and since each h_i (resp. h_i') maps Γ_P upon Γ_{P_i} (resp. $\Gamma_{P_i'}$), it suffices to prove that g maps Γ_P upon Γ_E . The flat Riemannian connection of R^{n+p+q} is given by the form $\rho^*(\gamma)$ on $O(R^{n+p+q})$. The connection form ω is the o(n)+o(p)+o(q)-component of $i^*\rho^*(\gamma)=g^*(\gamma)$. On the other hand, ω_E is the o(n)+o(p)+o(q)-component of γ . Hence we obtain that ω is equal to $g^*(\omega_E)$.

Department of Mathematics Faculty of Education Tokushima University

This work was partially supported by the Grant in Aid for Scientific Research (No. 464018).

References

- B. Chen and K. Yano, On submanifolds of submanifolds of a Riemannian manifold, J. Math. Soc. Japan 23 (1971), 548-554.
- [2] S. Kobayashi and K. Nomizu, Foundations of differential geometry I, II, Wiley (Interscience), New York, 1963, 1969.
- [3] M. Obata, The Gauss map of immersions of Riemannian manifolds in spaces of constant curvature,J. Differential Geometry 2 (1968), 217-223.