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The present paper is the continuation of the serial papers concerning the Finsler
manifold modeled on a Minkowski space ([5], [6], [7]). A Finsler manifold
whose tangent spaces at arbitrary points are congruent to a unique Minkowski
space is called a Finsler manifold modeled on a Minkowski space. As an example
of it, the notion of the {V, H}-manifold has been introduced in the paper [5].

On the other hand, M. Hashiguchi has defined a notion of a generalized Berwald
space [2]. Following his definition, it is a Finsler manifold admitting a linear
connection I'(x) with respect to which /g=0 holds, where /' denotes the covariant
derivative with respect to the Finsler connection (I'k (x), ', (x)y™).

It has been shown, in the paper [5], that the {V, H}-manifold is a generalized
Berwald space. In the paper [6] it has been proved that a standard generalized
Berwald space is a {V, H}-manifold. And also it has been found, in the paper [7],
that a Finsler manifold with a linear connection I'(x) with respect to which 7 C=0
holds good becomes a {V, H}-manifold under some condition, where C is the tensor

given by Ci, =% gi"'émgjk.

Now, the main purpose of the present paper is to find the following two: The
one is the condition for the {V, H}-manifold to be locally Minkowskian and the
another is the condition for the {V, H}-manifold to be locally conformal to a
Minkowski space. These will be shown in § 1 and §2 using the terminology of the
theory of G-structures. In section 3, examples of these manifolds will be shown
especially in the case where the manifolds admit a Randers metric. The last section
is devoted to consideration on the case that a Finsler manifold is globally conformal

to a locally Minkowskian manifold.

§1. Let V be an n-dimensional Minkowski space, that is, an n-dimensional
linear space on which a Minkowski norm is defined. Here the Minkowski norm
on V means a real valued function on V, whose value at £ eV we denote by ||¢],
with properties:

(1) Let {e,} be a fixed base of V, then the norm of any vector ¢ =¢%e, € V can be
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represented by |&[|=f(&L, &2,..., &™) (For brevity we write f(EY, &,..., &) as f(&%)
or f(£)). Now, the function f(£) is 3-times continuously differentiable at £x0.

2 1EIh=0.

(3) &l =0 if and only if £=0.

(4) |k&||=k[&]l for any k>0.

(&) I +EI=1E N+ 1S

Now we put
(1.1 G={T|TeGL(n, R), |T¢|=]&| forany eV},

then G is a Lie group [5].

Let H be a Lie subgroup of G and let M be an n-dimensional C*-manifold. We
assume here that M admits an H-structure in the sense of a G-structure.

Let {U} be a coordinate neighbourhood system and {X,} be an n-frame on U
adapted to the H-structure, and y be any vector in T,(M) with the expression y=

i a — Fa
¥ W_C X, where pe U.
Putting
Jd . Y 0
(12) W_.ui(x)Xa or Xa—ia(x) oxt

we have proved, in the paper [5], that the function
(1.3) F(x, y)=f(&)=f(ui(x)y)

gives M globally a Finsler metric. This Finsler metric is called a {V, H}-metric.
When M admits a {V, H}-metric, we say that M is a {V, H}-manifold. In the
{V, H}-manifold, the tangent Minkowski space T,(M) at any point pe M is con-
gruent to the given Minkowski space V.

Let M be a {V, H}-manifold and G be the Lie group defined by (1.1). As H is
a Lie subgroup of G, the manifold M admits the G-structure too. Now we shall

prove

Theorem 1. Let M be a {V, H}-manifold and G be a Lie group defined by
(1.1). The necessary and sufficient condition for M to be locally Minkowskian is
that the G-structure admitted by M is integrable.

Proor. If the G-structure is integrable, M is covered by the coordinate neigh-
bourhood system {U} such that the natural frame {%} on each U is adapted to

the G-structure ([1], [13]). Let {X,} be the frame on U adapted to the H-structure.
Since H =G, the frame {X,} is, at the same time, adapted to the G-structure. Then
(1.2) leads us to (u¥(x))€G. Hence we have F(x', y)=f(ui(x)y*)=f(y*). There-
fore M is locally Minkowskian.



On the Conditions for a {¥, H}-manifold to be Locally Minkowskian or Conformally Flat 15

Conversely, we assume that the {V, H}-manifold M is locally Minkowskian.
Then M is covered by a coordinate neighbourhood system {U} such that the funda-
mental function F(x!, y’)=f(u%(x)y’) is independent to x' on each U. Thus we
may put f(u3(x)y")=g(y*) on each U. Let (x¢) be any fixed point in U, then we
have f(ui(x0)y)=g(y)=f(ui(x)y"). Putting pf(x,)=A? and (A%)"'=(Bi), we
have f(u#(x)y)=f(47y"). On the other hand, we see f(u*(x)y’)= f(us(x)B} AL ym).
Hence we have f(u4(x)BjA%Ly™) =f(A%y™) for any y™. Thus we obtain

(1.4) 1*(x)Bj e G.
Now we consider the transformation of the coordinates on U such that X*=A¢xk,

Apparently the coordinate systems {U, %%} and {U, xi} are mutually equivalent,

O _pp. 0 = un(x)Bp X, hold good. Taking account of (1.4), we have that

and ooy =By

the natural frame { 6_
ox*

consideration is integrable.

} is adapted to the G-structure, that is, the G-structure under

§2. Suppose that two distinct Finsler metric functions F(x, ), F*(x, y) are
defined over a Finsler space. The two metrics resulting from these functions are
called conformal if there exists a factor of proportionality o such that gi(x, y)=
ag¥i(x, y). By the well-known Knebelman’s theorem, the factor of proportionality
o depends on x’ alone. For convenience we shall denote it by g;;=e*g¥ where
o=0(x).

A Finsler manifold M is called conformally flat if M is covered by a coordinate
neighbourhood system {U,} such that the given Finsler metric g is conformal to a
Minkowski metric in each U,.

In this case, the tangent Minkowski spaces at arbitrary points of U, are con-
gruent to a unique Minkowski space.

Because, there exists an admissible coordinate system in each U, such that
9if(x, Y)=e"®g¥;(y) holds good. If we put h(y)=/g¥(»)y'y7, then we have
F(x, y)=e°™®h(y), that is,

(2.1) F(x, eo™y)=h(y).

Let V,, be a Minkowski space whose Minkowski norm of ¢=¢%e, eV, is given by
€1l =h(E*) where {e,} is a fixed base of V- Now, for any pe U,, we may define

a linear isomorphic mapping ¢,: T,(M)— Vi by gop<yi<56k7> >=e“(x)y"ei. Since
p

F(x!, y')=h(e’®y%), this mapping ¢, is an isometry from T, (M) to V. Thus we
see that, for any pe U,, T,(M) is congruent to the Minkowski space V.

Next, let U, and U, be the coordinate neighbourhoods mentioned above in a
conformally flat Finsler manifold, and V|, and Vi) be the Minkowski spaces defined
above in the neighbourhoods U, and U, respectively. If U,n U; = ¢, then for any
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peU,n U, T, (M) is congruent to ¥, and, at the same time, to V5. Hence V),
is congruent to V4. By virtue of the definition of a Finsler manifold modeled on
a Minkowski space [5], we obtain

Theorem 2. If a Finsler manifold is connected and conformally flat, then
it is a Finsler manifold modeled on a Minkowski space.

In what follows we shall treat {V, H}-manifolds. Since a {V, H}-manifold is
a Finsler manifold modeled on a Minkowski space, the following theorem is evident.

Theorem 3. A {V, H}-manifold M is conformally flat if and only if there
exists, for any point p of M, such a coordinate neighbourhood U that pe U and the
{V, H}-metric is conformal to the given Minkowski space V on U.

Now let G be the Lie group defined by (1.1) in a {V, H}-manifold. Then we
shall prove

Theorem 4. The necessary and sufficient condition for a {V, H}-manifold
to be conformally flat is that the manifold is covered by a coordinate neighbour-

hood system {U,, x'} such that {e“’a(")—ai—i} is an n-frame adapted to the G-

structure for some local scalar field o,(x) on each U,.

ProoF. Suppose that M is a conformally flat {V, H}-manifold. Then M is
covered by a coordinate neighbourhood system {U,} such that the {V, H}-Finsler
metric is conformal to the Minkowski space Vin each U,. If we assume that U e

{U,} and {X,} is an n-frame on U adapted to the H-structure and we put %:
u#(x)X,, then we have, after a suitable coordinate transformation, that Fus(x)yh)
=e?®h(y") holds on U where a(x) is a local scalar field on U and h(y*) is the norm

function of V. Let p=(x}) be any fixed point in U, then we have

flee®ux(x)y)=h(y)=f (e~ ui(xo)y").
Putting e~"0us(xo) = A7 and (Az)~ =(BY), we have f(A3y)=f(e " ®ps(x)B}ALy")
for any y’. Hence we obtain
(2.2) e ™®ux(x)Bj € G.

Now let us consider a coordinate transformation X*=A¢x* in U. It is clear that
the coordinate system {U, ¥*} is equivalent to {U, xi}. If we put o(x)=0(x(X))
=g(X), we have

sy O 0

- — o J —p 8 J
e (%) a5 = G(X)Ba‘a?—e "("),uj(x)BaX,,.

From (2.2) and the fact that {X,} is an n-frame adapted to the G-structure, it follows
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that {e‘a("‘)ﬁi_?} is an n-frame on U adapted to the G-structure.

Conversely, we shall show the condition is sufficient. Let {U, xi} be any
coordinate neighbourhood satisfying the given condition and {e“’(")—a7 be an
n-frame on U adapted to the given G-structure. Let {X,} be an n-frame on U

adapted to the H-structure, and put —a%i—=ug‘(x)Xa, then the {V, H}-Finsler metric
is given by F(x, y)=f(u#(x)y’). From our assumption, both {X,} and
{e7*™ux(x)X,} are n-frames adapted to the G-structure. Hence we have
e ’™ui(x) e G, that is, f(e=°™ui(x)y")=f(y). By the homogenity condition of
the function f(y"), we have f(u#(x)y))=e*® f(y?). Therefore we obtain gi(x, y)

=e2 @ gk (y). q.e.d.
§3. In this section we assume that a manifold M admits a Randers metric

(3.1) F(x, )= /g:{(x)y'y +v(x)y’

where g,,(x) is a Riemannian metric and v/(x) is a covector field on M.

In the paper [5], the present author has found that the condition for the Randers
manifold (M, F) to be a {V, H}-manifold is that g*/v,v; is constant. Hashiguchi
and the present author have shown, in the paper [3], that if the vector field v,(x) is
parallel with respect to the Riemannian metric g;;(x), then the Randers manifold
(M, F) is a Berwald space. Recently Kikuchi [8] has proved that the converse of
this theorem is also true, that is to say, the condition that v,(x) is parallel with respect
to g;;(x) is a necessary and sufficient condition for the Randers manifold (M, F)
to be a Berwald space.

Again, Kikuchi has proved, at the same time, that the condition for the Randers
manifold (M, F) to be locally Minkowskian is that the Riemannian metric gi(x)
is locally flat and the vector field v(x) is parallel with respect to g, ().

Now, we shall find the condition that the Randers manifold be conformally
flat.

First, we assume the Randers metric (3.1) is conformally flat. Then, by virtue
of the definition and Theorem 2, we see that M is covered by a coordinate neighbour-
hood system {U, x'} such that each U admits some local scalar field o(x) with
respect to which F(x, y)=e"®)(\/a;;y’y/ + b;y') holds good on U, where a;; and b,
have constant components. This holds for any yi, so we have g,,(x)=e2°®g, ; and
vi(x)=e’®b,. The first condition leads us to

i
[ " } =00} + 0,04 —aig,
J

where 0;,=0,0, 6'=g'"0,, and i is the Christoffel’s symbol of g;:(x). Denotin
JTEI jk J g
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the covariant derivative with respect to {jlk} by ;, we find, from these, that

(3.2) l)j;k=0’ml)mgjk——vk0’j.
From the condition a;;=e 27*)g, (x), we have also
(a)

Rk =Rhljk—()}°'hk+5llc0'hj_ghk0'} +9ni0k

(a) . . .
where we denote by R,?;, and R,’;, the curvature tensors for the Riemannian
metrics a;; and g;(x) respectively and we put

1 m i im
0ij= Gi;j+ 00 —7 gijo- Om and O';- =g "0,

The tensor a;; being a flat Riemannian metric, we must have
(3.3) Rhijk=5j'(7hk‘5licohj+ghk05'—ghjalic-

Conversely, let us assume that a Randers manifold (M, F) is covered by such
a coordinate neighbourhood system {U, xi} that each U admits a local scalar o(x)
satisfying (3.2) and (3.3). On putting a;;(x)=e"2°)g,(x), we see, by account of
(3.3), that a;,(x) is a flat Riemannian metric on U. Then, after a suitable coordinate
transformation X=Xx(x) in U, we have that e"2*®g;(X)=0;;. This gives us {jik}
=0}0;+6i0,—0'g;,. Hence the condition (3.2) leads us to G (X)=0v,(X)0x(X).

Now, if we put e"?®(X)=>b,(X), then we have

0b ; - _ _ . -
gk = — € TP (D)0 (X) +e7D0,0,(X) =0,

that is, the components of b; are constant. Hence, on the coordinate neighbour-
hood {U, X'}, we have

Fx, P =e@(y £ 792 +8,5%).

Thus we find the Randers manifold (M, F) is conformally flat.
Consequently we obtain

Theorem 5. The condition that a Randers manifold (M, F) be conformally
flat is that M is covered by a coordinate neighbourhood system {U} such that each
U admits a local scalar field o(x) satisfying the conditions (3.2) and (3.3).

Remark. By virtue of (3.2), we see

(g ijvivj);k = 2gijvivj;k = 2Uj(0'mvmgjk - Uko'j) =0.
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Hence the Randers manifold (M, F) satisfying the condition (3.2) is necessarily a
{V, H}-manifold.

§4. In connection with the conformally flat Finsler manifold, we introduce
the following theorem which has already been proved by Hashiguchi and the present
author [4].

Theorem 6. A Finsler manifold (M, F(x, y)) is globally conformal to a
locally Minkowskian manifold if and only if M admits a scalar field o(x) and a
linear connection I'(x) on M satisfying the conditions

(1) VkF :=akF(x’ y)_'a‘mF(x’ y)r’r’nk(x)yr=0’

Proor. Let us assume that the manifold M globally admits o(x) and I'(x)
satisfying the conditions (1), (2) and (3). If we put F(x, y)=e *™®F(x, y) and
['i;=I};—6i0,0, then F becomes a Finsler metric and I'},;(x) becomes a linear
connection on M. With respect to these, we have

v F=— e 90, 6F + e 9F F+e 7ym0,,Fd,6=0,
Rihjk=Rihjk=03

Hence i j(x) becomes a flat linear metric connection of the Finsler manifold (M,
F(x, ¥)). Thatis, (M, F(x, y)) is a locally Minkowskian manifold.

The converse is evident from the fact of F(x, y)=e"®F(x, y), where F(x, y) is
a local Minkowski metric.

Remark. The condition (1) implies that the Finsler manifold (M, F(x, y))
is a generalized Berwald space, namely, a {V, H}-manifold [6].

Now, we consider a {V, H}-manifold and assume that the Lie group G defined
by (1.1) is totally disconnected, that is, the connected component containing the
identity e is {e}. Let us assume moreover that the {V, G}-metric is conformally
flat. Now, on each neighbourhood U defined in Theorem 4, we have, by virtue of
(2.2), that e=*™u%(x)Bj=g3, that is, pi(x)=e°gge~oxolyf(x,) where g3 is an ele-
ment of G. As G is totally disconnected, g3 does not depend on x’, and the Lie
algebra of the Lie group G is {0}. Hence the G-connection is given uniquely by
I} ;=250;uf where (A1)=(u?)"'. Then we have, on the neighbourhood U, that

. -l . ,
[’I‘”. = e~a(x)ea(xo)g;,{;(xo)aj(eo(x)gﬁe—a(xo)‘ug(xo)) — 5,2(%0’.
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This leads us, for the curvature tensor and the torsion tensor, to R;";;=0 and
Ti;=0i0,0—0%0,0. Of course, /,F=0 holds good [5]. On the other hand, the
connection I'};(x) is a global one on M, and so is the torsion tensor Tj;(x). Let
{U,, x'} and {U,, x*} be the coordinate neighbourhoods, o, and &, be the local

scalar fields defined in Theorem 4 on U, and U, respectively. If we assume U; n
— . : . = 0x' =, ; OxJ Ox*
U, = ¢, then the torsion tensor satisfies, in U, n U,, 57 Lbe=Tixpgr 7z that
1S,

a__axia oxt .
b02 = oxP cI1— Ox°¢ Op01-

_ 0x!
oxe©

Ox?
oxb

acGZ

This can be rewritten as %;—60(62—01)=-g;_c—:6b(62—01), which leads us to

0(G,—0a,)=0, that is, G,—o,;=k (const.). Hence the factors et and e?2 of the
proportionality of local conformal transformations in U, and U, have the relation
ez =¢ke7t, Now, we consider the coordinate transformation x¢=e*x%, then, in
the coordinate neighbourhood {U,, X%}, we have e?2=¢ke?2=¢%:. Hence the
scalar a,(x) can be considered as a global scalar field on M if M is connected. There-
fore, by virtue of Theorem 6, we obtain

Theorem 7. Let V be a Minkowski space, G be the Lie Group defined by
(1.1) and let M be a connected {V, G}-manifold. If the Lie group G is totally
disconnected and the {V, G}-metric is conformally flat, then the {V, G}-manifold
M is globally conformal to a locally Minkowskian Manifold.
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