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m n
Let @R and @R be free modules over a commutative ring R with canonical
bases T4,..., T,, and Tl, T respectively and m and n are positive integers. For

any R-linear map f: @R-—»G—)R (T)= Z a;T; a
with an n x m matrix 4 defined by the coefﬁClents of T's:

i€R (i=1,..., m), we associate

Corresponding to f, we define an R-linear map f: éRe« (%R, transpose map
of f, by

f(T)= Z a; Ty (i=1,...,n).

The matrix associated with *f is the transposed matrix 4 of A.
Let my,..., m, be n elements of an R-module M. We denote by Rel (my,..., m,)

the set of sequences of n elements of R, (r,,..., ,) € EnBR, such that
romy+ - +r,m,=0.
Obviously Rel (mq,..., m,) is an R-module and we call it the relation module of
(my,..., my,).
Lemma 1. With the same notations as above,

1) (ry..., r)eRel(Of Ty,..., f T,) if and only if (rq,..., r,)A=0.

i) If g: ®R—>R is an R-linear map, then (g(T)),..., g(T,)) € Rel (*f Ty,...,
tfT,) if and only if g(Im f)=0.

Proor. i) Assume (ry,..., r,) € Rel (*f Ty,..., f T,), then r *f T\ + - +7, fT,=0
r1 71
5>=0. Hence ‘A<§>=O, and whence (r,---r,)A=0. Con-
n rn

so that (T}---T,,) 'A<
¥
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verse is clear.
i) Let g(T)=s; (i=1,...,n). Then, we have

gImf)=0= g(f(T)=0  (i=1,..., m)

<:"g(i a;T)=0 (i=1,..., m)
=1

<:)0=.z1 a;g(T;)= zl ags;  (i=1,...,m).
J= j=
Hence g(Im f)=0 if and only if (s,---s,)A=0. Therefore we get ii) in view of i).

Lemma 2. Rel(fT,,..., f T,)~Homg (®R/Im f, R).

Proor. For any (ry,...,r,)eRel(*fTy,...,'fT,), we define an R-linear map

g: ®R-R, g(T)=r, (i=1,..., n).
By Lemma 1, ii), we have g=0 on Imf, so that g induces an R-linear map

§: ®R/Imf—>R. Thus we get a map /: Rel (fT},..., f T,)—Homg (®R/Im f, R)
such that

My 7)) =G

It is clear that 4 is injective. Since Hom (éR/Im f, R) is identified with the set of

n
R-linear maps h: @R— R which vanish on Im f, / is surjective.
Summarizing the above consideration, we get

Theorem 1. Let f: éRﬁéR be an R-linear map defined by the matrix A:

and let 'f (—+m3R<— éR be the transpose of f corresponding to 'A. Then,
Rel (f Ty,..., 'f T,)~(Coker f)*
where M*=Homyg (M, R) for an R-module M.

Remark. With the same notations as in Lemma 2, A~!: (Coker f)*—
Rel (*fTy,..., *f T,) is given by

g — @(Ty),..., g(T,)).

1 m n
Corollary 1. Let @R 2, @R L, ®R be an exact sequence of free R-
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modules. Then,

Rel (*gTi,..., 'gT;,)~(Im f)*

where T1,..., T,, is the canonical base of él—)R.
Proor. By Theorem 1, we have
Rel(*gTjy,..., 'gT,)~(Coker g)*.
On the other hand
(Coker g)* (@ R/Im g)* =(&RKer f)* = (Im f)*.
Thus we get our result.

Remark. The isomorphism (Imf)*— Rel(‘gT},...,'gT,) obtained in the
Corollary 1 is given by

¢ — (- N(T),.... (¢-/)(T})).

Corollary 2. Let f: éRﬁéR be an R-homomorphism and let Cokerf==
Ru;+---+Ru, where u; is the residue of T, modulo Imf (i=1,...,n). Then, we
have the following exact sequence of R-modules:

0— Rel (fT%,.... f Th)—> @R — Rel (..., u,) — 0.
Proor. Clearly we have
(ryye.., rpeRel(uy,...,u)e=r T+ +r,T,elmf
T+ +r,T,=ri f(T)++r,f(T,) forsome elements r;eR

ry r1
<:>< : >=A( : ) for some elements r;eR (i=1,..., m).

!
rh F'm

Now we define a map ¢: Hom (C—II—)SR, R)—Rel (uy,..., u,) by

¢w>=A(sf>
rm

where geHom(éR, R) and r;=g(T}) (i=1,..., m). Then, the first part of our
proof shows that ¢ is surjective.
Consider an exact sequence

0 —- Ker ¢ —— Hom (R, R) —% Rel (uy, ..., u,) — 0.
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Since we have

g7
geKer¢pe—= 4 : =0
9T,

Ty
<= ¢g=0 on each component of A4 ( : )
T

&= ¢g=0 on each component of (T;---T,)A=(fT;---'fT,)
= g(fT)=0 for i=1,..., n.

Hence, identifying g with (g(T9),..., g(T,,)) we get our assertion. q.e.d.

1 7
Theorem 2. Let ®R - éR AN é—)R be an exact sequence of free R-
modules where g and f are R-homomorphisms. Then,

Ext! (Coker f, R)~Rel (*gT4,..., 'gT.,)/Im f

m
where T1,..., T,, is the canonical base of ®R.

Proor. From an exact sequence

0— Imf—%, ®R — Coker f — 0,

we get a long exact sequence of R-modules:
0 Hom (Coker f, R) —» Hom (@R, R) -, Hom (Im.f, R)
— . Ext! (Coker f, R) — Ext! (®R, R) — -+
Since Ext! (éR, R)=0, identifying (GnaR)* with (é R), we have
Ext! (Coker f, R)~(Im f)*/¢*(®R).
By the Corollary 1 of Theorem 1, we have
(Im f)*~Rel (*gT5,..., 'gT;,)
and d)*(éR) is generated by the restriction to the Imf of the projection map
D;: éR—»R (i=1,..., n), ie., qb*(éR) is generated by

(2T, (pN)(T5)  (i=1,...,n).
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n
Since fT;= 3 a;T; (i=1,..., n) and (p;/)(T})=aj, we have
J=1

PTDses (DT =(i15s ) (i=1,.., 1),

Identifying (a;y,..., a;,) With a; T{++a,,T,='fT; (i=1,...,n), we see that
qﬁ*(éR) is generated by ‘f Ty,..., !f T,, so that d)*(éR):Im if. g.e.d.

Assume R is a Noetherian local ring and let M be a finitely generated R-module
with minimal system of generators u,,..., u,. Then, it is well known that Rel (u,,...,
u,) is determined uniquely up to isomorphism [1, theorem 26.1]. We call it the
relation module of M and denote it Rel (M).

Now, let

Fi di Fi—l et FO e M 0

be a minimal projective (free) resolution of M with augmentation &. For any
integer n= 1, the n-th Syzygy module of M is defined to be Im d, and is denoted by
Syz,(M).

Let N be a submodule of éR, minimally generated by m elements, N=Ruv,
+--++Rv,. Take a map f: @'SRﬁéR such that f(T)=v,;, (i=1,..., m). The
submodule Im *f of '(%R is called the transpose of N and is denoted by *N.

Corollary. If M is finitely generated over a Noetherian local ring R, then
Ext" (M, R)~Rel*(Syz,, M)/!(Syz,M)
for n=1.

Proor. We can assume the sequence

m

{ n
@®R -4 ®R L, @R M 0

is the first three terms of a minimal free resolution of M. Hence, by Theorem 2,
we have

Ext! (M, R)~Rel ‘(Im g)/(Im f).

Since Im g =Syz,M and Im f=Syz, M, we have our corollary in the case n=1.
In general we have

Ext "(M, R)=Ext {(Syz,_,;M, R)
~ Rel /(Syz,(Syz,- ; M)/'(Syz,(Syz, - ; M)
=Rel*(Syz, , ;M)/'(Syz,M)),
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which finish our proof. g.e.d.
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