On Relation Modules

By

Motoyoshi SAKUMA (Received April 30, 1979)

Let $\bigoplus R$ and $\bigoplus R$ be free modules over a commutative ring R with canonical bases T'_1, \ldots, T'_m and T_1, \ldots, T_n respectively and m and n are positive integers. For any R-linear map $f: \bigoplus R \to \bigoplus R$, $f(T'_i) = \sum_{j=1}^n a_{ji}T_j$, $a_{ji} \in R$ $(i=1,\ldots,m)$, we associate with an $n \times m$ matrix A defined by the coefficients of T'_j s:

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \cdots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix}$$

Corresponding to f, we define an R-linear map ${}^{t}f: \overset{m}{\oplus} R \leftarrow \overset{n}{\oplus} R$, transpose map of f, by

$${}^{t}f(T_{i}) = \sum_{j=1}^{m} a_{ij}T'_{j}$$
 $(i=1,...,n).$

The matrix associated with ${}^{t}f$ is the transposed matrix ${}^{t}A$ of A.

Let $m_1,...,m_n$ be *n* elements of an *R*-module *M*. We denote by Rel $(m_1,...,m_n)$ the set of sequences of *n* elements of $R, (r_1,...,r_n) \in \bigoplus_{n=1}^{n} R$, such that

$$r_1 m_1 + \cdots + r_n m_n = 0.$$

Obviously Rel $(m_1, ..., m_n)$ is an R-module and we call it the relation module of $(m_1, ..., m_n)$.

Lemma 1. With the same notations as above,

- i) $(r_1,...,r_n) \in \text{Rel}(t_1,...,t_n)$ if and only if $(r_1,...,r_n)A = 0$.
- ii) If $g: \bigoplus_{n=0}^{\infty} R \to R$ is an R-linear map, then $(g(T_1), ..., g(T_n)) \in \text{Rel}(f_1, ..., f_n)$ if and only if g(Im f) = 0.

PROOF. i) Assume $(r_1, ..., r_n) \in \text{Rel } ({}^tf T_1, ..., {}^tf T_n)$, then $r_1 {}^tf T_1 + \cdots + r_n {}^tf T_n = 0$ so that $(T_1' \cdots T_m') \mathcal{U} \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = 0$. Hence $\mathcal{U} \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = 0$, and whence $(r_1 \cdots r_n) \mathcal{U} = 0$. Consolved the second of t

verse is clear.

ii) Let $g(T_i) = s_i$ (i = 1,..., n). Then, we have $g(\operatorname{Im} f) = 0 \Longleftrightarrow g(f(T_i')) = 0 \qquad (i = 1,..., m)$ $\iff g(\sum_{j=1}^n a_{ji}T_j) = 0 \qquad (i = 1,..., m)$ $\iff 0 = \sum_{i=1}^n a_{ji}g(T_i) = \sum_{i=1}^n a_{ji}s_i \qquad (i = 1,..., m).$

Hence $g(\operatorname{Im} f) = 0$ if and only if $(s_1 \cdots s_n)A = 0$. Therefore we get ii) in view of i).

Lemma 2. Rel $({}^t f T_1, ..., {}^t f T_n) \simeq \operatorname{Hom}_R (\overset{n}{\oplus} R/\operatorname{Im} f, R).$

PROOF. For any $(r_1,...,r_n) \in \text{Rel}({}^t f T_1,...,{}^t f T_n)$, we define an *R*-linear map $g: \bigoplus_{i=1}^n R \to R$, $g(T_i) = r_i$ (i = 1,...,n).

By Lemma 1, ii), we have g=0 on $\mathrm{Im}\, f$, so that g induces an R-linear map $\bar{g}: \bigoplus_{n=0}^{\infty} R/\mathrm{Im}\, f \to R$. Thus we get a map $\lambda: \mathrm{Rel}\, ({}^{t}f\, T_{1}, \ldots, {}^{t}f\, T_{n}) \to \mathrm{Hom}_{R}\, (\bigoplus_{n=0}^{\infty} R/\mathrm{Im}\, f,\, R)$ such that

$$\lambda((r_1,\ldots,r_n))=\bar{g}.$$

It is clear that λ is injective. Since $\operatorname{Hom} (\stackrel{n}{\oplus} R/\operatorname{Im} f, R)$ is identified with the set of R-linear maps $h: \stackrel{n}{\oplus} R \to R$ which vanish on $\operatorname{Im} f$, λ is surjective.

Summarizing the above consideration, we get

Theorem 1. Let $f: \overset{m}{\oplus} R \to \overset{n}{\oplus} R$ be an R-linear map defined by the matrix A:

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix}$$

and let ${}^tf: \stackrel{m}{\oplus} R \leftarrow \stackrel{n}{\oplus} R$ be the transpose of f corresponding to tA . Then,

$$\operatorname{Rel}({}^{t}fT_{1},...,{}^{t}fT_{n}) \simeq (\operatorname{Coker} f)^{*}$$

where $M^* = \text{Hom}_R(M, R)$ for an R-module M.

Remark. With the same notations as in Lemma 2, λ^{-1} : (Coker f)* \rightarrow Rel (${}^{t}fT_{1},...,{}^{t}fT_{n}$) is given by

$$\bar{g} \longrightarrow (\bar{g}(T_1), \dots, \bar{g}(T_n)).$$

Corollary 1. Let $\bigoplus^{l} R \xrightarrow{g} \bigoplus^{m} R \xrightarrow{f} \bigoplus^{n} R$ be an exact sequence of free R-

modules. Then,

$$\operatorname{Rel}({}^{t}gT'_{1},...,{}^{t}gT'_{m}) \simeq (\operatorname{Im} f)^{*}$$

where $T'_1,...,T'_m$ is the canonical base of $\stackrel{m}{\oplus} R$.

PROOF. By Theorem 1, we have

$$\operatorname{Rel}({}^{t}gT'_{1},...,{}^{t}gT'_{m}) \simeq (\operatorname{Coker} g)^{*}.$$

On the other hand

$$(\operatorname{Coker} g)^* \simeq (\bigoplus^m R/\operatorname{Im} g)^* = (\bigoplus^m R/\operatorname{Ker} f)^* \simeq (\operatorname{Im} f)^*.$$

Thus we get our result.

Remark. The isomorphism $(\operatorname{Im} f)^* \mapsto \operatorname{Rel}({}^t g T'_1, ..., {}^t g T'_m)$ obtained in the Corollary 1 is given by

$$\phi \longrightarrow ((\phi \cdot f)(T'_1),...,(\phi \cdot f)(T'_m)).$$

Corollary 2. Let $f: \bigoplus^m R \to \bigoplus^n R$ be an R-homomorphism and let $\operatorname{Coker} f = Ru_1 + \cdots + Ru_n$ where u_i is the residue of T_i modulo $\operatorname{Im} f(i = 1, ..., n)$. Then, we have the following exact sequence of R-modules:

$$0 \longrightarrow \operatorname{Rel}(fT'_1, \dots, fT'_m) \longrightarrow \overset{m}{\bigoplus} R \longrightarrow \operatorname{Rel}(u_1, \dots, u_n) \longrightarrow 0.$$

PROOF. Clearly we have

$$(r_1,...,r_n) \in \operatorname{Rel}(u_1,...,u_n) \Longleftrightarrow r_1 T_1 + \dots + r_n T_n \in \operatorname{Im} f$$
 $\iff r_1 T_1 + \dots + r_n T_n = r'_1 f(T'_1) + \dots + r'_m f(T'_m) \text{ for some elements } r'_i \in R$
 $\iff \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = A \begin{pmatrix} r'_1 \\ \vdots \\ r'_m \end{pmatrix} \text{ for some elements } r'_i \in R \ (i=1,...,m).$

Now we define a map ϕ : Hom $(\stackrel{m}{\oplus} R, R) \rightarrow \text{Rel}(u_1, ..., u_n)$ by

$$\phi(g) = A \begin{pmatrix} r'_1 \\ \vdots \\ r'_m \end{pmatrix}$$

where $g \in \text{Hom}(\overset{m}{\oplus} R, R)$ and $r'_i = g(T'_i)$ (i = 1, ..., m). Then, the first part of our proof shows that ϕ is surjective.

Consider an exact sequence

$$0 \longrightarrow \operatorname{Ker} \phi \longrightarrow \operatorname{Hom} (\stackrel{m}{\oplus} R, R) \stackrel{\phi}{\longrightarrow} \operatorname{Rel} (u_1, ..., u_n) \longrightarrow 0.$$

Since we have

$$g \in \operatorname{Ker} \phi \iff A \begin{pmatrix} g T_1' \\ \vdots \\ g T_m' \end{pmatrix} = 0$$

$$\iff g = 0 \text{ on each component of } A \begin{pmatrix} T_1' \\ \vdots \\ T_m' \end{pmatrix}$$

$$\iff g = 0 \text{ on each component of } (T_1' \cdots T_m') {}^t A = ({}^t f T_1 \cdots {}^t f T_n)$$

$$\iff g({}^t f T_i) = 0 \text{ for } i = 1, \dots, n.$$

Hence, identifying g with $(g(T'_1),...,g(T'_m))$ we get our assertion. q. e. d.

Theorem 2. Let $\bigoplus^{l} R \xrightarrow{g} \bigoplus^{m} R \xrightarrow{f} \bigoplus^{n} R$ be an exact sequence of free R-modules where g and f are R-homomorphisms. Then,

$$\operatorname{Ext}^{1}\left(\operatorname{Coker} f, R\right) \simeq \operatorname{Rel}\left({}^{t}gT'_{1}, \dots, {}^{t}gT'_{m}\right)/\operatorname{Im}{}^{t}f$$

where $T'_1,...,T'_m$ is the canonical base of $\stackrel{m}{\oplus} R$.

Proof. From an exact sequence

$$0 \longrightarrow \operatorname{Im} f \stackrel{\phi}{\longrightarrow} \overset{n}{\oplus} R \longrightarrow \operatorname{Coker} f \longrightarrow 0,$$

we get a long exact sequence of R-modules:

$$0 \longrightarrow \operatorname{Hom} (\operatorname{Coker} f, R) \longrightarrow \operatorname{Hom} (\overset{n}{\oplus} R, R) \overset{\phi *}{\longrightarrow} \operatorname{Hom} (\operatorname{Im} f, R)$$
$$\longrightarrow \operatorname{Ext}^{1} (\operatorname{Coker} f, R) \longrightarrow \operatorname{Ext}^{1} (\overset{n}{\oplus} R, R) \longrightarrow \cdots$$

Since Ext¹ ($\overset{n}{\oplus}$ R, R)=0, identifying ($\overset{n}{\oplus}$ R)* with ($\overset{n}{\oplus}$ R), we have

Ext¹ (Coker
$$f$$
, R) \simeq (Im f)*/ ϕ *($\overset{n}{\oplus}$ R).

By the Corollary 1 of Theorem 1, we have

$$(\operatorname{Im} f)^* \simeq \operatorname{Rel} ({}^t g T'_1, \dots, {}^t g T'_m)$$

and $\phi^*(\stackrel{n}{\oplus}R)$ is generated by the restriction to the Im f of the projection map $p_i \colon \stackrel{n}{\oplus}R \to R \ (i=1,...,n)$, i.e., $\phi^*(\stackrel{n}{\oplus}R)$ is generated by

$$((p_i f)(T'_1),...,(p_i f)(T'_m))$$
 $(i = 1,...,n).$

Since $fT'_i = \sum_{j=1}^n a_{ji}T_j$ (i = 1,..., n) and $(p_j f)(T'_i) = a_{ji}$, we have

$$((p_i f)(T_1'),...,(p_i f)(T_m')) = (a_{i1},...,a_{im})$$
 $(i=1,...,n)$.

Identifying $(a_{i1},...,a_{im})$ with $a_{i1}T'_1+\cdots+a_{im}T'_m={}^tfT_i$ (i=1,...,n), we see that $\phi^*(\stackrel{n}{\oplus}R)$ is generated by ${}^tfT_1,...,{}^tfT_n$, so that $\phi^*(\stackrel{n}{\oplus}R)=\operatorname{Im}{}^tf$.

Assume R is a Noetherian local ring and let M be a finitely generated R-module with minimal system of generators u_1, \ldots, u_n . Then, it is well known that $\text{Rel}(u_1, \ldots, u_n)$ is determined uniquely up to isomorphism [1, theorem 26.1]. We call it the relation module of M and denote it Rel(M).

Now, let

$$\cdots \longrightarrow F_i \xrightarrow{d_i} F_{i-1} \longrightarrow \cdots \xrightarrow{d_1} F_0 \xrightarrow{\varepsilon} M \longrightarrow 0$$

be a minimal projective (free) resolution of M with augmentation ε . For any integer $n \ge 1$, the n-th Syzygy module of M is defined to be Im d_n and is denoted by $\operatorname{Syz}_n(M)$.

Let N be a submodule of $\bigoplus_{m}^{n} R$, minimally generated by m elements, $N = Rv_1 + \cdots + Rv_m$. Take a map $f: \bigoplus_{m}^{n} R \to \bigoplus_{m}^{n} R$ such that $f(T'_i) = v_i$, (i = 1, ..., m). The submodule $\text{Im }^{t} f$ of $\bigoplus_{m}^{n} R$ is called the *transpose* of N and is denoted by ^{t}N .

Corollary. If M is finitely generated over a Noetherian local ring R, then

$$\operatorname{Ext}^n(M, R) \simeq \operatorname{Rel}^t(\operatorname{Syz}_{n+1}M)/t(\operatorname{Syz}_nM)$$

for $n \ge 1$.

PROOF. We can assume the sequence

$$\overset{l}{\bigoplus} R \xrightarrow{g} \overset{m}{\bigoplus} R \xrightarrow{f} \overset{n}{\bigoplus} R \longrightarrow M \longrightarrow 0$$

is the first three terms of a minimal free resolution of M. Hence, by Theorem 2, we have

$$\operatorname{Ext}^{1}(M, R) \simeq \operatorname{Rel}^{t}(\operatorname{Im} g)/t(\operatorname{Im} f)$$
.

Since Im $g = \text{Syz}_2 M$ and Im $f = \text{Syz}_1 M$, we have our corollary in the case n = 1. In general we have

Ext
$${}^{n}(M, R) = \operatorname{Ext} {}^{1}(\operatorname{Syz}_{n-1}M, R)$$

$$\simeq \operatorname{Rel} {}^{t}(\operatorname{Syz}_{2}(\operatorname{Syz}_{n-1}M)/{}^{t}(\operatorname{Syz}_{1}(\operatorname{Syz}_{n-1}M))$$

$$= \operatorname{Rel} {}^{t}(\operatorname{Syz}_{n+1}M)/{}^{t}(\operatorname{Syz}_{n}M),$$

which finish our proof.

q.e.d.

Faculty of Integrated Arts and Sciences Hiroshima University

References

- [1] M. Nagata, Local rings, Interscience 1962.
- [2] H. Wiebe, Über homologische Invarianten lokaler Ringe, Math. Ann. 179 (1969), 257-274.